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Abstract 

In this paper, we develop a new approach to studying Appell polynomial 
sequences via linear algebra. This approach offers a powerful tool for 
investigating the properties of Appell polynomials. Within a self-
contained theory, employing only matrix operations, we show how the 
derivation of some of old and new properties of Appell polynomials is 
greatly simplified. 

1. Introduction 

In the mathematical literature of the past few decades there has been 
a revival of interest in Appell polynomial sequences. Appell polynomial 
sequences arise in theoretical physics, chemistry, approximation theory, 
and numerous other fields. Di Bucchianico and Loeb recently summarized 
and documented more than five hundred old and new findings related to 
Appell polynomial sequences in [3]. Attention has centered on finding a 
novel representation of Appell polynomials and studying their properties 
(see [5] and [7]). For instance, in [5], Lehmer illustrated six different 
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approaches to representing Bernoulli polynomial sequence, which is one 
of the Appell polynomial sequences. 

The well-known mathematical tool, developed by G. Rota, in the 
study of Appell polynomials uses the algebra of functionals, which is not 
easily accessible by non-specialists. In light of the many polynomials 
rooted in physics and engineering, it is essential to develop an easily 
comprehensible mathematical tool, which is accessible to physicists and 
engineers. In this paper, we develop a novel approach - investigating 
Appell polynomials via linear algebra, using matrix operations as our 
main tool. 

This paper is organized as follows. In Section 2, we present 
generalized Pascal functional matrices introduced in [8] and their 
properties, which play an important role in establishing the theoretical 
foundation of the linear algebra approach. In Section 3, we set up the 
representation of Appell polynomial sequences via generalized Pascal 
functional matrices, reprove the well-known Appell identity, and obtain 
the generalized Appell identity. In Section 4, we further the study of 
Appell polynomials’ properties, such as connection constant theorem, 
inverse relation, and duplication formula. Section 5 is an extension of 
Section 3. In this section, we develop new and redevelop old identities of 
Appell polynomials. In Section 6, we obtain the differential equation and 
recurrence relation for Appell polynomials, which were presented in [4], 
and give differential equations and recurrence relations for Bernoulli, 
Euler, and Hermite polynomials (note the results in [4] are incorrect). We 
conclude the paper in Section 7 and state our future direction. 

2. Generalized Pascal Functional Matrices and Wronskians 

Let us state the definition of the generalized Pascal functional matrix 
of an analytic function, introduced in [8]. To avoid any unnecessary 

confusion, we use ( )kf  to stand for the kth order derivative of f and use 
kf  to represent the kth power of f in the entire paper. In addition, 
( ) ff =0  and .10 =f  
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Definition 2.1. Let ( )tf  be an analytic function. Then the 

generalized Pascal functional matrix of ( ),tf  denoted by ( )[ ],tfnP  is an 

( )1+n  by ( )1+n  matrix and is defined as 

( )[ ]( )
( )( )

⎪⎩

⎪
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

,otherwise0

,if
,

jitf
j
i

tf
ji

jinP   for   ....,,2,1,0, nji =  

The generalized Pascal functional matrices interact nicely with 
Wronskian vector. For clarity we define the Wronskian vector of an 
analytic function ( ).tf  

Definition 2.2. The nth order Wronskian vector of ( )tf  is an 

( ) 11 ×+n  matrix, denoted by ( )[ ],tfnW  and is defined as 

( )[ ] [ ( ) ( ) ( )( )] .Tn
n tftftftf ′=W  

In what follows, we study the Pascal functional matrices and 
Wronskian functional vectors in a neighborhood of .0=t  Hence when we 
mention analytic, we mean analytic near .0=t  

Let us now state some properties of the generalized Pascal functional 
matrix and Wronskian functional vector. 

Property 2.1. (a) If ( ) ,1=tf  then [ ] 11 += nn IP  (identity matrix). 

(b) If ( ) ,tetf =  then [ ] Lt
t

n Pe ==0P  (regular lower triangular Pascal 

matrix defined in [1]). 

(c) If ( ) ,atetf =  then [ ] [ ]aPPe L
a
Lt

at
n ===0P  (generalized lower 

triangular matrix in [2]). 

(d) [ ]⋅nP  and [ ]⋅nW  are linear, that is, for any constants a and b, and 

any analytic functions ( )tf  and ( ),tg  

( ) ( )[ ] ( )[ ] ( )[ ],tgbtfatbgtaf nnn PPP +=+  

( ) ( )[ ] ( )[ ] ( )[ ].tgbtfatbgtaf nnn WWW +=+  
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(e) For any analytic functions ( )tf  and ( ),tg  

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( ) ( )[ ].tgtftftgtgtf nnnnn PPPPP ==  

Furthermore, if ( ) ,00 ≠f  then ( )[ ]( ) [ ( )],11 tftf nn
−− = PP  where ( )tf 1−  

denotes the multiplicative inverse of ( ).tf  

We will call ( )tf  to be invertible if ( ) .00 ≠f  Thus the set of all 

invertible analytic functions forms a commutative group under the 
binary operator 

( )[ ] ( )[ ].tgtfgf nn PP=∗  

(f) For any analytic functions ( )tf  and ( ),tg  

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( ) ( )[ ].tfgtftgtgtf nnnnn WWPWP ==  

(g) For any analytic function ( ),tf  

( )[ ] [ ] ( )[ ] ....,,,1diag 00 == = tn
n

tn tfaaatf WW  

(h) For any analytic function ( ),tf  ( )[ ] 0=tn atfP  and ( )[ ] 0=tn tfP  are 

similar and 

 ( )[ ] [ ] ( )[ ] [ ]....,,,1diag...,,,1diag 1
00

n
tn

n
tn aatfaaatf −−

== = PP  (1) 

Proof. Properties (a)-(d) are trivial. The proof of Property (e) can be 
found in [8]. For Property (f), we note that ( )[ ]tfnW  equals the first 

column of ( )[ ]tfnP  and therefore Property (f) follows from Property (e). 

For Property (g), we note that ( )( )( ) ( )( )atfaatf kkk =  and ( )( )( ) =| =0t
katf  

( )( ).0kkfa  For Property (h), using Definition 2.1 and knowing ( )( )( ) =katf  
( )( ),atfa kk  we have 

( ( )[ ] )
( )( )

⎪⎩

⎪
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−−

=
otherwise,0

, if0
,0

jifa
j
i

atf
jiji

jitnP  for  ....,,2,1,0, nji =  (2) 
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By a simple matrix multiplication, we obtain 

( [ ] ( )[ ] [ ]) ji
n

tn
n aatfaa ,

1
0 ...,,,1diag...,,,1diag −−

=P  

 
( )( )

⎪⎩

⎪
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−−

otherwise,0

, if0 jifa
j
i jiji

 for ....,,2,1,0, nji =  (3) 

Equating Eqs. (2) and (3) yields Property (h). 

Now consider the system of differential equations in ,1+nR  

 ( ) ( )[ ] ( ) ∞<<∞−= = xxytfxydx
d

tn ,0P  (4) 

with an initial value 

 ( ) ,0 1
0

+∈= nyy R  (5) 

where ( ) 1+∈ nxy R  denotes a vector of functions. 

Theorem 2.1. Let ( )tf  be an analytic function with ( ) .00 =f  Then 
the solution to the above initial value problem of Eqs. (4)-(5) is given by 

 ( ) [ ( ) ] .00 yexy t
xtf

n == P  (6) 

Proof. The fundamental matrix of the system of Eq. (4) is 

 ( ) ( )[ ] ( )[ ]∑
∞

=
=+ +==Φ =

1
01 .!

0

k

k
t

k
nn

xtf
k
xtfIex tn PP  (7) 

Since ( ) ,00 =f  ( ( )[ ] ) 0,0 == jitn tfP  for ji ≤  and hence ( )[ ] 0=t
k
n tfP  is a 

zero matrix for all .1+≥ nk  Therefore the above sum is a finite sum and 
applying Properties (d) and (e), we get 

( ) ( ) [ ( ) ] .1! 01
01

1 =+

=

∞

=
+ −+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=Φ ∑ t

xtf
nn

tk

k
k

nn eIk
xtfIx PP  

By Properties (a) and (d), we obtain 

( ) [ ( ) ] .0==Φ t
xtf

n ex P  
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Thus the solution to the above initial value problem of Eqs. (4)-(5) is 

 ( ) [ ( ) ] .00 yexy t
xtf

n == P  (8) 

This completes the proof. 

3. Appell Polynomial Sequences and Appell Vectors 

An Appell polynomial sequence is often defined by a generating 
function (see [7]). 

Definition 3.1. Let ( )tg  be an invertible analytic function. Then the 

sequence ( ){ }xsn  is the Appell polynomial sequence for ( )tg  if and only if 

( )
( )∑

∞

=

=
0

.!
1

k

kkxt tk
xsetg  

Note 3.1. Since ( )tg  is invertible, ( )
xtetg

1  is analytic, and by Taylor’s 

Theorem, 

( )
( )

( ) .1
0=

⎟
⎠
⎞⎜

⎝
⎛=

t
xt

k
k etgdt

dxs  

An alternative definition of an Appell polynomial sequence can be 
found in [7]. 

Definition 3.2. The sequence ( ){ }xsn  is Appell polynomial sequence 

for an invertible analytic function ( )tg  if and only if 

( ) ( )xnsxs nn 1−=′  

with the initial condition 

( )
( )

( ) .10
0=

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=

t

k
k tgdt

ds  

The equivalence of Definitions 3.1 and 3.2 is obtained by taking the 
derivative with respect to x of both sides of the expression in Definition 
3.1. 
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In order to establish linear algebra approach to studying Appell 
polynomial sequences, we introduce Appell vector. 

Definition 3.3. Let ( ){ }xsn  be the Appell polynomial sequence for an 

invertible analytic function ( ).tg  Then ( ) ( ) ( )( )Tnn xsxsxS ...,,0=  is called 
the Appell vector for ( ).tg  

We now show Appell vector is a solution to the system of differential 
equations (4) with ( ) ttf =  and it has a simple representation as an 
Wronskian functional vector. 

Theorem 3.1. Let ( ) ( ) ( )( )Tnn xsxsxS ...,,0=  be a vector of functions. 

Then ( )xSn  is the Appell vector for ( )tg  if and only if 

 ( ) ( ) [ ] ( ) .11
0

0
0 =

=
= ⎥⎦

⎤
⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡=

t
xt

nt
xt

n
t

nn etgetgxS WWP  (9) 

Proof. Since 

( [ ] )
⎩
⎨
⎧ +=

== otherwise,0
,1if

,0
jii

t jitnP    for  ,...,,2,1,0, nji =  

Definition 3.2, in vector form, is equivalent to 

 ( ) [ ] ( )xStxSdx
d

ntnn 0== P  (10) 

with the initial condition 

 ( ) ( ) .10
0=⎥⎦

⎤
⎢⎣
⎡=

t
nn tgS W  (11) 

Therefore, by Theorem 2.1 and using Property (f), 

( ) [ ] ( ) 0
0

1
=

= ⎥⎦
⎤

⎢⎣
⎡=

t
nt

xt
nn tg

exS WP  

( ) [ ] 0
0

1
=

=⎥⎦
⎤

⎢⎣
⎡= t

xt
n

t
n etg WP  

( ) .1
0=⎥⎦

⎤
⎢⎣
⎡=

t
xt

n etgW  
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On the other hand, if ( )xSn  satisfies Eq. (9), then 

( )
( )

( ) .1
0=

⎟
⎠
⎞⎜

⎝
⎛=

t
xt

k
k etgdt

dxs  

Thus ( ){ }xsn  is the Appell polynomial sequence for ( )tg  as in Definition 

3.1 and ( )xSn  is the Appell vector for ( ).tg  This completes the proof. 

Note 3.2. Expressing 

( ) ( ) [ ] 0
0

1
=

=⎥⎦
⎤

⎢⎣
⎡= t

xt
n

t
nn etgxS WP  

in matrix form as follows: 

 

( )
( )
( )

( )

,

1

0
00
000

2

210

222120

1110

00

2

1

0

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

n
nnnnnn x

x
x

ssss

sss
ss

s

xs

xs
xs
xs

 (12) 

we recognize the matrix ( ) 0

1
=⎥⎦

⎤
⎢⎣
⎡

t
n tgP  as the coefficient matrix of the 

Appell polynomials ( ) ( )....,,0 xsxs n  

Note 3.3. Setting ,0=x  we have 

( ) ( ) .10
0=⎥⎦

⎤
⎢⎣
⎡=

t
nn tgS W  

Equivalently 

( )
( )∑

∞

=

=
0

,!
01

k

kk tk
s

tg  

i.e., ( )tg
1  is the exponential generating function of the number sequence 

( ){ }.0ks  
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Theorem 3.2 (The Appell Identity). Let ( ){ }xsn  be the Appell 

polynomial sequence for an invertible analytic function ( ).tg  Then 

 ( ) ( ) [ ] ( ),ySzPySPzyS nLn
z
Ln ==+  (13) 

equivalently 

 ( ) ( )∑
=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

n

k

kn
kn zys

k
n

zys
0

.  (14) 

Proof. By Theorem 3.1, we have 

( ) ( )
( ) .1

0=
+

⎥⎦
⎤

⎢⎣
⎡=+

t
tzy

nn etgzyS W  

Using Properties (f) and (c) yields 

( ) [ ] ( ) 0
0

1
=

= ⎥⎦
⎤

⎢⎣
⎡=+

t
yt

nt
zt

nn etgezyS WP  

( ) [ ] ( ).ySzPySP nLn
z
L ==  

Comparing the last rows of the matrices ( )zySn +  and [ ] ( )ySzP nL  leads 

to Eq. (14). 

Let us list a few well-known Apell polynomial sequences and vectors. 

Example 3.1. The Appell polynomial sequence for ( ) 1=tg  is ( ){ }xsn  

{ }nx=  and the corresponding Appell vector is 

( ) ( ) [ ] 0
0

1
=

=
=⎥⎦

⎤
⎢⎣
⎡= t

xt
n

t
xt

nn eetgxS WW  

[ ] .1 2 Tnxxx=  

Example 3.2. Hermite polynomial ( ){ }xHn  is the Appell polynomial 

sequence for ( ) .2
2t

etg =  
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Example 3.3. Bernoulli polynomial sequence { ( )( )}xB a
n  of order 

,0, ≠aa  is the Appell polynomial sequence for ( ) .1
at

t
etg ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −=  When 

,1=a  ( )( )xBn
1  is Bernoulli polynomial and denoted by ( ).xBn  ( )( )01

nB  are 

called Bernoulli numbers and denoted by .nb  

Example 3.4. Euler polynomial sequence { ( )( )}xE a
n  of order ,0, ≠aa  

is the Appell polynomial sequence for ( ) .2
1

atetg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=  When ,1=a  

( )( )xEn
1  is Euler polynomial and denoted by ( ).xEn  

Noting that the Appell vector ( ) ( ) 0

1
=⎥⎦

⎤
⎢⎣
⎡=

t
xt

nn etgxS W  forms the first 

column of the Pascal functional matrix ( ) ,1
0=⎥⎦

⎤
⎢⎣
⎡

t
xt

n etgP  we expand the 

Appell vector into Pascal functional matrix to take advantage of its nice 
interaction with Wronskian vector as in Property (f). 

Definition 3.4. Let ( ){ }xsn  be the Appell polynomial sequence for 

( ).tg  The Pascal matrix of the Appell polynomial sequence for ( )tg  is 

defined by 

( )

( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

.

210

02
00
000

1

021

012

01

0

0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=⎥⎦
⎤

⎢⎣
⎡

−−

=

xs
n
n

xs
n

xs
n

xs
n

xsxsxs
xsxs

xs

etg

nnn

t

xt
nP  

It is relatively simple to generalize the Appell identity. 

Theorem 3.3 (Generalized Appell Identity). Let ( ){ }xsn  and ( ){ }xrn  

be the Appell polynomial sequences for ( )tgs  and ( ),tgr  respectively. Then 
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( ) ( ) ( )∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

n

k
knkn zrys

k
n

zyv
0

,  

where ( ){ }xvn  is the Appell polynomial sequence for ( ) ( ) ( ).tgtgth rs=  

Proof. Let us consider the product of the Pascal functional matrix of 
the Appell polynomial sequence for ( )tgs  and the Appell vector for ( )tgr  
and apply Property (f) to get: 

 ( ) ( ) ( ) ( )
( ) .111

000 =

+

==
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

t

tzy
rs

n
t

zt
r

n
t

yt
s

n etgtgetgetg WWP  (15) 

The left side of Eq. (15) equals 

 

( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )
( )

( )⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− zr

zr
zr
zr

ys
n
n

ys
n

ys
n

ys
n

ysysys
ysys

ys

nnnn

2

1

0

021

012

01

0

210

02
00
000

 (16) 

and the right side of Eq. (15) is 

 ( ) ( ) ( ) ( )[ ] ,210
T

n zyvzyvzyvzyv ++++  (17) 

where ( ){ }xvn  is the Appell polynomial sequence for ( ) ( ).tgtg rs  Equating 
the last rows of Eqs. (16) and (17) leads to the theorem. 

Note 3.4. The Appell identity is a special case of the generalized 

Appell identity. By letting ( ) ,1=tgr  ( ) n
n xxr =  and ( ) ( ).xsxv nn =  

A good application of the generalized Appell identity is the following 
new identity. 

Corollary 3.1. 

 ( ) ( )∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞⎜

⎝
⎛ +

n

k
knkn

n zEyB
k
nzyB

0
,22  (18) 

where ( )xBk  and ( )xEk  are Bernoulli and Euler polynomials, respectively. 
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Proof. If ( ) t
etg

t
s

1−=  and ( ) 2
1+=

t
r

etg  in Theorem 3.3, then 

( ) ( ) ( ) ( ).22
12

tgt
etgtgth s

t
rs =−==  

Thus ( ){ } ( ){ },xBxs nn = ( ){ } ( ){ },xExr nn =  and ( )xvn  is the Appell polynomial 

sequence for ( ).2tgs  Here 

( ) ( ) [ ] ( ) ,12...,,2,1diag2
1

0

2
0 == ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡=

t

tx

s
n

n

t

xt
s

nn etgetgxV WW  

i.e., ( ) .22 ⎟
⎠
⎞⎜

⎝
⎛= xBxv n

n
n  

In Section 5, we will derive some new and well-known identities 
using the generalized Appell identity. 

4. The Connection Constants, Inverse Relations 
and Duplication Formulas 

4.1. Connection constants 

Since any Appell polynomial sequence ( ){ }nkk xs 0=  forms bases for the 

vector space of polynomials of degree less than or equal to n, it is natural 
to ask how to represent one Appell polynomial sequence ( ){ }xsn  by 

another Appell polynomial sequence ( ){ }.xrn  

Let ( ){ }xsn  and ( ){ }xrn  be the Appell polynomial sequences for ( )tgs  

and ( ),tgr  respectively. Then, using Theorem 3.1, we have 

( ) ( ) 0

1
=

⎥⎦
⎤

⎢⎣
⎡=

t

xt
s

nn etgxS W  

and 

( ) ( ) .1
0=⎥⎦

⎤
⎢⎣
⎡=

t

xt
r

nn etgxR W  
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Employing Property (f), we rewrite 

( ) ( )
( )
( ) 0

1
=

⎥⎦
⎤

⎢⎣
⎡=

t

xt
r
r

s
nn etg

tg
tgxS W  

( )
( ) ( ) 00

1
==

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡=

t

xt
r

n
ts

r
n etgtg

tg
WP  

( )
( ) ( ).

0
xRtg

tg
n

ts
r

n
=

⎥⎦
⎤

⎢⎣
⎡= P  

We summarize the above analysis as the following theorem. 

Theorem 4.1 (Connection Constants Theorem). Let ( )xSn  and ( )xRn  

be the Appell vectors for ( )tgs  and ( ),tgr  respectively. Then 

( ) ( ),xRCxS nn =  

where ( )[ ] 0== tn thC P  and ( ) ( )
( ) .tg
tgth

s
r=  Equivalently 

( ) ( )( ) ( )∑
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−
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⎞
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⎛
=

n

k
k
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n xrh

k
n

xs
0
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The following new identity is an immediate consequence of Theorem 
4.1. 

Corollary 4.1. For Bernoulli polynomial ( )xBn  and Euler polynomial 

( ),xEn  we have 

( ) ( ) ( )∑
=

−
−
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⎠

⎞
⎜⎜
⎝

⎛
+=

n

k
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n
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k
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where kb  is the kth Bernoulli number. 

Proof. Let ( ) t
etg

t
s

1−=  and ( ) 2
1+=

t
r

etg  in Theorem 4.1. Thus 

( ) ( )
( )

( )
( )

.
1212

1
−
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+== tt

t

s
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e
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e
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tgth  
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It is easy to obtain 

( )( )
⎩
⎨
⎧ =+

=
otherwise,

,1if21
0

k

kk
b

kb
h    for   ....,,2,1,0 nk =  

Therefore, we have 

( ) ( ) ( )∑
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−
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n
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kn
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This completes the proof. 

Note 4.1. [7] presents ( )xEn  in terms of ( ).xBn  

4.2. Inverse relations 

The most popular inverse relation is the binomial inverse relation, 
which is 

( )
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⎪
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⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
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y
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x
k
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y

0
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,
 

In general, an inverse relation is 

⎪
⎩

⎪
⎨

⎧

=

=

∑
∑

=

=
n

k kknn

n

k kknn

ybx
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0 ,

.

,
 

If we write the inverse relation in a matrix form, we have 

 
⎩
⎨
⎧

=

=

,
,

2

1

nn

nn

xCy
yCx

 (19) 

where 1C  and 2C  are ( ) ( )11 +×+ nn  matrices and [ ]Tnn xxxx ...,,, 10=  

and [ ] ....,,, 10
T

nn yyyy =  It is equivalent to a single orthogonality relation 

 .121 += nICC  (20) 

By Property (e) we find a new inverse relation. 
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Note 4.2. nn yCx 1=  and nn xCy 2=  are called inverse pairs. 

Theorem 4.2 (New Inverse Relation). For an invertible analytic 
function ( ),tf  

 

( )( )

( )
( )⎪

⎪
⎩

⎪
⎪
⎨
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⎟
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k
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y

0

0

01

,0
 (21) 

is an inverse relation. 

Proof. Note that ( )[ ] 02 == tn tfC P  and ( )[ ] 01 1 == tn tfC P  in Eq. (21). 

Employing Property (e) yields .121 += nICC  

There are many well-known inverse relations, which are special cases 
of Theorem 4.2. We illustrate a few of them. 

Example 4.1 (Binomial). Choosing ( ) tetf =  in Theorem 4.2, we 

obtain the binomial inverse relation 

( )
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Similarly, 

Example 4.2 (Generalized Binomial). Choosing ( ) atetf =  in 

Theorem 4.2, we obtain the generalized binomial inverse relation 
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⎪
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Example 4.3 (Ox-Plowing or Boustrophedon Transformation). 
Choosing 
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( ) ∑∞

=
=+=

0
,!tansec

n

n
n n

xTxxxf  

where nT  is the nth tangent number, we obtain the following inverse 

relation known as Ox-Plowing Transformation 

( )
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k
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b
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We note that ( ) ( )xfxf −=1  and, by Theorem 4.2, the inverse relation holds. 

Example 4.4 (Bernoulli Inverse Relation). Choosing 

( ) ( ) t
e

k
ttf

t

k

k 1
!10

−=
+
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=
 

in Theorem 4.2, we have 
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where kb  is the kth Bernoulli number. Note that ( ) 1
1

−
= te

t
tf  is the 

exponential generating function of Bernoulli numbers. 

Theorem 4.3 (New Inverse Relation related to Appell Sequences). 

 
( ) ( ) ( )
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 (22) 

is an inverse relation if ( ){ }ωns  is the Appell polynomial sequence for ( )tg
1  

and ( ){ }ωnr  is the Appell polynomial sequence for ( ).tg  
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Proof. If we write the relation of Eq. (22) in a matrix form, we have 

 
( ) ( )

( ) ( )⎩
⎨
⎧

ω=ω

ω=ω

,

,

2

1
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 (23) 

where ( )
0

2
=

ω

⎥
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⎤
⎢
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⎡
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t

t
n tg
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t
n etgC P  By Property (e), it is 

easy to see .121 += nICC  

Example 4.5 (Hermite Inverse Relation). 
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where ( ){ }ωkH  is Hermite polynomial sequence, which has its exponential 

generating function 

( )∑∞

=
−ω ω

=
0

2
!

2

k

k
ktt
k

tHe  

and ( ){ }ωkr  is an Appell sequence with the exponential generating 

function 

( )∑∞

=
+ω ω

=
0

2 .!
2

k

k
ktt

k
tre  

Theorem 4.4 (Inverse Relations between any two Appell sequences). 
Let ( )xSn  and ( )xRn  be the Appell vectors for ( )tgs  and ( ),tgr  respectively. 

Then the following inverse relation holds: 

( ) ( )xRCxS nn 1=   

and   

( ) ( ),2 xSCxR nn =  

where ( )[ ] ,01 == tn thC P  ( ) ( )
( ) ,tg
tgth

s
r=   and ( )[ ] .1 0

1
12 =
− == tn thCC P  
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Proof. The proof is an immediate consequence of the Connection 
Constants Theorem. 

Corollary 4.2 (Inverse pairs of Bernoulli polynomials and .)nx  

( ) ( )∑ ∑
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− +−⎟⎟
⎠
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where kb  is the kth Bernoulli number. 

Proof. Let ( ) 1=tgr  and ( ) .1
t

etg
t

s
−=  Then ( ) ( ) ,1

tgth
s

=  ( ) ,n
n xxr =  

and ( ) ( ).xBxS nn =  Hence 
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Equating the last rows of the first and the last matrices yields 
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The inverse of 
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we have 
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4.3. Duplication formulas 

A duplication formula is a formula of the form 

( ) ( )∑ =
=

n

k kknn xsdaxs
0 , .  

Theorem 4.5 (Duplication Formula). Let ( ){ }xsn  be an Appell 
polynomial sequence for any invertible analytic function ( ).tg  Then 

 ( ) ( ),xSDaxS nn =  (24) 
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Proof. Using Theorem 3.1, and applying Properties (f) and (g) to Eq. 
(24), we have 
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Applying properties (h) and (e) to Eq. (25) yields 
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This completes the proof. 
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Raabe found the following interesting multiplication identity for 
Bernoulli polynomials in [6] 

( ) ∑
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− ⎟
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k
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n
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Here, we use Theorem 4.5 to develop a new identity, which allows us to 
represent ( )mxBn  in terms of ( ),xBk  ....,,1,0 nk =  

Corollary 4.3. For any positive integer ,2≥m  
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where ( ) .121 kkk
k m −+++=Ω  
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Equating the last rows of both sides of Eq. (29) yields 
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This completes the proof. 

5. Combinatorial Identities 

The first set of identities are immediate consequences of the 
Generalized Appell Identity, Theorem 3.3. The first part of the following 
identities was presented in [7] and [9]. 

Identity 5.1. Let ( )( )xB a
n  and ( )( )xE a

n  be Bernoulli and Euler 
polynomials, respectively, of order a. Then 
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Proof. The identity for Bernoulli polynomial is verified by noting 
that the product of the generating functions for polynomials of order a, 
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⎞
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The same is true of the identity for the Euler polynomials. 

Identity 5.2. Let ( ){ }xsn  and ( ){ }xrn  be the Appell polynomial 
sequences for any invertible analytic functions ( )tgs  and ( ),tgr  
respectively. Then 
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where ( )0kk ss =  and ( ).0kk rr =  

Proof. By Generalized Appell Identity Theorem, we have 
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where ( ){ }xvn  is the Appell polynomial sequence for ( ) ( ).tgtg rs  

In particular, we have 
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where ( ),xBk  ( ),xEk  and ( )xHk  are Bernoulli, Euler, and Hermite 
polynomials, respectively. kb  and kh  are the kth Bernoulli and Hermite 

numbers, respectively. The kth Hermite number kh  equals ( ).02 2
k

n H  

Identity 5.3. Let ( ){ }xsn  and ( ){ }xrn  be the Appell sequences for 
( )tgs  and ( ),tgr  respectively. Then 
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where ( )0kk ss =  and ( ).0knkn rr −− =  

Proof. By Property (g), we know 
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 (31) 

On the other hand, by Property (f), we have 
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 (32) 

Equating the last rows of Eqs. (31) and (32) produces the identity. 
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The followings are several special cases of Identity 5.3: 

( ) ( ) ( ) ( )∑ ∑
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Identity 5.4 (Binomial Convolution). For any ,0≠a  
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Proof. Again, referring to the proof of Theorem 3.3, Generalized 

Appell Identity Theorem, with ( )
( )at

s t
etg ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −= 1  and ( )
( )

,2
1
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r

etg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=  

we note that their product ( ) ( ) ( ) ( ).2tgtgtgth srs ==  Let ( ){ }xvn  be an 

Appell sequence for ( ).th  Then 
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t
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nn theethxV WPW  (33) 

Employing Properties (g) and (h) in Eq. (33) yields 
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[ ] ( )
0
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⎥
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t
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From Theorem 3.3, we have 
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Combining Eqs. (34) and (35) leads 

( )( ) ( ) ( ) ( )∑
=

− ⎟
⎠
⎞⎜

⎝
⎛ +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛n

k

a
n

na
kn

a
k

zyBzEyB
k
n

0
.22  

This completes the proof. 

Identity 5.5. Let ( ){ }xBn  be Bernoulli polynomial sequence. Then 
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Proof. Applying the Connection Constants Theorem to ( ) 1=tgs  and 

( ) ,1
t

etg
t

r
−=  we have ( ) n

n xxs =  and ( ) ( ).xBxr nn =  Hence by the 

Connection Constants Theorem, 
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n ==  (37) 

where .1
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and 
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the last row of ( )xBC n  becomes 
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Equating the last rows of both sides of Eq. (37) leads to the identity in 
Eq. (36). 

Identity 5.6. 
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For ,1=a  
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Proof. By Theorem 3.1, we have 

0

2

0

2
1

1122
1

==

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
=⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛ +

t

tx

tn
t

tx

tnnn e
e

te
e

txBxB WW  

( )
0

22
1

1
=

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

t

txtx

tn ee
e

tW  

[ ] ( ( ) )
0

1
2

1
1

22...,,2,1diag
=

+−−
⎥⎦
⎤

⎢⎣
⎡ −

−
=

t

xttx
tn

n ee
e

tW  

[ ] [ ]
0

0
1

1
22...,,2,1diag

=
=

−−
⎥⎦
⎤

⎢⎣
⎡

+
=

t

xt
tntn

n e
e

t WP  

[ ] [ ] ( ).2...,,2,1diag 0
1 xEt ntn

n
=

−−= P  (38) 



APPELL POLYNOMIAL SEQUENCES: … 91 

Comparison of the last rows in Eq. (38) gives 

( ),222
1

1 xnExBxB n
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and hence the first identity. The second identity can be derived much the 
same way as the first one by combining the Wronskian vectors and 
simplifying it. For a special case of the second identity when ,1=a  we 

note that ( )( ) .0 n
n xxE =  

6. Differential Equations and Recurrence Relations 
for Appell Polynomials 

In the recent paper [4], He and Ricci developed the differential 
equations and recurrence relations for Appell polynomials via differential 
operator factorization method. Here we will redevelop those results by 
the techniques established in this paper. 

Theorem 6.1. Let ( ){ }xsn  be the Appell polynomial sequence for ( ).tg  

Then the Appell polynomials ( )xsn  satisfy the differential equation: 
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Comparing the last rows of Eqs. (40) and (41), we get 

 ( ) ( ) ( ) ( )∑
=

−+ α⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+α+=

n

k
knknn xs

k
n

xsxxs
1

01 .  (42) 

Taking derivative of both sides of Eq. (42) with respect to x and noting 
that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )xsknnnnxsxsnxs kn
k

nnn −+ +−−−=+=′ 121,11  
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n  we get 
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Simplifying Eq. (43) yields 
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 ( ) ( ) ( ) ( ) .0!1 0
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++ xnsxsxxs nn  (44) 

This completes the proof. 

When ( ) t
etg

t 1−=  in Theorem 6.1, we obtain the differential 

equation for Bernoulli polynomials ( ).xBn  Note that a similar equation 

has been presented in Theorem 2.3 in [4], which is incorrect. 

Corollary 6.1. The Bernoulli polynomials ( )xBn  satisfy the following 

differential equation 
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where kb  is the kth Bernoulli number. 

Proof. To show the corollary, we need to calculate the coefficient kα  
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Noting that 
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Making an index change 1+= jl  in Eq. (47) and applying 
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to the resulting equation yields 
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Using the well-known identity 
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in Eq. (48) leads to .1
1
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Similarly, we develop the differential equation for Euler polynomials 
( ).xEn  Note that a similar equation has been presented in Theorem 2.4 

in [4], which is incorrect. 

Corollary 6.2. The Euler polynomials ( )xEn  satisfy the following 
differential equation 

 ( )
( )

( )
( ) ( ) ,0!1!2!1 0

1121 =−′++′′++
−

+
−

−−− nyyexyeyn
eyn

e nnnn  (49) 

where 

∑ =+ ⎟
⎠
⎞

⎜
⎝
⎛−=

k

l lkk E
l
k

e
012

1  

for ,1...,,2,1,0 −= nk  and lE  is the lth term of Euler number sequence. 

Proof. To show the corollary, we need to calculate the coefficient kα  
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Noting that 
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This completes the proof. 

Remark. Equation (49) can be written as 

( )
( )

( ) ( )
( )

( )121
!2

1
!1

1 −−−
−

+
−

nnnn yn
Eyn

E  

( ) ( )( ) ,0212!1
1

0
1 =+′+−+′′++ nyyExyE  

where ( )1kE  is the value of Euler polynomial ( )xEk  at .1=x  

For the differential equation for Hermite polynomials ( )( )xHn
ν  of 

variance ν, we set ( ) 22tetg ν=  in Theorem 6.1. 

Corollary 6.3. The Hermite polynomials ( )( )xHn
ν  of variance ν satisfy 

the following differential equation 

 .0=+′−′′ν nyyxy  (52) 

Proof. Since the coefficient kα  in Eq. (39) is ( )
( )

( )

0=
⎟
⎠
⎞⎜

⎝
⎛ ′
−

t

k

tg
tg  and 

( ) ,22tetg ν=  we have 
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( )

( )( )
0

0
2

2

2

2

=
=

ν

ν
ν−=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ ν−=α
t

k

t

k

t

t
k t

e

te  

⎩
⎨
⎧ =ν−

=
otherwise.0

,1if k  (53) 

This completes the proof. 

In the process of proving Theorem 6.1, we obtained the recurrence 
relations for Appell polynomial sequences. 

Theorem 6.2. Let ( ){ }xsn  be the Appell polynomial sequence for ( ).tg  
Then, for ,1≥n  the Appell polynomials ( )xsn  have the following recurrence 
relation: 

 ( ) ( ) ( )∑
−

=
−−− α⎟

⎠
⎞

⎜
⎝
⎛ −

+=
1

0
11 ,1n

j
jjnnn xs

j
n

xxsxs  (54) 

where ( )
( )

( )
.

0=
⎟
⎠
⎞⎜

⎝
⎛ ′
−=α

t

k
k tg

tg  

Proof. Reindexing and rearranging Eq. (42) yields the desired   
result. 

Choosing ( ) t
etg

t 1−=  in Theorem 6.2, we regain the recurrence 

relation, which is the Theorem 2.3 in [4], for Bernoulli polynomial 
sequence ( ){ }:xBn  

Corollary 6.4. For ,1≥n  

 ( ) ( ) ( )∑
−

=
−− ⎟

⎠
⎞

⎜
⎝
⎛−=

1

0
1 ,1 n

j
jjnnn xBb

j
n

nxxBxB  (55) 

where kb  is the Bernoulli number. 

Similarly, choosing ( ) 2
1+=

tetg  in Theorem 6.2, we obtain the 

recurrence relation for Euler polynomial sequence ( ){ }:xEn  
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Corollary 6.5. For ,1≥n  

 ( ) ( ) ( )∑
−

=
−−− ⎟

⎠
⎞

⎜
⎝
⎛ −

+=
1

0
11 ,

1n

j
jjnnn xEe

j
n

xxExE  (56) 

where 

∑ =+ ⎟
⎠
⎞

⎜
⎝
⎛−=

k

l lkk E
l
k

e
012

1  

for ,1...,,2,1,0 −= nk  and lE  is the lth term of Euler number sequence. 

Remark. The recurrence relation for Euler polynomial sequence 
( ){ }xEn  presented in Theorem 2.4 in [4] is incorrect because of the wrong 

.ke  

Finally, choosing ( ) 22tetg ν=  in Theorem 6.2, we obtain the 

recurrence relation for Hermite polynomials ( )( )xHn
ν  of variance ν: 

Corollary 6.6. For ,1≥n  

 ( )( ) ( ) ( ) ( ) ( ) ( ).1 21 xHnxxHxH nnn
ν
−

ν
−

ν −ν−=  (57) 

7. Conclusion 

In this paper, we demonstrated that the linear algebra approach in 
studying the Appell polynomials is very useful in deriving new and 
existing properties of Appell polynomial sequences. This novel technique 
will shed some light upon the broader category of polynomial sequences, 
i.e., Sheffer sequences discussed in [7]. In future work, we shall pursue 
this direction. 
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