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Abstract 

Let ϑ be a variety of groups defined by the set of laws V. A group G is 
called V-perfect if ( ),GVG =  where ( )GV  is the verbal subgroup of G. 

Let G be a finite group and ∗G  be a V-covering group of G and let H be 

of order ∗G  such that H is V-isologic to .∗G  It is of interest to know 
whether H is a V-covering group of G. The answer is negative in general. 
In this paper, we give some conditions in the affirmative case. 

1. Notation and Necessary Results 

Let ∞F  be a free group freely generated by a countable set { }....,, 21 xx  

Let ϑ be a variety of groups defined by a subset V of .∞F  It will be 
assumed that the reader is familiar with the notions of the verbal 

subgroup, ( ),GV  and the marginal subgroup, ( ),GV ∗  associated with the 
variety of groups and a given group G. See also [7] for more information 
on the variety of groups. 

Throughout the paper we always assume that ϑ is the variety of 
groups defined by the set of laws V. 
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Let G be any group with a normal subgroup N. Then we define 
[ ]GNV ∗  to be the subgroup of G generated by the following set: 

{ ( ) ( )( ) }.;...,,;;1...,,...,,...,, 1
1

11 NnGggVvriggvgnggv rrri ∈∈∈≤≤|−  

It is easily checked that [ ]GNV ∗  is the smallest normal subgroup T of G 

contained in N, such that ( ).TGVTN ∗⊆  

The following lemma gives basic properties of the verbal and the 
marginal subgroups of a group G with respect to the variety ϑ, which is 
useful in our investigation, see [2]. 

Lemma 1.1. Let ϑ be a variety of groups, and N be a normal subgroup 
of a group G. Then the following statements are true: 

  (i) ( ( )) ( )( ) ( );,1 GVGGVGVGVV == ∗∗  

 (ii) ( ) ( ) ;1 ϑ∈⇔=⇔= ∗ GGGVGV  

(iii) [ ] ( );1 GVNGNV ∗∗ ⊆⇔=  

(iv) ( ) ( ) ( ) ( );, TGVNNGVNNGVNGV ∗∗ ⊆=  

 (v) ( ) [ ] ( ) ( ) [ ];, GGVGVGVNGNVNV ∗∗ =⊆⊆ ∩  

(vi) If ( ) ,1=GVN ∩  then ( )GVN ∗⊆  and ( ) ( ) .NGVNGV ∗∗ =  

Get ϑ be a variety of groups defined by the set of laws V and let G be 
a group with a free presentation 

,11 →→→→ GFR  

where F is a free group. Then the Bear-invariant of G with respect to the 
variety ϑ, denoted by ( ),GVM  is defined to be ( ) [ ].FRVFVR ∗∩  

We also denote the factor group ( ) [ ]FRVFV ∗  by ( ).GVP  Of course, if 
G is in ϑ, then ( ) ( ).GVPGVM =  

It is easily seen that the Bear-invariant of the group G with respect 
to the variety ϑ is always abelian and independent of the choice of the 
free presentation of G, see [5] or [6]. 
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In particular, if ϑ is the variety of abelian group, then the Bear-
invariant of the group G with respect to the variety ϑ will be 
( ) [ ],, FRFR ′∩  which by Schur [8] is isomorphic to the multiplicator of 
G, and if ϑ is the variety of nilpotent groups of class at most c, ,cN  say, 
then the Bear-invariant of G with respect to the variety cN  is (see [6]) 
( ) [ ]FRFR cc ,1+∩  where 1+cF  is the ( )1+c -th term of the lower central 
series of F, and [ ] [ ]....,,,, FFRFR c =  

Equating ( )GV  with ( ) ( )FVRFV ∩  gives rise to a natural central 
extension of G, ( ) ( ) ( ) .11 →→→→ GVGVPGVM  

Definition 1.2. Let ϑ be a variety of groups defined by the set of laws 
V and let G and H be two groups. Then ( )βα,  is said to be a V-isologism 
between G and H, if 

( ) ( ) ( ) ( )HVGVHVHGVG →β→α ∗∗ :,:  

are isomorphisms such that for all ( ) Vxxv r ∈...,,1  and all ,...,,1 Ggg r ∈  

we have ( )( ) ( )rr hhvggv ...,,...,, 11 =β  whenever ( ( ));GVgh ii
∗α∈  .1 ri ≤≤  

In this case, we write ,~ HG  and say that G is V-isologic to H. 

In particular, if ϑ is the variety of abelian groups we obtain the 
notion of isoclinism due to Hall [1]. 

The Frattini subgroup, ( ),GΦ  of a group G is defined to be the 
intersection of all the maximal subgroups of G. 

The following theorem in [2] gives the connection among the verbal, 
the marginal and the Frattini subgroups of a group G. 

Theorem 1.3 [2]. Let ϑ be a variety of groups. Then for a group G, 

( ) ( ) ( ).GGVGV Φ⊆∗ ∩  

A group G is said to be V-perfect with respect to the variety ϑ, if 
( ).GVG =  The following result is needed later on. 

Theorem 1.4. Let ϑ be a variety of groups and G be a finite group. If 
H is a V-perfect subgroup of G such that ,~ GH  then ( ) ( ).GVGVG ∗=  



S. MOSTAFA TAHERI 52 

Proof. Since ( )GVG ∗  is finite and ,~ GH  by [2, Lemma 4.4], 

( )GHVG ∗=  hence ( ) ( ).GVGVG ∗=  

We need the following theorem in [2]. 

Theorem 1.5. Let ϑ be a variety of groups and 1G  and 2G  be two 

arbitrary groups. Then 21 ~ GG  if and only if there exists a group G 

containing normal subgroups 1N  and ,2N  such that 11 ~ NGG =  and 

22 ~ NGG =  and .~~ 21 GGG  

Definition 1.6. A V-stem cover of G is an exact sequence →→ A1  

1→→∗ GG  such that (i) ( ) ( ),∗∗∗⊆ GVGVA ∩  (ii) ( ).~ GVMA =  In this 

case, ∗G  is said to be a V-covering group of G. 

The following lemma can be proved easily. 

Lemma 1.7. Let G be a V-perfect group. Then every V-covering group 
of G is also V-perfect. 

The following theorem is a vast generalization of [4, Theorem 3.19.2]. 

Theorem 1.8. Let G be a V-perfect group. Then ( )GVP  is a V-covering 

group of G. 

Proof. Let G be a V-perfect group with a free presentation GRF =~  

which gives rise to the following natural exact sequence: 

[ ] [ ]
11 →→→→

π

∗∗
G

FRV
F

FRV
R  

and 

( )
[ ]

.G
FRV

FV =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

∗
 

So we may restrict π and obtain the following exact sequence: 

( )
[ ]

( )
[ ]

.11 →→→→
∗∗

G
FRV

FV
FRV
FVR ∩  



VARIETY OF PERFECT GROUPS AND ISOLOGIC GROUPS 53 

Now, to prove that ( )GVP  is a V-covering group of G, we must show that 
( ) ( )( ).GVPVGVM ⊆  But this is enough to show that ( )GVP  is V-perfect. 

By the assumption ( ),GVG =  which implies that ( ) .RFVF =  Now, 

by [2, Theorem 2.4], we have ( ) ( )( ) [ ],FRVFVVFV ∗=  which completes 
the proof. 

Lemma 1.7 and the above theorem give the following: 

Corollary 1.9. If G be a V-perfect group, then ( )GVP  is also V-perfect. 

2. V-perfect and V-isologic Groups 

Let ϑ be a variety of groups defined by the set of laws V. In this 
section, we deal with the following question: 

Are there finite groups G with a V-covering ∗G  such that all             

V-isologic groups H, say, to ∗G  and of the same order are also V-covering 
of G? This is false in general, see [3]. However, we give a positive answer 
when G is a V-perfect group. 

Theorem 2.1. Let ϑ be a variety of groups and G be a finite group 
with a free presentation .11 →→→→ GFR  Then every V-covering group 

of G is a homomorphic image of [ ].FRVF ∗  

Proof. Let 11 →→→→
π

GFR  be the free presentation of the finite 
group G, where F is a free group on the set X and .π= KerR  Given a 

covering group ∗G  of G, choose an exact sequence 11 →→→→
ϕ

∗ GGA  

with ( ) ( )∗∗∗⊆ GVGVA ∩  and ( ).~ GVMA =  For every Xx ∈  there exists 

xl  in ∗G  such that ( ) ( ).xlx π=ϕ  So XxlAG x ∈=∗ ;,  and hence =∗G  
Xxlx ∈;  by the virtue of Theorem 1.3. Consider the homomorphism 

∗→ψ GF:  defined by ( ) ,xlx =ψ  .Xx ∈  Then ψ is surjective and .ψϕ=π  
Clearly ( ) ( )( ),1 RR ψϕ=π=  and we have ( ) .AR ⊆ψ  

So 

([ ]) [ ( ) ( )] [ ] [ ( ) ] .1=⊆⊆ψψ=ψ ∗∗∗∗∗∗∗∗ GVGVGAVFVRFRV  
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It follows that ψ induces an epimorphism 

[ ]
.:1
∗

∗
→ψ G

FRV
F  

Now, the above theorem gives the following important result. 

Theorem 2.2. All the V-covering groups of a finite group G are 
mutually V-isologic. 

Proof. Let G be a finite group with a free presentation 

.11 →→→→ GFR  

Then ( ) ( ) [ ]FRVFVRGVM ∗= ∩  is the Bear-invariant of G, =1F  

[ ]FRVF ∗  and [ ].1 FRVRR ∗=  Now, if ∗G  is any V-covering group of G, 

then by Theorem 2.1, there is an epimorphism ,: 1
∗→ϕ GF  such that 

Kerϕ is a complement for ( )GVM  in .1R  Hence 

( ) ( ) ( ) ,1111 =ϕ=ϕ=ϕ GVMKerRFVKerFVKer ∩∩∩∩  

which implies that ( ) ( ) ( )∗→|ϕ=β GVFVFV 1:1  and ( ) →α ∗
11: FVF  

( )∗∗∗ GVG  are both isomorphisms, and ( ( )) ( ) ( ).111
∗∗∗ ϕ=α GVfFVf  Hence 

.~ 1FG∗  

Now, having the above information in hand we shall have the 
following straightforward result. 

Lemma 2.3. Let G be a finite V-perfect group and H be any other 
finite group V-isologic to G. Then H is isomorphic to the direct product of 

G and ( )HV ∗  amalgamating ( ) ( )HVHV ∗∩  and ( ).GV ∗  

Now, we are ready to give an affirmative answer to the question 
raised in the beginning of this section. 

Theorem 2.4. Let G be a finite V-perfect group and ∗G  be a V-covering 

group of G. If H is a V-isologic group to ∗G  and of the same order, then 

.~ ∗= GH  
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Proof. Since G is V-perfect, it follows that ∗G  is also V-perfect. By the 

above lemma, ,~ 1
N

AGH ×
=  where ( )∗∗= GVN  and .~1

∗= GG  

But 1GH =  implies that .~~ 1
∗== GGH  
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