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Abstract

In this paper, we revisit the relations between the fundamental units’

coefficients of the real quadratic fields K = @(v¥D) and convergents of
the continued fraction expansions of Wp. Furthermore, we provide a
theorem and obtain some new results on the class numbers of K =
QWD) by using solvability of the equation x2 -~ Dy? = 6® and the

relations mentioned above.
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1. Notations
D will denote a positive square free integer and K = Q(+D) the real

quadratic field, the class number of K will be denoted by h = h(D)
throughout in this paper.

We let the fundamental unit of K be ¢ = (>1), where

TD+UDm
c
2, if D=1 (mod4),

o =
1, if D=2 3 (mod4).

Let {1, Wp} be the integral base of the real quadratic field K = Q(~D),

where

L+vD 4 121 (mod 4),
Wp=1 2

VD, if D=2,3 (mod4)

1s a quadratic irrational number. The continued fraction expansion of
Wp has the form

(ag, a1, ag, ..., ap_1, 2a¢ —1), if D=1 (mod 4),
Wp =

(ag, a1, ag, ..., ap_1, 2ap), if D=2,3 (mod4),

where k = k(D) denotes the length of shortest period of Wp,.
2. Theorem

Let D=a’5b be a square free integer with 0 <b < 2a,

(a, b e Z,b|2a) and, p be a prime such that (%) # -1 and the class

number h(D) of K = QWD) be odd. Then
@
OPp-1 ~ Q-1 — 2

log{ : J
h(D) > 9r-1 _ log(ka_l - qp1 — 2) - 2log Qs
- log p log p )

if D =1 (mod 4),




SOME RESULTS ON THE CLASS NUMBERS ... 43
(i)

h(D) > tog(Py-1 _1(2;210g 9kl if D=2, 3 (mod4),

where pp_; and qj_; are (k —1)-st convergents of the continued fraction

Of WD'

To prove this theorem, we need the following lemmas and

propositions.

3. Lemmas and Propositions

Lemma 3.1. Let D = a® + b be a square free integer 0 < b < 2a and

(a, b € Z, b|2a). Then the continued fraction expansion of Wy, is

(1) If D =1 (mod 4), then

a+1 4a _
<—2 ’T,a>, b =0 (mod 4),

Wp =

a a-b _
<§,1,1,T,1,1,G—1>, b=1(m0d4)

(1) If D = 2, 3 (mod 4), then

WD=<a,ZTa,2a>.

Proof. We are going to give the proof only of part (ii) and the other

cases are similar. From the following recurrences (see [5, pp. 41-42])

P +vD D-P?
=—t——, Bu=0¢-Q-F, Gy _D-B)

W ’ )
12 Ql l l Ql

(i>0)

we can obtain

GOZ[Wo]IG, for PO ZO, QO =1,

2
a = [W]=2

T, for Pl =aq, Q1=b,
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ag = [Wy] =2a, for P, =a, @y =1,
2a
a3 :[W3]:T:a1’ fOI‘ P3 :a:P]_’ QS :b:Ql’

a4=[W4]:2a=a2, for P4:a:P2, Q4 :1=Q2,

Therefore, we have easily seen that the period length k& = k(D) is 2.

Lemma 3.2. Let D = a® - b be a square free integer 0 < b < 2a and

(a, b € Z, bl4a). Then the continued fraction expansion of Wy, is

(1) If D =1 (mod 4), then

<a_1,1,4a_2b,1,a—2>, b =0 (mod 4),
2 b
Wp =
a a-b B
<§325T52;a_1>, b=3(m0d4)

(1) If D = 2, 3 (mod 4), then

Wp =<a—1,1, 2“;2b,1,2a—2>.

Proposition 3.1. Let D = a® +b bea square free integer (0 < b < 2a
and a, b € Z, b|2a).

() If D =2,3 (mod4), then the smallest solution of the equation

x? —Dy2 =62 is

9
(x, y) = (ZG b+ b , ZTG) = (Tp, Up) = (ap®@ + Qr—1, Q) = (Pr_1, qk—1)-

() If D=1 (mod4), then the smallest solution of the equation

x? —Dy2 =2 is

4a®+2b 4
(x, )= (%Ta) =(Tp,Up)=(ar@ +2Q;_1, Q)= (0Pr_1 —qp-1,qk1)-
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Proof. In this study, since the period of the continued fractions of all
Wp is an even number, N(¢p) =1 holds.

(1) In order to prove this we can use the following recurrences (see [4,
p. 136)):

Pr = QgPp-1 + Pr-2, Gk = Q-1 + Q-2 (k2 2),
where {p,} and {g;,} are sequences of integers.

By using special values; p_.; =1, p_.9 =0, g1 =0, ¢_9 =1, we can

2
obtain pg =a, p; = ZGT“Lb, Q=1 ¢ = ZTa, where (p;, q;) is the

smallest solution of the equation x? - Dy2 = o2 Hence, p; =Tp
=@y + @, q1 =Up = @ from @y = ;@ + @ ((20) for @ =0,
Ql = 1

2
(i) Since D =1 (mod 4), we have p; = (—4(1 b+ 2 , 4761], q = 4Ta and

2
®9 = a. Thus we can easily see that (T, Up) = (MTJF%’ 4%} is the

smallest solution of the equation prog Dy2 =62 and

(4a® +2b 4a
v -[52 3

{(GGQG +2Q5, Qg) = (2p5 — g5, 95), for k=6,b=1(mod4),
(a9Qq + 2@, @) = (2p; —q1,¢1), for k=2,b=0 (mod4).

Proposition 3.2. Let D = a®>-b bea square free integer (0 < b < 2a
and a, b € Z, b|2a).

(1) If D=2,3 (mod4), then the smallest solution of the equation

x? —Dy2 =2 is

2
(x, y) = [2a b_ b : ZTGJ = (Tp, Up) = (ap@ + Qr-1, Q) = (Pr—1, qk—1)-
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() If D=1 (mod4), then the smallest solution of the equation
xZ - Dy2 =% is

2 —_
(x,y)= (MT% %J =(Tp,Up)=(ar@p +2Q)_1, Q)= (0Pr_1 ~qp-1,qk1)-

Proof. It can be proved as in the proof of Proposition 3.1.

Lemma 3.3 (Davenport, Ankeny, Hasse, Ichimura). Let K = Q(vD)
TD + UD«/ﬁ If

be a real quadratic field with the fundamental unit ey = -

the Pell's equation x? - Dy2 = $62m (m not square) is solvable, then the

following inequality holds:

m > TD2_2, for N(ep) =1,
U
D
T
mZU—g, for N(ep) = —1.
D

Proof of the Theorem. From the assertion of the Theorem, p i1s a

prime such that (%) # -1 and A(D) is odd. Therefore, if P is a prime

above p and e is the order of P in the class group of @(vD), then e divides

h(D) (e is odd) and N(P°) = 62p® = u® — Dv? (4, v € Z) holds. Hence,

from Lemma 3.3, Propositions 3.1 and 3.2, we have

opP},_1 —2Qk—1 -2 , if D =1 (mod4),

ph(D) > pe > \
Pr1 =2 if D=2 3 (mod4)

2 b
qr-1

for N(¢p) = 1, which implies

log(opp—1 = Q1 —2) —2log q; if D=1 (mod4)
log p ’ ’

h(D) =
log(pp—1 —2) — 210g g5 if D=2 3 (mod4)
log p ’ ’ '
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