SOME RESULTS CONCERNING PARTITIONS OF A GIVEN RANK

NEVILLE ROBBINS

Mathematics Department
San Francisco State University
San Francisco, CA 94132, U. S. A.

Abstract

The rank of a partition is the largest part less the number of parts. We present several theorems concerning (i) the number of partitions with a given rank; (ii) the number of partitions into distinct parts with a given rank.

1. Introduction

For n is a natural number, let a partition, π, of n be given by: $n=n_{1}+n_{2}+n_{3}+\cdots+n+n_{r}$, where $n_{1} \geq n_{2} \geq n_{3} \geq \cdots \geq n_{r}$. The rank of π, denoted $\rho(\pi)$, is defined by

$$
\rho(\pi)=n_{1}-r .
$$

(This definition was first given by Dyson in [2].)
Clearly, $|\rho(\pi)| \leq n-1$. Furthermore, if π^{*} is the partition that is conjugate to π, then $\rho\left(\pi^{*}\right)=-\rho(\pi)$. If $|m| \leq n-1$, let $N(m, n)$ denote the number of partitions of n whose rank is m, with $N(0,0)=0$. (This is the notation used in [1].) Since $N(-m, n)=N(m, n)$, it suffices to consider $0 \leq m \leq n-1$. We will also use the notation: $\rho_{m}(n)=N(m, n)$. In this 2000 Mathematics Subject Classification: 11P81.

Keywords and phrases: rank of a partition.
Received December 1, 2008
note, we present some results regarding the number of partitions of a given rank that are implicit in earlier works of others, as well as some new results.

2. Preliminaries

Definition 1. If $k \in Z$, then $\omega(k)=\frac{k(3 k-1)}{2}$ (pentagonal numbers).
Definition 2. $p(n)$ is the number of partitions of n.
Definition 3. $q_{0}(n)$ is the number of self-conjugate partitions of n.
Definition 4. $\rho_{m}(n)=N(m, n)$ is the number of partitions of n that have rank m, where $0 \leq m \leq n-1$.

Definition 5. $\rho_{+}(n)$ is the number of partitions of n with positive rank.

Definition 6. $\rho_{-}(n)$ is the number of partitions of n with negative rank.

Definition 7. π^{*} is the partition that is conjugate to π.
Identities. Let $x \in C,|x|<1$. Then

$$
\begin{gather*}
\rho\left(\pi^{*}\right)=-\rho(\pi), \tag{1}\\
\prod_{n \geq 1}\left(1-x^{n}\right)=1+\sum_{n \geq 1}(-1)^{n}\left\{x^{\omega(n)}+x^{\omega(-n)}\right\}, \tag{2}\\
\prod_{n \geq 1}\left(1-x^{n}\right)^{-1}=\sum_{n \geq 0} p(n) x^{n}, \tag{3}\\
p(n) \equiv q_{0}(n)(\bmod 2) \text { for all } n \geq 0, \tag{4}\\
p(n)+\sum_{k \geq 1}(-1)^{k}\{p(n-\omega(k))+p(n-\omega(-k))\}=0 \text { for all } n \geq 1, \tag{5}\\
\sum_{n=0}^{\infty} \rho_{m}(n) x^{n}=\sum_{n=1}^{\infty}(-1)^{n-1} x^{\omega(n)+m n}\left(1-x^{n}\right) \prod_{r=1}^{\infty}\left(1-x^{r}\right)^{-1} . \tag{6}
\end{gather*}
$$

Remarks. (1) is self-evident; (2) through (5) are well known; (6) is Equation 2.12 in [1].

3. Unrestricted Partitions with a Given Rank

We begin with an explicit formula for $\rho_{m}(n)$ in terms of $p(n)$.

Theorem 1. If $0 \leq m \leq n-1$, then

$$
\rho_{m}(n)=\sum_{k=1}^{\infty}(-1)^{k-1}\{p(n-\omega(k)-m k)-p(n-\omega(-k)-m k)\} .
$$

Proof. This follows directly from (6).
In particular, we have

Corollary 1.

$$
\rho_{0}(n)=\sum_{k=1}^{\infty}(-1)^{k-1}\{p(n-\omega(k))-p(n-\omega(-k))\} .
$$

Proof. This follows from Theorem 1, with $m=0$.
The next theorem states that $\rho_{0}(n)$ has the same parity as $p(n)$.

Theorem 2. $\rho_{0}(n) \equiv p(n)(\bmod 2)$ for all $n \geq 1$.

Proof. If π is a self-conjugate partition of π, that is, if $\pi^{*}=\pi$, then (1) implies $\rho(\pi)=0$. The partitions of n with rank 0 that are not self-conjugate (if any) occur in conjugate pairs. Therefore $\rho_{0}(n) \equiv$ $q_{0}(n)(\bmod 2)$. The conclusion now follows from (4).

The next theorem gives a formula for the number of partitions with positive rank.

Theorem 3. If $n \geq 1$, then

$$
\rho_{+}(n)=\sum_{k=1}^{\infty}(-1)^{k-1} p(n-\omega(-k)) .
$$

Proof. (1) implies $\rho_{+}(n)=\rho_{-}(n)$, so that $p(n)=\rho_{0}(n)+2 \rho_{+}(n)$, that is, $2 \rho_{+}(n)=p(n)-\rho_{0}(n)$. Now Corollary 1 implies

$$
2 \rho_{+}(n)=p(n)+\sum_{k=1}^{\infty}(-1)^{k}\{p(n-\omega(k))-p(n-\omega(-k))\},
$$

whereas (5) implies

$$
0=p(n)+\sum_{k=1}^{\infty}(-1)^{k}\{p(n-\omega(k))+p(n-\omega(-k))\} .
$$

The conclusion now follows if we subtract and divide by 2 .
Next, we present a recurrence for $\rho_{m}(n)$.
Theorem 4. If $0 \leq m \leq n-1$, then

$$
\rho_{m}(n)+\sum_{j=1}^{\infty}(-1)^{j}\left\{\rho_{m}(n-\omega(j))+\rho_{m}(n-\omega(-j))\right\}= \begin{cases}(-1)^{k-1}, & \text { if } n=\omega(k)+m k \\ (-1)^{k}, & \text { if } n=\omega(-k)+m k \\ 0, & \text { otherwise }\end{cases}
$$

Proof. (6) implies

$$
\left(\sum_{n=0}^{\infty} \rho_{m}(n) x^{n}\right) \prod_{n=1}^{\infty}\left(1-x^{n}\right)=\sum_{n=0}^{\infty}(-1)^{n-1} x^{\omega(n)+m n}\left(1-x^{n}\right)
$$

The conclusion now follows by invoking (2) and matching coefficients of like powers of x.

4. Partitions into Distinct Parts with a Given Rank

Theorem 5. If π is a partition of n into distinct parts, then $\rho(\pi) \geq 0$; furthermore, the inequality is strict unless n is triangular, that is, $n=$ $k(k+1) / 2$, and n is partitioned as a sum of consecutive integers:

$$
\begin{equation*}
n=k+(k-1)+(k-2)+\cdots+3+2+1 . \tag{7}
\end{equation*}
$$

Proof. Let a partition, π, of n into distinct parts be given by;

$$
n=n_{1}+n_{2}+n_{3}+\cdots+n_{k}
$$

where $n_{i}>n_{i+1}$ for all i such that $1 \leq i \leq k-1$, hence $\rho(\pi)=n_{1}-k$.
Now

$$
n_{1}=\sum_{i=1}^{k-1}\left(n_{i}-n_{i+1}\right)+n_{k} \geq \sum_{i=1}^{k-1} 1+1=k,
$$

so that $\rho(\pi)=n_{1}-k \geq 0$. The inequality is strict unless $n_{k}=1$ and $n_{i}-n_{i+1}=1$ for all i. This implies $n_{i}=k+1-i$ for all i, so $n=\sum_{i=1}^{k} i$ $=k(k+1) / 2$, that is, n is triangular, and is partitioned as in (7), so that $\rho(\pi)=k-k=0$.

Lemma 1. Let $n=n_{1}+n_{2}+n_{3}+\cdots+n_{r}$ with $n_{1}>n_{2}>n_{3}>\cdots>n_{r}$. If k is the unique integer such that $k(k-1) / 2<n \leq k(k+1) / 2$, then $r \leq k$. Furthermore, if n is not triangular, then $r<k$.

Proof.

$$
\frac{r(r+1)}{2}=\sum_{i=1}^{r} i \leq \sum_{i=1}^{r} n_{i}=n \leq \frac{k(k+1)}{2} \rightarrow r \leq k .
$$

Now suppose that $r=k$. If $n_{1} \leq k-1$, then $n_{i} \leq k-i$ for all i, and in particular, $n_{k} \leq 0$, an impossibility. Therefore $n_{1} \geq k$. Similarly,

$$
n_{2} \geq k-1, n_{3} \geq k-2, \ldots, n_{k} \geq 1
$$

Now

$$
n=\sum_{i=1}^{k} n_{i} \rightarrow n \geq \sum_{i=1}^{k} i=\frac{k(k+1)}{2} .
$$

But, since also $n \leq k(k+1) / 2$, we have $n=k(k+1) / 2$, that is, n is triangular.

Theorem 6. If n is not triangular, then n has a unique partition, π, into distinct parts such that $\rho(\pi)=1$.

Proof. (Existence) If n is not triangular, let k be the unique integer such that $k(k-1) / 2<n<k(k+1) / 2$. Therefore there exists a unique
integer, j, such that $n=\frac{k(k+1)}{2}-j$ and $1 \leq j \leq k-1$. Thus n may be represented as a sum of $k-1$ consecutive integers, excluding j, of which the largest is k. It follows that $\rho(\pi)=k-(k-1)=1$.
(Uniqueness) Let n be partitioned as in the statement of Lemma 1. By hypothesis, we have $n_{1}-r=1$. Lemma 1 and the hypothesis imply $r<k$, so that $r \leq k-1$. If $n_{1} \geq k+1$, then $n_{1}-r \geq 2$, an impossibility. Therefore $n_{1}=k$.

Let $\rho_{k}^{*}(n)$ denote the number of partitions of n into distinct parts, having rank k. Then Theorems 5 and 6 may be restated as follows:

Theorem 5a.

$$
\rho_{0}^{*}(n)= \begin{cases}1, & \text { if } n \text { is triangular }, \\ 0, & \text { otherwise } .\end{cases}
$$

Theorem 5b.

$$
\rho_{1}^{*}(n)= \begin{cases}0, & \text { if } n \text { is triangular } \\ 1, & \text { otherwise }\end{cases}
$$

References

[1] A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106.
[2] F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15.

