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Abstract

An alternative proof of the finiteness of the class group of a number field
of degree n is presented. It is based solely on the fact that the center
density of an n-dimensional lattice packing is bounded away from

infinity.
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1. Introduction

Let K be an algebraic number field of degree n with ring of algebraic

integers Og. The well-known proof of the theorem on the finiteness of
the class group €x of K [2, pp. 155-156] involves Minkowski’s criterion

for a convex set to contain a point of a lattice [2, Theorem 2.50, p. 97] and

the existence of an integral O -ideal whose norm does not exceed Mg,
the Minkowski bound of K [2, Theorem 2.56, p. 100].

The purpose of this paper is to present an alternative proof for that
classical theorem in number theory by means of elementary notions and
results from sphere packings [1]. One consequence of the new proof is a

lower bound on the center density of lattice packings associated with

integral Oy -ideals. In this section, we review the necessary facts about

number fields [2] and sphere packings [1], and establish the notation. In
Section 2, we prove the main result.

Let oy, ..., 0, be the embeddings of K into C, the field of complex
numbers. As usual, oy, ..., o, are real and o,,q, ..., 5, are complex

embeddings, with o;,, being the complex conjugate of o; for r+1 <

j <r+s. Hence, n =r+2s. The canonical embedding cx : K — R" is

the injective ring homomorphism defined by
GK(x) = (Gl(x)7 ceey Gr(x)7 m0r+1(QC), SG7"-%—1(36)7 it mcr+s(x)’ 3Gr-%—s(x))
for all x ¢ K and where Rz and 3z are the real and imaginary parts of

the complex number z, respectively. It follows that
2 2 2 2 2
| c’K(x)l = Gl(x) +oeeet Gr(x) + | c’r+1(x)| Tt | cTr+s(x)| .
Since 6,,4.; = o, for j =1, .., s, we have

ok @) = 201(x)* + -+ 0, (x)) + | 041 (x) [P+ + | 0, p05(x)

Thus

2

2ox ()’ 2 Y [oi@)[* 2 ny =nf| NP,
i=1
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where the second inequality follows from the Arithmetic-Geometric Mean
Inequality and N (x) denotes the relative norm of x in K/Q. From (1),

it follows that

Let a be an integral Og -ideal of norm N(a)=|Og/a| and let

|og(x)] >

a* = a\{0}. The set A(a) = {og(x)|x € a} is an n-dimensional lattice in
Euclidean space R", see [1, p. 225]. We shall refer to A(a) as the lattice

associated to a. Denote the discriminant of K by Ag. The center density

[1, p. 18] of A(a) is 8(A(a)) = p"/v(A(a)), where

1 . *
p = L minfog()]|x e a’)

is, by definition, the packing radius of A(a) [1, p. 10] and

vog(a)) = 27 Ag [ N(a)

is the volume of A(a), see [1, Theorem 9, p. 226]. In passing, we observe

that the center density of any n-dimensional lattice cannot be greater
than 1/V,,, where V, [1, p. 9] denotes the volume of a sphere of radius 1

in R"™. Thus
1 n
o zs(gmng ok (x) |j
3(A(a)) = £ = == ,
Ak [N(a) JAg [N(a)
that is,

. min| o (x) [*
8(Ala)) = - e : 6)

or+s m N(a)

From (2) and (3), we obtain

1

or+s m N(a) ’

S(A(a)) >
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whence

2 mirj}| Ng(x)|
8(A(a)) =2 — . Xea NG (4)

—r+2s

922 ',AK

Let ¢, € €k be the ideal class containing a and ¢, be the set of

integral O -ideals contained in ¢,. For x € a, we can write (x) =a-b,,

where b, is an integral O -ideal. Thus, | Ng(x)| = N((x)) = N(a)- N(b,).

Moreover, the mapping ¢ : a — ¢, 1 given by ¢(x) = (x) - alis bijective.

It follows that

min | N (x) |

xea _ . N(a)'N(b)_ :
W_gi?iw—;??iz\](b) (5)
Together, (4) and (5) imply that
n/2
5(A(a)) 2 ! - min N (b). (6)

3

92’ T N becy!
2. Main Result

With the notation from Section 1, we are now ready to prove the
following.

Theorem 1 [2, Theorem 3.60, p. 155]. The ideal class group € is
finite.

Proof. By way of contradiction, suppose that € g has infinitely many
ideal classes. Let i be a positive integer and define

4 = le e C lmin Nb) = i)

From the elementary result that only finitely many integral O -ideals
have norm equal to i, it follows that ¥ is a finite set. Moreover, we can

write Cg = Uil “;, where the 7; are disjoint members of Cg. By
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hypothesis, €k has infinitely many elements. Then for all M € N, there
exists i > M such that 7] # &, that is, there exists ¢ € €x such that

I[I)lill N(b) > M. Choose ¢ € ¢ 1. From (6), we have
ecC
n/2
S(A(0) 2 ————— M.
-5
9 2 A K
Hence, the center density of lattices associated to integral Ok -ideals can

be made arbitrarily large, a contradiction. Therefore, €x has finitely

many elements.
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