FINITENESS OF THE CLASS GROUP OF A NUMBER FIELD VIA LATTICE PACKINGS

J. CARMELO INTERLANDO, TRAJANO PIRES DA NÓBREGA NETO and JOSÉ VALTER LOPES NUNES

Department of Mathematics and Statistics San Diego State University San Diego, CA, U. S. A. e-mail: carmelo.interlando@sdsu.edu

Departamento de Matemática Universidade Estadual Paulista São José do Rio Preto SP 15054-000, Brazil e-mail: trajano@ibilce.unesp.br

Departamento de Matemática

Universidade Federal do Ceará
Fortaleza CE 60455-760 Brazil

Fortaleza, CE 60455-760, Brazil e-mail: valnunes_1@yahoo.com.br

Abstract

An alternative proof of the finiteness of the class group of a number field of degree n is presented. It is based solely on the fact that the center density of an n-dimensional lattice packing is bounded away from infinity.

2000 Mathematics Subject Classification: 11R04, 11R29, 11H06, 11H31.

Keywords and phrases: number fields, class groups, geometry of numbers.

Received October 29, 2008

1. Introduction

Let K be an algebraic number field of degree n with ring of algebraic integers \mathfrak{O}_K . The well-known proof of the theorem on the finiteness of the class group \mathfrak{C}_K of K [2, pp. 155-156] involves Minkowski's criterion for a convex set to contain a point of a lattice [2, Theorem 2.50, p. 97] and the existence of an integral \mathfrak{O}_K -ideal whose norm does not exceed M_K , the Minkowski bound of K [2, Theorem 2.56, p. 100].

The purpose of this paper is to present an alternative proof for that classical theorem in number theory by means of elementary notions and results from sphere packings [1]. One consequence of the new proof is a lower bound on the center density of lattice packings associated with integral \mathfrak{O}_K -ideals. In this section, we review the necessary facts about number fields [2] and sphere packings [1], and establish the notation. In Section 2, we prove the main result.

Let $\sigma_1, ..., \sigma_n$ be the embeddings of K into \mathbb{C} , the field of complex numbers. As usual, $\sigma_1, ..., \sigma_r$ are real and $\sigma_{r+1}, ..., \sigma_n$ are complex embeddings, with σ_{j+s} being the complex conjugate of σ_j for $r+1 \le j \le r+s$. Hence, n=r+2s. The canonical embedding $\sigma_K: K \to \mathbb{R}^n$ is the injective ring homomorphism defined by

$$\sigma_K(x) = (\sigma_1(x), ..., \sigma_r(x), \Re \sigma_{r+1}(x), \Im \sigma_{r+1}(x), ..., \Re \sigma_{r+s}(x), \Im \sigma_{r+s}(x))$$

for all $x \in K$ and where $\Re z$ and $\Im z$ are the real and imaginary parts of the complex number z, respectively. It follows that

$$|\sigma_K(x)|^2 = \sigma_1(x)^2 + \dots + \sigma_r(x)^2 + |\sigma_{r+1}(x)|^2 + \dots + |\sigma_{r+s}(x)|^2.$$

Since $\sigma_{r+s+j} = \overline{\sigma_{r+j}}$ for j = 1, ..., s, we have

$$2|\sigma_K(x)|^2 = 2(\sigma_1(x)^2 + \dots + \sigma_r(x)^2) + |\sigma_{r+1}(x)|^2 + \dots + |\sigma_{r+2s}(x)|^2.$$

Thus

$$2|\sigma_K(x)|^2 \ge \sum_{i=1}^n |\sigma_i(x)|^2 \ge n \sqrt[n]{\left|\prod_{i=1}^n \sigma_i(x)\right|^2} = n \sqrt[n]{|N_K(x)|^2}, \tag{1}$$

where the second inequality follows from the Arithmetic-Geometric Mean Inequality and $N_K(x)$ denotes the relative norm of x in K/\mathbb{Q} . From (1), it follows that

$$|\sigma_K(x)| \ge \frac{\sqrt{2n}}{2} \sqrt[n]{|N_K(x)|}. \tag{2}$$

Let \mathfrak{a} be an integral \mathfrak{O}_K -ideal of norm $N(\mathfrak{a}) = |\mathfrak{O}_K/\mathfrak{a}|$ and let $\mathfrak{a}^* = \mathfrak{a} \setminus \{0\}$. The set $\Lambda(\mathfrak{a}) = \{\sigma_K(x) | x \in \mathfrak{a}\}$ is an n-dimensional lattice in Euclidean space \mathbb{R}^n , see [1, p. 225]. We shall refer to $\Lambda(\mathfrak{a})$ as the lattice associated to \mathfrak{a} . Denote the discriminant of K by Δ_K . The center density [1, p. 13] of $\Lambda(\mathfrak{a})$ is $\delta(\Lambda(\mathfrak{a})) = \rho^n/v(\Lambda(\mathfrak{a}))$, where

$$\rho = \frac{1}{2} \min\{|\sigma_K(x)| | x \in \mathfrak{a}^*\}$$

is, by definition, the packing radius of $\Lambda(\mathfrak{a})$ [1, p. 10] and

$$v(\sigma_K(\mathfrak{a})) = 2^{-s} \sqrt{|\Delta_K|} N(\mathfrak{a})$$

is the volume of $\Lambda(\mathfrak{a})$, see [1, Theorem 9, p. 226]. In passing, we observe that the center density of any n-dimensional lattice cannot be greater than $1/V_n$, where V_n [1, p. 9] denotes the volume of a sphere of radius 1 in \mathbb{R}^n . Thus

$$\delta(\Lambda(\mathfrak{a})) = \frac{2^{s} \rho^{n}}{\sqrt{\mid \Delta_{K} \mid N(\mathfrak{a})}} = \frac{2^{s} \left(\frac{1}{2} \min_{x \in \mathfrak{a}^{*}} \mid \sigma_{K}(x) \mid \right)^{n}}{\sqrt{\mid \Delta_{K} \mid N(\mathfrak{a})}},$$

that is,

$$\delta(\Lambda(\mathfrak{a})) = \frac{1}{2^{r+s} \cdot \sqrt{|\Delta_K|}} \cdot \frac{\min_{x \in \mathfrak{a}^*} |\sigma_K(x)|^n}{N(\mathfrak{a})}.$$
 (3)

From (2) and (3), we obtain

$$\delta(\Lambda(\mathfrak{a})) \geq \frac{1}{2^{r+s} \cdot \sqrt{|\Delta_K|}} \cdot \frac{\left(\frac{\sqrt{2n}}{2} \cdot \min_{x \in \mathfrak{a}^*} \sqrt[n]{|N_K(x)|}\right)^n}{N(\mathfrak{a})},$$

whence

$$\delta(\Lambda(\mathfrak{a})) \ge \frac{n^{n/2}}{2^{\frac{3}{2}r + 2s}} \cdot \frac{\min_{x \in \mathfrak{a}^*} |N_K(x)|}{N(\mathfrak{a})}.$$
 (4)

Let $c_{\mathfrak{a}} \in \mathfrak{C}_{K}$ be the ideal class containing \mathfrak{a} and $\widetilde{c}_{\mathfrak{a}}$ be the set of integral \mathfrak{O}_{K} -ideals contained in $c_{\mathfrak{a}}$. For $x \in \mathfrak{a}$, we can write $\langle x \rangle = \mathfrak{a} \cdot \mathfrak{b}_{x}$, where \mathfrak{b}_{x} is an integral \mathfrak{O}_{K} -ideal. Thus, $|N_{K}(x)| = N(\langle x \rangle) = N(\mathfrak{a}) \cdot N(\mathfrak{b}_{x})$. Moreover, the mapping $\varphi : \mathfrak{a} \to c_{\mathfrak{a}}^{\widetilde{-1}}$ given by $\varphi(x) = \langle x \rangle \cdot \mathfrak{a}^{-1}$ is bijective. It follows that

$$\frac{\min_{x \in \mathfrak{a}^{*}} |N_{K}(x)|}{N(\mathfrak{a})} = \min_{\mathfrak{b} \in \widehat{C_{\mathfrak{a}}^{-1}}} \frac{N(\mathfrak{a}) \cdot N(\mathfrak{b})}{N(\mathfrak{a})} = \min_{\mathfrak{b} \in \widehat{C_{\mathfrak{a}}^{-1}}} N(\mathfrak{b}).$$
 (5)

Together, (4) and (5) imply that

$$\delta\left(\Lambda\left(\mathfrak{a}\right)\right) \geq \frac{n^{n/2}}{2^{\frac{3}{2}r + 2s} \cdot \sqrt{|\Delta_{K}|}} \cdot \min_{\mathfrak{b} \in \widehat{C_{\mathfrak{a}}^{-1}}} N\left(\mathfrak{b}\right). \tag{6}$$

2. Main Result

With the notation from Section 1, we are now ready to prove the following.

Theorem 1 [2, Theorem 3.60, p. 155]. The ideal class group \mathfrak{C}_K is finite.

Proof. By way of contradiction, suppose that \mathfrak{C}_K has infinitely many ideal classes. Let i be a positive integer and define

$$\mathscr{C}_i = \{c \in \mathfrak{C}_K \mid \min_{\mathfrak{b} \in \widetilde{c}} N(\mathfrak{b}) = i\}.$$

From the elementary result that only finitely many integral \mathfrak{O}_K -ideals have norm equal to i, it follows that \mathscr{C}_i is a finite set. Moreover, we can write $\mathfrak{C}_K = \bigcup_{i=1}^\infty \mathscr{C}_i$, where the \mathscr{C}_i are disjoint members of \mathfrak{C}_K . By

hypothesis, \mathfrak{C}_K has infinitely many elements. Then for all $M \in \mathbb{N}$, there exists i > M such that $\mathscr{C}_i \neq \varnothing$, that is, there exists $c \in \mathfrak{C}_K$ such that $\min_{\mathfrak{b} \in \widetilde{c}} N(\mathfrak{b}) > M$. Choose $\mathfrak{c} \in \widetilde{c^{-1}}$. From (6), we have

$$\delta(\Lambda(\mathfrak{c})) \geq \frac{n^{n/2}}{2^{\frac{3n}{2}-s} \cdot \sqrt{|\Delta_K|}} \cdot M.$$

Hence, the center density of lattices associated to integral \mathfrak{O}_K -ideals can be made arbitrarily large, a contradiction. Therefore, \mathfrak{C}_K has finitely many elements.

References

- [1] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, Third Edison, Springer-Verlag, New York, 1999.
- [2] R. A. Mollin, Algebraic Number Theory, Chapman and Hall/CRC, New York, 1999.