SOME RESULTS ON THE CLASS NUMBERS OF CERTAIN REAL QUADRATIC FIELDS

AYTEN PEKİN and AYDIN CARUS

Department of Mathematics
Faculty of Science and Arts
Trakya University
22030 Edirne, Turkey
e-mail: aytenpekin@trakya.edu.tr
Department of Computer Engineering
Faculty of Engineering and Architecture
Trakya University
22030 Edirne, Turkey
e-mail: aydinc@trakya.edu.tr

Abstract

In this paper, we revisit the relations between the fundamental units' coefficients of the real quadratic fields $K=Q(\sqrt{D})$ and convergents of the continued fraction expansions of W_{D}. Furthermore, we provide a theorem and obtain some new results on the class numbers of $K=$ $Q(\sqrt{D})$ by using solvability of the equation $x^{2}-D y^{2}=\sigma^{2}$ and the relations mentioned above.

2000 Mathematics Subject Classification: 11R11, 11R29, 11R27.
Keywords and phrases: real quadratic field, fundamental unit, class number, continued fraction expansion.

This research was partially supported by Scientific Research Project with the number TUBAP 123.

Communicated by Jannis A. Antoniadis
Received September 30, 2007; Revised February 10, 2008

1. Notations

D will denote a positive square free integer and $K=Q(\sqrt{D})$ the real quadratic field, the class number of K will be denoted by $h=h(D)$ throughout in this paper.

We let the fundamental unit of K be $\varepsilon_{D}=\frac{T_{D}+U_{D} \sqrt{D}}{\sigma}(>1)$, where

$$
\sigma= \begin{cases}2, & \text { if } D \equiv 1(\bmod 4) \\ 1, & \text { if } D \equiv 2,3(\bmod 4)\end{cases}
$$

Let $\left\{1, W_{D}\right\}$ be the integral base of the real quadratic field $K=Q(\sqrt{D})$, where

$$
W_{D}= \begin{cases}\frac{1+\sqrt{D}}{2}, & \text { if } D \equiv 1(\bmod 4) \\ \sqrt{D}, & \text { if } D \equiv 2,3(\bmod 4)\end{cases}
$$

is a quadratic irrational number. The continued fraction expansion of W_{D} has the form

$$
W_{D}= \begin{cases}\left\langle a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{k-1}, 2 a_{0}-1}\right\rangle, & \text { if } D \equiv 1(\bmod 4) \\ \left\langle a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{k-1}, 2 a_{0}}\right\rangle, & \text { if } D \equiv 2,3(\bmod 4)\end{cases}
$$

where $k=k(D)$ denotes the length of shortest period of W_{D}.

2. Theorem

Let $D=a^{2} \mp b$ be a square free integer with $0<b \leq 2 a$, $(a, b \in Z, b \mid 2 a)$ and, p be a prime such that $\left(\frac{D}{p}\right) \neq-1$ and the class number $h(D)$ of $K=Q(\sqrt{D})$ be odd. Then
(i)

$$
\begin{aligned}
h(D) \geq & \frac{\log \left(\frac{\sigma p_{k-1}-q_{k-1}-2}{q_{k-1}^{2}}\right)}{\log p}=\frac{\log \left(\sigma p_{k-1}-q_{k-1}-2\right)-2 \log q_{k-1}}{\log p} \\
& \text { if } D \equiv 1(\bmod 4)
\end{aligned}
$$

(ii)

$$
h(D) \geq \frac{\log \left(p_{k-1}-2\right)-2 \log q_{k-1}}{\log p}, \quad \text { if } D \equiv 2,3(\bmod 4)
$$

where p_{k-1} and q_{k-1} are $(k-1)$-st convergents of the continued fraction of W_{D}.

To prove this theorem, we need the following lemmas and propositions.

3. Lemmas and Propositions

Lemma 3.1. Let $D=a^{2}+b$ be a square free integer $0<b \leq 2 a$ and $(a, b \in Z, b \mid 2 a)$. Then the continued fraction expansion of W_{D} is
(i) If $D \equiv 1(\bmod 4)$, then

$$
W_{D}=\left\{\begin{array}{ll}
\left\langle\frac{a+1}{2}, \frac{4 a}{b}, a\right.
\end{array}, \quad b \equiv 0(\bmod 4), ~ \begin{array}{ll}
\left\langle\frac{a}{2}, \overline{1,1, \frac{a-b}{b}, 1,1, a-1}\right\rangle, & b \equiv 1(\bmod 4)
\end{array}\right.
$$

(ii) If $D \equiv 2,3(\bmod 4)$, then

$$
W_{D}=\left\langle a, \overline{\frac{2 a}{b}, 2 a}\right\rangle
$$

Proof. We are going to give the proof only of part (ii) and the other cases are similar. From the following recurrences (see [5, pp. 41-42])

$$
W_{i}=\frac{P_{i}+\sqrt{D}}{Q_{i}}, \quad P_{i+1}=a_{i} \cdot Q_{i}-P_{i}, \quad Q_{i+1}=\frac{\left(D-P_{i+1}^{2}\right)}{Q_{i}} \quad(i \geq 0)
$$

we can obtain

$$
\begin{aligned}
& a_{0}=\left[W_{0}\right]=a, \text { for } P_{0}=0, \quad Q_{0}=1, \\
& a_{1}=\left[W_{1}\right]=\frac{2 a}{b}, \text { for } P_{1}=a, \quad Q_{1}=b,
\end{aligned}
$$

$$
\begin{aligned}
& a_{2}=\left[W_{2}\right]=2 a, \text { for } P_{2}=a, Q_{2}=1 \\
& a_{3}=\left[W_{3}\right]=\frac{2 a}{b}=a_{1}, \text { for } P_{3}=a=P_{1}, \quad Q_{3}=b=Q_{1} \\
& a_{4}=\left[W_{4}\right]=2 a=a_{2}, \text { for } P_{4}=a=P_{2}, \quad Q_{4}=1=Q_{2}
\end{aligned}
$$

Therefore, we have easily seen that the period length $k=k(D)$ is 2.

Lemma 3.2. Let $D=a^{2}-b$ be a square free integer $0<b \leq 2 a$ and $(a, b \in Z, b \mid 4 a)$. Then the continued fraction expansion of W_{D} is
(i) If $D \equiv 1(\bmod 4)$, then

$$
W_{D}= \begin{cases}\left\langle\frac{a-1}{2}, \overline{1, \frac{4 a-2 b}{b}, 1, a-2}\right\rangle, & b \equiv 0(\bmod 4) \\ \left\langle\frac{a}{2}, \overline{2, \frac{a-b}{b}, 2, a-1}\right\rangle, & b \equiv 3(\bmod 4)\end{cases}
$$

(ii) If $D \equiv 2,3(\bmod 4)$, then

$$
W_{D}=\left\langle a-1, \overline{1, \frac{2 a-2 b}{b}, 1,2 a-2}\right\rangle
$$

Proposition 3.1. Let $D=a^{2}+b$ be a square free integer $(0<b \leq 2 a$ and $a, b \in Z, b \mid 2 a)$.
(i) If $D \equiv 2,3(\bmod 4)$, then the smallest solution of the equation $x^{2}-D y^{2}=\sigma^{2}$ is

$$
(x, y)=\left(\frac{2 a^{2}+b}{b}, \frac{2 a}{b}\right)=\left(T_{D}, U_{D}\right)=\left(a_{0} Q_{k}+Q_{k-1}, Q_{k}\right)=\left(p_{k-1}, q_{k-1}\right)
$$

(ii) If $D \equiv 1(\bmod 4)$, then the smallest solution of the equation $x^{2}-D y^{2}=\sigma^{2}$ is
$(x, y)=\left(\frac{4 a^{2}+2 b}{b}, \frac{4 a}{b}\right)=\left(T_{D}, U_{D}\right)=\left(a_{k} Q_{k}+2 Q_{k-1}, Q_{k}\right)=\left(\sigma p_{k-1}-q_{k-1}, q_{k-1}\right)$.

Proof. In this study, since the period of the continued fractions of all W_{D} is an even number, $N\left(\varepsilon_{D}\right)=1$ holds.
(i) In order to prove this we can use the following recurrences (see [4, p. 136]):

$$
p_{k}=a_{k} p_{k-1}+p_{k-2}, \quad q_{k}=a_{k} q_{k-1}+q_{k-2} \quad(k \geq 2),
$$

where $\left\{p_{k}\right\}$ and $\left\{q_{k}\right\}$ are sequences of integers.
By using special values; $p_{-1}=1, p_{-2}=0, q_{-1}=0, q_{-2}=1$, we can obtain $p_{0}=a, p_{1}=\frac{2 a^{2}+b}{b}, q_{0}=1, q_{1}=\frac{2 a}{b}$, where $\left(p_{1}, q_{1}\right)$ is the smallest solution of the equation $x^{2}-D y^{2}=\sigma^{2}$. Hence, $p_{1}=T_{D}$ $=a_{2} Q_{2}+Q_{1}, q_{1}=U_{D}=Q_{2}$ from $Q_{i+1}=a_{i} Q_{i}+Q_{i-1}(i \geq 0)$ for $Q_{0}=0$, $Q_{1}=1$.
(ii) Since $D \equiv 1(\bmod 4)$, we have $p_{1}=\left(\frac{4 a^{2}+2 b}{b}, \frac{4 a}{b}\right), q_{1}=\frac{4 a}{b}$ and $Q_{2}=a$. Thus we can easily see that $\left(T_{D}, U_{D}\right)=\left(\frac{4 a^{2}+2 b}{b}, \frac{4 a}{b}\right)$ is the smallest solution of the equation $x^{2}-D y^{2}=\sigma^{2}$ and

$$
\begin{aligned}
\left(T_{D}, U_{D}\right) & =\left(\frac{4 a^{2}+2 b}{b}, \frac{4 a}{b}\right) \\
& = \begin{cases}\left(a_{6} Q_{6}+2 Q_{5}, Q_{6}\right)=\left(2 p_{5}-q_{5}, q_{5}\right), & \text { for } k=6, b \equiv 1(\bmod 4), \\
\left(a_{2} Q_{2}+2 Q_{1}, Q_{2}\right)=\left(2 p_{1}-q_{1}, q_{1}\right), & \text { for } k=2, b \equiv 0(\bmod 4) .\end{cases}
\end{aligned}
$$

Proposition 3.2. Let $D=a^{2}-b$ be a square free integer $(0<b \leq 2 a$ and $a, b \in Z, b \mid 2 a)$.
(i) If $D \equiv 2,3(\bmod 4)$, then the smallest solution of the equation $x^{2}-D y^{2}=\sigma^{2}$ is

$$
(x, y)=\left(\frac{2 a^{2}-b}{b}, \frac{2 a}{b}\right)=\left(T_{D}, U_{D}\right)=\left(a_{0} Q_{k}+Q_{k-1}, Q_{k}\right)=\left(p_{k-1}, q_{k-1}\right) .
$$

(ii) If $D \equiv 1(\bmod 4)$, then the smallest solution of the equation $x^{2}-D y^{2}=\sigma^{2}$ is
$(x, y)=\left(\frac{4 a^{2}-2 b}{b}, \frac{4 a}{b}\right)=\left(T_{D}, U_{D}\right)=\left(a_{k} Q_{k}+2 Q_{k-1}, Q_{k}\right)=\left(\sigma p_{k-1}-q_{k-1}, q_{k-1}\right)$.
Proof. It can be proved as in the proof of Proposition 3.1.
Lemma 3.3 (Davenport, Ankeny, Hasse, Ichimura). Let $K=Q(\sqrt{D})$ be a real quadratic field with the fundamental unit $\varepsilon_{D}=\frac{T_{D}+U_{D} \sqrt{D}}{\sigma}$. If the Pell's equation $x^{2}-D y^{2}=\mp \sigma^{2} m$ (m not square) is solvable, then the following inequality holds:

$$
\begin{cases}m \geq \frac{T_{D}-2}{U_{D}^{2}}, & \text { for } N\left(\varepsilon_{D}\right)=1 \\ m \geq \frac{T_{D}}{U_{D}^{2}}, & \text { for } N\left(\varepsilon_{D}\right)=-1\end{cases}
$$

Proof of the Theorem. From the assertion of the Theorem, p is a prime such that $\left(\frac{D}{p}\right) \neq-1$ and $h(D)$ is odd. Therefore, if P is a prime above p and e is the order of P in the class group of $Q(\sqrt{D})$, then e divides $h(D)$ (e is odd) and $N\left(P^{e}\right)=\sigma^{2} p^{e}=u^{2}-D v^{2}(u, v \in Z)$ holds. Hence, from Lemma 3.3, Propositions 3.1 and 3.2, we have

$$
p^{h(D)} \geq p^{e} \geq \begin{cases}\frac{\sigma p_{k-1}-q_{k-1}-2}{q_{k-1}^{2}}, & \text { if } D \equiv 1(\bmod 4) \\ \frac{p_{k-1}-2}{q_{k-1}^{2}}, & \text { if } D \equiv 2,3(\bmod 4)\end{cases}
$$

for $N\left(\varepsilon_{D}\right)=1$, which implies

$$
h(D) \geq \begin{cases}\frac{\log \left(\sigma p_{k-1}-q_{k-1}-2\right)-2 \log q_{k-1}}{\log p}, & \text { if } D \equiv 1(\bmod 4) \\ \frac{\log \left(p_{k-1}-2\right)-2 \log q_{k-1}}{\log p}, & \text { if } D \equiv 2,3(\bmod 4)\end{cases}
$$

References

[1] N. C. Ankeny, S. Chowla and H. Hasse, On the class-number of the maximal real subfield of a cyclotomic field, J. Reine Angew. Math. 217 (1965), 217-220.
[2] H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper, Elem. Math. 20 (1965), 49-59 (in German).
[3] S. Louboutin, Continued fractions and real quadratic fields, J. Number Theory 30 (1998), 167-176.
[4] N. H. McCoy, The Theory of Numbers, The Macmillan Co., New York, 1965.
[5] R. A. Mollin, Quadratics, CRS Press, Boca Raton, New York, London, Tokyo, 1996.
[6] H. Yokoi, On the fundamental unit of real quadratic fields with norm 1, J. Number Theory 2 (1970), 106-115.

