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Abstract 

An alternative proof of the finiteness of the class group of a number field 
of degree n is presented. It is based solely on the fact that the center 
density of an n-dimensional lattice packing is bounded away from 
infinity. 
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1. Introduction 

Let K be an algebraic number field of degree n with ring of algebraic 
integers .KO  The well-known proof of the theorem on the finiteness of 
the class group KC  of K [2, pp. 155-156] involves Minkowski’s criterion 
for a convex set to contain a point of a lattice [2, Theorem 2.50, p. 97] and 
the existence of an integral KO -ideal whose norm does not exceed ,KM  
the Minkowski bound of K [2, Theorem 2.56, p. 100]. 

The purpose of this paper is to present an alternative proof for that 
classical theorem in number theory by means of elementary notions and 
results from sphere packings [1]. One consequence of the new proof is a 
lower bound on the center density of lattice packings associated with 
integral KO -ideals. In this section, we review the necessary facts about 
number fields [2] and sphere packings [1], and establish the notation. In 
Section 2, we prove the main result. 

Let nσσ ...,,1  be the embeddings of K into ,C  the field of complex 
numbers. As usual, rσσ ...,,1  are real and nr σσ + ...,,1  are complex 
embeddings, with sj+σ  being the complex conjugate of jσ  for ≤+ 1r  

.srj +≤  Hence, .2srn +=  The canonical embedding n
K K R→σ :  is 

the injective ring homomorphism defined by 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )xxxxxxx srsrrrrK ++++ σℑσσℑσσσ=σ ,...,,,,...,, 111 RR  

for all Kx ∈  and where zR  and zℑ  are the real and imaginary parts of 
the complex number z, respectively. It follows that 

( ) ( ) ( ) ( ) ( ) .22
1

22
1

2 xxxxx srrrK ++ σ++σ+σ++σ=σ ""  

Since jrjsr +++ σ=σ  for ,...,,1 sj =  we have 

( ) ( ( ) ( ) ) ( ) ( ) .22 2
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where the second inequality follows from the Arithmetic-Geometric Mean 
Inequality and ( )xN K  denotes the relative norm of x in .QK  From (1), 
it follows that 

 ( ) ( )n KK xNnx .2
2≥σ  (2) 

Let a  be an integral KO -ideal of norm ( ) aOa KN =  and let 

{ }.0\aa =∗  The set ( ) ( ){ }aa ∈|σ=Λ xxK  is an n-dimensional lattice in 

Euclidean space ,nR  see [1, p. 225]. We shall refer to ( )aΛ  as the lattice 
associated to .a  Denote the discriminant of K by .KΔ  The center density 

[1, p. 13] of ( )aΛ  is ( )( ) ( )( ),aa Λρ=Λδ vn  where 

{ ( ) }∗∈σ=ρ axxKmin2
1  

is, by definition, the packing radius of ( )aΛ  [1, p. 10] and 

( )( ) ( )aa Nv K
s

K Δ=σ −2  

is the volume of ( ),aΛ  see [1, Theorem 9, p. 226]. In passing, we observe 
that the center density of any n-dimensional lattice cannot be greater 
than ,1 nV  where nV  [1, p. 9] denotes the volume of a sphere of radius 1 

in .nR  Thus 

( )( )
( )

( )
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that is, 
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From (2) and (3), we obtain 
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whence 

 ( )( )
( )

( ) .
min
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+
⋅
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Let Kc Ca ∈  be the ideal class containing a  and ac~  be the set of 

integral KO -ideals contained in .ac  For ,a∈x  we can write ,xx ba ⋅=  

where xb  is an integral KO -ideal. Thus, ( ) ( ) ( ) ( ).xK NNxNxN ba ⋅==  

Moreover, the mapping j1: cϕ → aa -  given by ( ) 1−⋅=ϕ axx  is bijective. 

It follows that 
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Together, (4) and (5) imply that 

 ( )( )
k

( )
1

2

3 22

min .
2

n

r s c
K

n N
−+ ∈

δ Λ ≥ ⋅

⋅ Δ ab

a b  (6) 

2. Main Result 

With the notation from Section 1, we are now ready to prove the 
following. 

Theorem 1 [2, Theorem 3.60, p. 155]. The ideal class group KC  is 

finite. 

Proof. By way of contradiction, suppose that KC  has infinitely many 

ideal classes. Let i be a positive integer and define 

{ ( ) }.min~ iNc
cKi =|∈=

∈
bC

b
C  

From the elementary result that only finitely many integral KO -ideals 
have norm equal to i, it follows that iC  is a finite set. Moreover, we can 

write ∪∞
=

= 1 ,i iK CC  where the iC  are disjoint members of .KC  By 
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hypothesis, KC  has infinitely many elements. Then for all ,N∈M  there 
exists Mi >  such that ,∅≠iC  that is, there exists Kc C∈  such that 

( ) .min~ MN
c

>
∈

b
b

 Choose k1.c−∈c  From (6), we have 

( )( ) .
2 2

3

2
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K
sn

n
⋅
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−

c  

Hence, the center density of lattices associated to integral KO -ideals can 
be made arbitrarily large, a contradiction. Therefore, KC  has finitely 
many elements. 
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