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Abstract 

In this paper, we revisit the relations between the fundamental units’ 
coefficients of the real quadratic fields ( )DQK =  and convergents of 

the continued fraction expansions of .DW  Furthermore, we provide a 

theorem and obtain some new results on the class numbers of =K  

( )DQ  by using solvability of the equation 222 σ=− Dyx  and the 

relations mentioned above. 
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1. Notations 

D will denote a positive square free integer and ( )DQK =  the real 
quadratic field, the class number of K will be denoted by ( )Dhh =  
throughout in this paper. 

We let the fundamental unit of K be ( ),1>
σ

+
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Let { }DW,1  be the integral base of the real quadratic field ( ),DQK =  
where 
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is a quadratic irrational number. The continued fraction expansion of 
DW  has the form 
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where ( )Dkk =  denotes the length of shortest period of .DW  

2. Theorem 

Let baD ∓2=  be a square free integer with ,20 ab ≤<  

( )abZba 2,, |∈  and, p be a prime such that 1−≠⎟
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number ( )Dh  of ( )DQK =  be odd. Then 
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(ii) 

( ) ( ) ,log
log22log 11

p
qpDh kk −− −−

≥    if  ( ),4mod3,2≡D  

where 1−kp  and 1−kq  are ( )1−k -st convergents of the continued fraction 

of .DW  

To prove this theorem, we need the following lemmas and 
propositions. 

3. Lemmas and Propositions 

Lemma 3.1. Let baD += 2  be a square free integer ab 20 ≤<  and 
( ).2,, abZba |∈  Then the continued fraction expansion of DW  is 

 (i) If ( ),4mod1≡D  then 
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(ii) If ( ),4mod3,2≡D  then 

.2,2, ab
aaWD =  

Proof. We are going to give the proof only of part (ii) and the other 
cases are similar. From the following recurrences (see [5, pp. 41-42]) 

( ) ( )0,,
2

1
11 ≥

−
=−⋅=
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we can obtain 

[ ] ,00 aWa ==   for  ,1,0 00 == QP  

[ ] ,2
11 b

aWa ==   for  ,, 11 bQaP ==  
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[ ] ,222 aWa ==   for  ,1, 22 == QaP  

[ ] ,2
133 ab

aWa ===   for  ,, 1313 QbQPaP ====  

[ ] ,2 244 aaWa ===   for  ,1, 2424 QQPaP ====  

.…  

Therefore, we have easily seen that the period length ( )Dkk =  is 2. 

Lemma 3.2. Let baD −= 2  be a square free integer ab 20 ≤<  and 
( ).4,, abZba |∈  Then the continued fraction expansion of DW  is 

 (i) If ( ),4mod1≡D  then 
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(ii) If ( ),4mod3,2≡D  then 

.22,1,22,1,1 −−−= ab
baaWD  

Proposition 3.1. Let baD += 2  be a square free integer ( ab 20 ≤<  
and ).2,, abZba |∈  

 (i) If ( ),4mod3,2≡D  then the smallest solution of the equation 
222 σ=− Dyx  is 
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(ii) If ( ),4mod1≡D  then the smallest solution of the equation 
222 σ=− Dyx  is 
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Proof. In this study, since the period of the continued fractions of all 
DW  is an even number, ( ) 1=εDN  holds. 

 (i) In order to prove this we can use the following recurrences (see [4, 
p. 136]): 

( ),2, 2121 ≥+=+= −−−− kqqaqppap kkkkkkkk  

where { }kp  and { }kq  are sequences of integers. 

By using special values; ,11 =−p  ,02 =−p  ,01 =−q  ,12 =−q  we can 

obtain ,0 ap =  ,2 2
1 b

bap +=  ,10 =q  ,2
1 b

aq =  where ( )11, qp  is the 

smallest solution of the equation .222 σ=− Dyx  Hence, DTp =1  
,122 QQa +=  21 QUq D ==  from ( )011 ≥+= −+ iQQaQ iiii  for ,00 =Q  

.11 =Q  
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smallest solution of the equation 222 σ=− Dyx  and 
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Proposition 3.2. Let baD −= 2  be a square free integer ( ab 20 ≤<  

and ).2,, abZba |∈  

 (i) If ( ),4mod3,2≡D  then the smallest solution of the equation 
222 σ=− Dyx  is 
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(ii) If ( ),4mod1≡D  then the smallest solution of the equation 
222 σ=− Dyx  is 

( ) ( ) ( ) ( ).,,2,4,24, 1111
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Proof. It can be proved as in the proof of Proposition 3.1. 

Lemma 3.3 (Davenport, Ankeny, Hasse, Ichimura). Let ( )DQK =  

be a real quadratic field with the fundamental unit .
σ

+
=ε

DUT DD
D  If 

the Pell’s equation mDyx 222 σ=− ∓  (m not square) is solvable, then the 

following inequality holds: 

( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=ε≥

=ε
−

≥

.1,

,1,2

2

2

D
D

D

D
D

D

Nfor
U
Tm

Nfor
U

Tm

 

Proof of the Theorem. From the assertion of the Theorem, p is a 

prime such that 1−≠⎟
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p
D  and ( )Dh  is odd. Therefore, if P is a prime 

above p and e is the order of P in the class group of ( ),DQ  then e divides 

( )Dh  (e is odd) and ( ) ( )ZvuDvupPN ee ∈−=σ= ,222  holds. Hence, 
from Lemma 3.3, Propositions 3.1 and 3.2, we have 
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for ( ) ,1=εDN  which implies 
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