SOME RESULTS CONCERNING PARTITIONS OF A GIVEN RANK

NEVILLE ROBBINS

Mathematics Department San Francisco State University San Francisco, CA 94132, U. S. A.

Abstract

The rank of a partition is the largest part less the number of parts. We present several theorems concerning (i) the number of partitions with a given rank; (ii) the number of partitions into distinct parts with a given rank.

1. Introduction

For n is a natural number, let a partition, π , of n be given by: $n = n_1 + n_2 + n_3 + \cdots + n_r$, where $n_1 \ge n_2 \ge n_3 \ge \cdots \ge n_r$. The rank of π , denoted $\rho(\pi)$, is defined by

$$\rho(\pi) = n_1 - r.$$

(This definition was first given by Dyson in [2].)

Clearly, $|\rho(\pi)| \le n-1$. Furthermore, if π^* is the partition that is conjugate to π , then $\rho(\pi^*) = -\rho(\pi)$. If $|m| \le n-1$, let N(m,n) denote the number of partitions of n whose rank is m, with N(0,0) = 0. (This is the notation used in [1].) Since N(-m,n) = N(m,n), it suffices to consider $0 \le m \le n-1$. We will also use the notation: $\rho_m(n) = N(m,n)$. In this

2000 Mathematics Subject Classification: 11P81.

Keywords and phrases: rank of a partition.

Received December 1, 2008

note, we present some results regarding the number of partitions of a given rank that are implicit in earlier works of others, as well as some new results.

2. Preliminaries

Definition 1. If $k \in \mathbb{Z}$, then $\omega(k) = \frac{k(3k-1)}{2}$ (pentagonal numbers).

Definition 2. p(n) is the number of partitions of n.

Definition 3. $q_0(n)$ is the number of self-conjugate partitions of n.

Definition 4. $\rho_m(n) = N(m, n)$ is the number of partitions of n that have rank m, where $0 \le m \le n-1$.

Definition 5. $\rho_+(n)$ is the number of partitions of n with positive rank.

Definition 6. $\rho_{-}(n)$ is the number of partitions of n with negative rank.

Definition 7. π^* is the partition that is conjugate to π .

Identities. Let $x \in C$, |x| < 1. Then

$$\rho(\pi^*) = -\rho(\pi),\tag{1}$$

$$\prod_{n\geq 1} (1-x^n) = 1 + \sum_{n\geq 1} (-1)^n \{x^{\omega(n)} + x^{\omega(-n)}\},\tag{2}$$

$$\prod_{n\geq 1} (1-x^n)^{-1} = \sum_{n\geq 0} p(n)x^n,$$
(3)

$$p(n) \equiv q_0(n) \pmod{2} \text{ for all } n \ge 0, \tag{4}$$

$$p(n) + \sum_{k \ge 1} (-1)^k \{ p(n - \omega(k)) + p(n - \omega(-k)) \} = 0 \text{ for all } n \ge 1,$$
 (5)

$$\sum_{n=0}^{\infty} \rho_m(n) x^n = \sum_{n=1}^{\infty} (-1)^{n-1} x^{\omega(n) + mn} (1 - x^n) \prod_{r=1}^{\infty} (1 - x^r)^{-1}.$$
 (6)

Remarks. (1) is self-evident; (2) through (5) are well known; (6) is Equation 2.12 in [1].

3. Unrestricted Partitions with a Given Rank

We begin with an explicit formula for $\rho_m(n)$ in terms of p(n).

Theorem 1. If $0 \le m \le n-1$, then

$$\rho_m(n) = \sum_{k=1}^{\infty} (-1)^{k-1} \{ p(n - \omega(k) - mk) - p(n - \omega(-k) - mk) \}.$$

Proof. This follows directly from (6).

In particular, we have

Corollary 1.

$$\rho_0(n) = \sum_{k=1}^{\infty} (-1)^{k-1} \{ p(n - \omega(k)) - p(n - \omega(-k)) \}.$$

Proof. This follows from Theorem 1, with m = 0.

The next theorem states that $\rho_0(n)$ has the same parity as p(n).

Theorem 2. $\rho_0(n) \equiv p(n) \pmod{2}$ for all $n \ge 1$.

Proof. If π is a self-conjugate partition of π , that is, if $\pi^* = \pi$, then (1) implies $\rho(\pi) = 0$. The partitions of n with rank 0 that are not self-conjugate (if any) occur in conjugate pairs. Therefore $\rho_0(n) \equiv q_0(n) \pmod{2}$. The conclusion now follows from (4).

The next theorem gives a formula for the number of partitions with positive rank.

Theorem 3. *If* $n \ge 1$, *then*

$$\rho_{+}(n) = \sum_{k=1}^{\infty} (-1)^{k-1} p(n - \omega(-k)).$$

Proof. (1) implies $\rho_+(n) = \rho_-(n)$, so that $p(n) = \rho_0(n) + 2\rho_+(n)$, that is, $2\rho_+(n) = p(n) - \rho_0(n)$. Now Corollary 1 implies

$$2\rho_{+}(n) = p(n) + \sum_{k=1}^{\infty} (-1)^{k} \{ p(n - \omega(k)) - p(n - \omega(-k)) \},$$

whereas (5) implies

$$0 = p(n) + \sum_{k=1}^{\infty} (-1)^{k} \{ p(n - \omega(k)) + p(n - \omega(-k)) \}.$$

The conclusion now follows if we subtract and divide by 2.

Next, we present a recurrence for $\rho_m(n)$.

Theorem 4. If $0 \le m \le n-1$, then

$$\rho_m(n) + \sum_{j=1}^{\infty} (-1)^j \{ \rho_m(n-\omega(j)) + \rho_m(n-\omega(-j)) \} = \begin{cases} (-1)^{k-1}, & if \ n=\omega(k)+mk, \\ (-1)^k, & if \ n=\omega(-k)+mk, \\ 0, & otherwise. \end{cases}$$

Proof. (6) implies

$$\left(\sum_{n=0}^{\infty} \rho_m(n) x^n \right) \prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=0}^{\infty} (-1)^{n-1} x^{\omega(n) + mn} (1 - x^n).$$

The conclusion now follows by invoking (2) and matching coefficients of like powers of x.

4. Partitions into Distinct Parts with a Given Rank

Theorem 5. If π is a partition of n into distinct parts, then $\rho(\pi) \geq 0$; furthermore, the inequality is strict unless n is triangular, that is, n = k(k+1)/2, and n is partitioned as a sum of consecutive integers:

$$n = k + (k-1) + (k-2) + \dots + 3 + 2 + 1. \tag{7}$$

Proof. Let a partition, π , of n into distinct parts be given by;

$$n = n_1 + n_2 + n_3 + \cdots + n_k$$

where $n_i > n_{i+1}$ for all i such that $1 \le i \le k-1$, hence $\rho(\pi) = n_1 - k$. Now

$$n_1 = \sum_{i=1}^{k-1} (n_i - n_{i+1}) + n_k \ge \sum_{i=1}^{k-1} 1 + 1 = k,$$

so that $\rho(\pi) = n_1 - k \ge 0$. The inequality is strict unless $n_k = 1$ and $n_i - n_{i+1} = 1$ for all i. This implies $n_i = k+1-i$ for all i, so $n = \sum_{i=1}^k i = k (k+1)/2$, that is, n is triangular, and is partitioned as in (7), so that $\rho(\pi) = k - k = 0$.

Lemma 1. Let $n = n_1 + n_2 + n_3 + \cdots + n_r$ with $n_1 > n_2 > n_3 > \cdots > n_r$. If k is the unique integer such that $k(k-1)/2 < n \le k(k+1)/2$, then $r \le k$. Furthermore, if n is not triangular, then r < k.

Proof.

$$\frac{r(r+1)}{2} = \sum_{i=1}^{r} i \le \sum_{i=1}^{r} n_i = n \le \frac{k(k+1)}{2} \to r \le k.$$

Now suppose that r=k. If $n_1 \leq k-1$, then $n_i \leq k-i$ for all i, and in particular, $n_k \leq 0$, an impossibility. Therefore $n_1 \geq k$. Similarly,

$$n_2 \ge k - 1, n_3 \ge k - 2, ..., n_k \ge 1.$$

Now

$$n = \sum_{i=1}^{k} n_i \to n \ge \sum_{i=1}^{k} i = \frac{k(k+1)}{2}.$$

But, since also $n \le k(k+1)/2$, we have n = k(k+1)/2, that is, n is triangular.

Theorem 6. If n is not triangular, then n has a unique partition, π , into distinct parts such that $\rho(\pi) = 1$.

Proof. (Existence) If n is not triangular, let k be the unique integer such that k(k-1)/2 < n < k(k+1)/2. Therefore there exists a unique

integer, j, such that $n = \frac{k(k+1)}{2} - j$ and $1 \le j \le k-1$. Thus n may be represented as a sum of k-1 consecutive integers, excluding j, of which the largest is k. It follows that $\rho(\pi) = k - (k-1) = 1$.

(Uniqueness) Let n be partitioned as in the statement of Lemma 1. By hypothesis, we have $n_1 - r = 1$. Lemma 1 and the hypothesis imply r < k, so that $r \le k - 1$. If $n_1 \ge k + 1$, then $n_1 - r \ge 2$, an impossibility. Therefore $n_1 = k$.

Let $\rho_k^*(n)$ denote the number of partitions of n into distinct parts, having rank k. Then Theorems 5 and 6 may be restated as follows:

Theorem 5a.

$$\rho_0^*(n) = \begin{cases} 1, & \text{if } n \text{ is triangular,} \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 5b.

$$\rho_1^*(n) = \begin{cases} 0, & \text{if n is triangular}, \\ 1, & \text{otherwise}. \end{cases}$$

References

- A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106.
- [2] F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10.15