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Abstract 

We notice that a generic nonsingular gradient field fv ∇=  on a compact 

3-fold X with boundary canonically generates a simple spine ( )vfK ,  of 

X. We study the transformations of ( )vfK ,  that are induced by 

deformations of the data ( )., vf  We link the Matveev complexity ( )Xc  of 
X with counting the double-tangent trajectories of the v-flow, i.e., the 
trajectories that are tangent to the boundary X∂  at a pair of distinct 
points. Let ( )Xgc  be the minimum number of such trajectories, 

minimum being taken over all nonsingular v’s. We call ( )Xgc  the 
gradient complexity of X. Next, we prove that there are only finitely 
many X of bounded gradient complexity, provided that X is irreducible 
and has no essential annuli. In particular, there exists only finitely 
many hyperbolic manifolds X with bounded ( ) .Xgc  For such X, their 

normalized hyperbolic volume gives a lower bound of ( ) .Xgc  If an 

orientable X with 2SX =∂  admits a non-singular gradient flow with 

one double-tangent trajectory at most, then X is a connected sum of 
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several 3-balls and products .12 SS ×  All these and many other results 
of the paper rely on a careful study of the stratified geometry of X∂  

relative to the v-flow. It is characterized by failure of X∂  to be convex 
with respect to a generic flow v. It turns out that convexity or its lack 
have profound influence on the topology of X. This interplay between 
intrinsic concavity of X∂  with respect to any gradient-like flow and the 
complexity ( )Xgc  is in the focus of the paper. 

1. Introduction 

Classical Morse theory links singularities of Morse functions with the 
topology of closed manifolds. Specifically, singularities of Morse functions 

R→Xf :  cause interruptions of the f-gradient flow, and the homology 
or even the topological type of a manifold X can be expressed in terms of 
such interruptions (see [4]). These terms include descending and 
ascending disks, attaching maps, and spaces of flow trajectories which 
connect the singularities. 

On manifolds with boundary, an additional source of the flow 
interruption occurs: it comes from a special geometry of the boundary 

,X∂  or rather from the failure of X∂  to be convex with respect to the flow 
(see Definition 4.1). In fact, on manifolds with boundary, one can trade 
the f-singularities in the interior of X for these boundary effects. In our 
approach, the boundary effects take the central stage, while the 
singularities themselves remain in the background. In the paper, we 
apply this philosophy to 3-manifolds. Many of our results allow for 
straightforward multidimensional generalizations, the other are 
specifically three-dimensional. 

Some of our theorems are in the spirit of the pioneering work of Ishii 
on, so-called, flow-spines [18, 19] (see also a recent paper by Koda [23] 
and an excellent monograph ‘‘Branched Standard Spines of 3-manifolds” 
by Benedetti and Petronio [2], followed by [3]). In an earlier version of 
this paper [21], we managed to overlook all this line of research ... 

As we will introduce the relevant constructions, we will describe 
some technical differences between the flow-spines of [18], the branched 
spines of [9], [2], on one hand, and the gradient spines on the other. For 
now, it is sufficient to say that the branched spines break the symmetry 
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of generic spines, and the gradient spines break it further (in a way 
similar to the symmetry breaking in the category of oriented branched 
spines). We stress that any generic gradient flow defines its gradient 
spine in a canonical way (in contrast with [18], we use the boundary itself 
to construct a surrogate of Ishii’s ‘‘normal pair”) which makes the 
connection between the space of flow trajectories and the spine into an 
instant one. Also, we deal with generic gradient-like non-singular fields v; 
they are not necessarily concave with respect to the boundary X∂  as the 
fields in [2], [3]. For a concave traversing fields, the affiliated spine K (see 
[2, 3]) is not uniquely determined by the flow, but, after choosing an 
embedding ,XK ⊂  the collapse KXp →:  is; in contrast, the gradient 
spines are uniquely determined by the flow, but the collapse p is not. 

 However, the most important difference between this paper and the 
above results on spines in 3-folds does not reside in the special nature of 
gradient spines (distinctions that are intrinsic to the theory and, perhaps, 
of little importance to non-experts), but rather in the ultimate goals of 
our program. We do not seek here to develop a version of combinatorial 
calculus (say, as in [2], [3], or [23]) for the gradient spines (although this 
would be a useful project, if feasible), but rather to use the existing 
combinatorial machinery to describe the behavior of gradient or 
traversing flows on a given 3-fold. 

In 3-dimensional topology, there is no lack of combinatorics-inspired 
invariants... The geometrically meaningful and transparent invariants 
are in a somewhat short supply. We suggest that counting some special 
(so-called, double-tangent) trajectories of flows which interact in a 
particular way with the boundary of 3-folds is an example of such 
geometrically interesting invariant. There is some similarity between 
such count on manifolds with boundary and the classical count of closed 
isolated trajectories of generic flows on closed manifolds. 

Partially, our motivation comes from the desire to understand better 
the interplay between the intrinsic concavity of X∂  with respect to 
generic gradient flows and the topology of the underlining 3-fold X. We 
conjecture that there exists a numerical topological invariant that 
measures the failure of convexity with respect to any nonsingular 
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gradient flow—“some manifolds intrinsically are just more concave than 
others...”. In a sense, the gradient complexity ( ),Xgc  introduced in this 

paper, can serve as a crude measure of intrinsic concavity of X. In fact, a 
3-manifold X with a connected boundary which admits a convex gradient-
like field v is a handlebody; so a random manifold does not admit convex 
nonsingular gradient flows. For instance, ( ) 0;2 ≠ZXH  constitutes an 
obstruction to the convexity for any nonsingular gradient flow. At the 
same time, any manifold with boundary admits a strictly concave 
traversing (but not necessarily gradient!) flow [2]. 

The combinatorial complexity theory of Matveev [25] helps us to 
uncover the behavior of generic nonsingular gradient flows on 3-folds in 
connection to their boundaries. Before describing these results in the full 
generality, let us give to the reader their taste. For example, we prove 
that on a manifold X, obtained from the Poincaré homology sphere by 
removing an open disk, any nonsingular gradient flow has at least five 
double-tangent trajectories; moreover, X admits a gradient flow with not 
more than 3056 =⋅  such trajectories. Another example is provided by 
the remarkable hyperbolic manifold 1M  that has the minimal (among 
hyperbolic manifolds) volume .94272.0≈V  By removing an open disk 
from 1M  we get a manifold X on which any nonsingular gradient flow 
has at least nine trajectories, each one tangent to the sphere X∂  at a pair 
of distinct points; moreover, X admits a gradient flow with not more than 

5496 =⋅  double-tangent trajectories. 

A generic vector field v on X gives rise to a natural stratification 

XXXX +++ ∂⊃∂⊃∂⊃ 321  (1.1) 

by compact submanifolds, where ( ) .3dim jXj −=∂+  Here X+∂1  is the part 

of the boundary ,:1 XX ∂=∂  where v points inside X. X2∂  is a 
1-dimensional locus, where v is tangent to the boundary .X∂  Its portion 

XX ∂⊂∂+2  consists of points, where v points inside .1 X+∂  Similarly, X3∂  

is a finite locus, where v is tangent to .2X∂  Finally, XX 33 ∂⊂∂+  consists 

of points, where v points inside .2 X+∂  
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In his groundbreaking 1929 paper [28], Morse discovered a beautiful 
connection between this stratification and the index of the field v.1 

Now, let us describe the content of our paper section by section. 

Section 2. This section starts with a sketch of main results from [28] 
(see Theorem 2.1 and Corollary 2.1). It also contains one remark about 
the role that stratification (1.1) plays in the Gauss-Bonnet Theorem (see 
Theorem 2.2 and [13] for an interesting general discussion). More 
importantly, we notice that, at any point ,Xx ∂∈  the v-flow defines a 
projection of the boundary X∂  into a germ of the constant level surface 

( )( ).1 xff −  At a generic point Xx 2∂∈  this projection is a fold, while at 
Xx 3∂∈  it is a cusp. Throughout the paper, these folds and cusps 

provide us with crucial measuring devices for probing the topology of X. A 
significant portion of the paper is preoccupied with role of the cusps and 
attempts to eliminate them. 

Section 3. As in [28], the stratification { }jj X+∂  is in the focus of our 

investigation. Here we prove that the surface X+∂1  can be subjected to 
1-surgery via a deformation of the gradient-like field v. This allows one to 
change the topology of the stratum X+∂1  almost at will (see Lemma 3.1 
and Corollary 3.1). 

Section 4. For given nonsingular Morse data ( ),, vf  we introduce the 
notion of s-convexity, 2=s  or 3. The 2-convexity of v is defined as the 

property .2 ∅=∂+X  It puts a severe restrictions on the topology of X (see 

Theorem 4.2 and Corollary 4.5). In contract, the 3-convexity, ,3 ∅=∂+X  
by itself has no topological significance: one can always deform ( )vf ,  to 

eliminate X+∂3  together with all other cusps (Theorem 9.5).2 However, 

when we fix the topology of ,1 X+∂  some combinations of cusps from X3∂  
acquire topological invariance (Corollary 9.2). 

                                                      
1Actually, the results of [28] apply to compact manifolds X of any dimension. 
2Note that Theorem 4.1.9 in [2] implies ∅=∂+X3  for all, so-called, traversing flows. 
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Although convexity or its lack are defined in terms of the gradient-
like fields, we can arrange for the 2-convexity if we know that 
singularities of Xf ∂|  admit a particular ordering induced by f (similar to 

the self-indexing property). Specifically, the singularities of Xf ∂|  can be 

divided into two groups: the positive +∑1  where the gradient fv ∇=  is 

directed inwards X, and the negative −∑1  where v is directed outwards 

(see Figure 1). Theorem 4.1 claims that when ( )−∑1f  is above ( ),1
+∑f  then 

one can deform the riemannian metric on X so that the convexity of the 
gradient flow will be guaranteed. Hence, on 3-folds X that are not 
handlebodies, it is impossible to find a nonsingular function f with the 

property ( ) ( ).11
+− ∑>∑ ff  In addition, Theorem 4.2 describes an interplay 

between the dynamics of the flow v through the “bulk” X and of the 
v-induced flow 1v  in ,1X∂  on the one hand, and the convexity 
phenomenon, on the other. 

In Corollary 4.5, we prove that an acyclic X is a 3-disk if and only if 
one of the two properties are satisfied: (1) X admits nonsingular 2-convex 
Morse data ( ),, vf  (2) X admits nonsingular 3-convex Morse data ( )vf ,  

with a connected .1 X+∂  

Section 5 is devoted to properties of gradient spines, a construction 
central to our investigations. In spirit, but not technically, it represents a 
special class of flow spines [18]. The difference between the two classes 
reflects the difference between the nonsingular vector and gradient fields 
on a given manifold. 

Recall that a spine XK ⊂  is a compact cellular two-dimensional 
subcomplex K of the 3-fold X, such that KX \  is homeomorphic to the 
product 

( )[ ] [ ),1,0\ ×∂∂ KXX ∩  

so that X is collapsible onto K. 

The relation between general spines and ambient 3-folds is subtle: a 
manifold X has many non-homeomorphic spines K, and there are 
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topologically distinct X that share the same spine. In order to make the 
reconstruction of X from K possible, K has to be rather special (cf. [25], 
[2]). 

In fact, a generic nonsingular gradient-like field v canonically gives 
rise to a spine that we call gradient (see Figures 10, 12). A gradient spine 
K is a union of X+∂1  with the descending v-trajectories through .2 X+∂  
Like branched spines (Definition 6.5), gradient spines inherit orientations 
from the boundary X∂  and have a preferred side in the ambient X. 
Exactly these properties of a gradient spine K allow for its resolution into 
a surface S homeomorphic to X+∂1  and, eventually, for a reconstruction of 
X from K (Theorem 6.1). By modifying the field v, we can arrange for 

,1 X+∂  and thus for S, to be homeomorphic to a disk .2D  As a result, we 
get our Origami Theorem 5.2: any 3-manifold X with a connected 
boundary has a gradient spine K obtained from a disk 2D  by identifying 
certain arcs in 2D∂  with the appropriate arcs in the interior of 2D  (see 
Figures 14, 15). This statement is similar in flavor to Theorem 1.2 from 
[18], where disk-shaped ‘‘sections” of generic (non-gradient) flows on 
closed manifolds are employed for the same goal. 

Section 6. This section deals with combinatorial structures that 
generalize the notion of gradient spine K (see Definitions 6.1-6.4). We 
start with a 2-complex K whose local geometry is modeled after gradient 
spines (see Figure 20). Adding a system of, so-called, TN-markers to K 
along its singularity set ( )Ks†  produces an object which captures the 

topology of the ambient X and admits a canonic resolution into an 
oriented surface. Such a polyhedron K with markers is called an abstract 
gradient spine. Unlike generic 2-complexes, each abstract gradient spine 
K is a spine of some manifold (cf. [3], [25]) and determines it (Theorem 
6.1).3 

The notion of a spineY -  (see Definition 6.6) is still another 
generalization of gradient spines. It is a very close relative of branched 

                                                      
3In a sense, the category of abstract gradient spines is equivalent to the category of compact 
3-manifolds with non-empty boundary. 
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spines. In fact, for an oriented X, the notions of an oriented branched 

spine XK ⊂  and of spine-Y  are equivalent, (Lemma 6.3). Unlike 

abstract gradient or branched spines, the spines-Y  K are defined 
extrinsically, that is, in terms of an embedding in X of the vicinity of 
the  singular set ( ) .KKs ⊂  By Lemma 6.2, any gradient spine is a 

spine.-Y  Moreover, by pivotable Theorem 8.1, spines-Y  admit a “nice” 
approximation by the gradient spines of the same complexity. 

Section 7. We apply ideas and results of [25], which revolve around 
Matveev’s notion of combinatorial complexity of simple 2-complexes and 

compact 3-folds, to the gradient and spines.-Y  We introduce the gradient 
complexity ( )Xgc  of a 3-fold X with boundary as the minimal number of 
double-tangent trajectories that a nonsingular gradient-like field on X 
can have. In general, ( ) ( ),XcXgc ≥  where ( ),Xc  the Matveev 
combinatorial complexity, is defined to be the minimal number of special 
isolated singularities4 that a simple spine XK ⊂  can have. One can 

restrict the scope of this definition only to spines-Y  (equivalently, to 

oriented branched spines) in order to get the notion of complexity-Y  
( ).XcY  We prove that ( ) ( ) ( ).XcXcXgc Y ≥≥ G  In fact, Theorem 8.1 claims 

that ( ) ( ).XcXgc Y
G=  

The inequality ( ) ( )XcXgc ≥  helps us to restate many results from 
[25] in the language of double-tangent trajectories. For instance, by 
Theorem 7.3, for any natural c, there is no more than finitely many 
boundary irreducible with no essential annuli 3-folds X that admit 
nonsingular gradient-like flows with c double-tangent trajectories. The 
number ( )cN  of such 3-folds has a crude upper bound ( ) ,124

cc ⋅Γ  where 
( )c4Γ  stands for the number of topological types of regular four-valent 

graphs with c vertices at most. In particular, there is no more than 
( ) cc 124 ⋅Γ  hyperbolic manifolds with c double-tangent trajectories. 

                                                      
4called, butterflies in [25] and Q-singularities in this paper. 
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Let X be obtained from a closed hyperbolic 3-fold Y by removing a 
number of open 3-balls. By Theorem 7.5, any non-singular gradient-like 
flow (as well as any convex traversing flow) on X has at least ( ) 0VYV  

double-tangent trajectories. Here ( )YV  stands for the hyperbolic volume 

of Y and 0V  for the volume of the perfect ideal tetrahedron. 

Fortunately, all orientable irreducible and closed 3-folds of 
combinatorial complexity at most six (there are 74 members in this 
family) have been classified and their special minimal spines have been 
listed [25]5. Some partial results are available for the 1155 closed 
irreducible manifolds of complexity at most nine. This has been 
accomplished by an algorithmic computation coupled with “hands on” 
analysis of spines that look different, but share the same values of the 
Turaev-Viro invariants [34]. The bottom line is that all X with ( ) 6≤Xc  
are distinguished by their Turaev-Viro invariants! Thus, for each 
manifold Y on the Matveev list and any generic nonsingular gradient 

flow on ,\ 3DYX =  we get a lower bound on the number of double-
tangent trajectories. 

In Theorem 7.4, we notice that ( )Xgc  is semi-additive under the 
connected sum operation and can increase only as a result of 2-surgery on 
X. 

Section 7 contains a few more results about upper and lower 
estimates of ( )Xgc  for manifolds obtained from closed manifolds Y by 
removing a number of 3-balls. Theorem 7.6 provides a lower bound for 

( )Xgc  in terms of the presentational complexity of the fundamental 

group ( ).1 Xπ  At the same time, any self-indexing Morse function h on Y 

gives rise to an upper estimate of ( )Xgc  (given in terms of the attaching 

maps for the unstable 2-disks of index two h-critical points). 

Section 8. Here, we are addressing a natural question: Which spines 
are of the gradient type? The main result of the section, Theorem 8.1, 

                                                      

5By definition, a spine of a closed manifold Y is a spine of the punctured Y, that is, of .\ 3DY  
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claims that any spine-Y  XK ⊂  can be approximated by a gradient 
spine ( );vK  moreover, ( )( ) ( ).KcvKc ≤  Furthermore, one can get K from 

( )vK  by controlled elementary collapses of certain 2-cells. Theorem 8.1 
depends on some results from Section 9 about possible cancellations of 
cusps from .3X∂  Theorem 8.2 establishes the equality ( ) ( )XgcXcY =G  

and, when ( ) ,1>Xc  the crucial inequality 

( ) ( ) ( ).6 XcXgcXc ⋅≤≤  

We proceed to classify oriented 3-folds X with ( ) .1≤Xgc  We have a 

complete description of such 3-folds with .2
1 � SX =∂  We prove that 

when X1∂  is simply-connected and ( ) ,1≤Xgc  then X is a connected sum 

of several 3-balls and 12 SS × ’s, a 3-fold of gradient complexity zero 

(Theorem 8.5). Therefore, assuming ,2
1 � SX =∂  there is no X with 

( ) .1=Xgc  In contrast, the combinatorial complexity of punctured lens 

spaces DD
2,51,4 , LL  is one. We also get some partial results about general 

oriented 3-folds X with ( ) .1≤Xgc  They form a rich family with complex, 
but constrained fundamental groups (Theorem 8.6). 

These results testify that the theory of gradient spines is quite 
different from the theory of generic spines. 

Section 9 contains many of our main results. Here we analyze the 
effect of deforming Morse data ( )vf ,  on the gradient spine they generate. 

Theorem 9.3 claims that, in the process, the gradient spine goes through 
a number of elementary expansions and collapses of two-cells mingled 
with so-called -α  and moves-β  (see Figures 31, 32). These are analogs of 

the second and third Reidemeister moves for link diagrams. Theorem 9.1 
describes possible cancelations of cusps from X3∂  that accompany 

generic deformations of v. One of our main results, Theorem 9.4, is a 
combination of Theorem 9.3 with a special case of Phillips’ Theorem [31]. 
We prove that when two nonsingular functions 0f  and 1f  on X produce 

the same invariants ( ) ( ) ( )Z;, 2
10 XHfhfh ∈ –the same structures-cSpin  
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in the sense of Turaev [35]—, then their gradient spines are linked by a 
sequence of elementary 2-expansions, 2-collapses, and -α  and moves-β  

(See  the proof of Corollary 9.1 for the definition of the invariant ( ) ∈fh  

( )).;2 ZXH  

Deformations of ( )vf ,  that cause jumps in the value of ( )fh  (in the 

v-induced )structures-cSpin  manifest themselves as a “disk-supported 
surgery on the preferred spine orientation”. We call them mushroom flips 
(see Figure 37). 

Theorem 9.5 claims that, for any generic Morse data ( ),, vf  there is a 
deformation of ( )vf ,  so that, in the end, all the cusps from X3∂  are 
eliminated, but the number of double-tangent trajectories ( )vfgc ,  is 
preserved. This is an important ingredient in the proof of our 
approximation Theorem 8.1. 

Finally, it should be said that the Morse theory on stratified spaces, 
in general, and on manifolds with boundary, in particular, has been an 
area of an active advanced and interesting research. For a variety of 
perspectives on this topic see [28], [10], [11], [12], [4], [33]. Our intension 
is to bring the stratified Morse theory and the complexity theory of 
3-folds under a single roof. 

2. The Morse Stratification on Manifolds with Boundary 

Let X be a compact 3-fold with boundary .X∂  Let R→Xf :  be a 
generic smooth function. Then f has non-degenerate critical points in the 
interior of X and the restriction of f to the boundary X∂  is also a Morse 
function. Let v be a gradient-like vector field for f, that is, ( ) 0>vdf  away 

from the f-critical points. Instead of working with such pairs ( ),, vf  we 

can pick a Riemannian metric on X and choose ,fv ∇=  the gradient field. 
Both points of view are equivalent, but we prefer the first. 

The singularities of Xf ∂|  come in two flavors: positive and negative. 
At a positive singularity, the field v is directed inward X, and at a 
negative singularity, — outward. This distinction between positive and 
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negative critical points of Xf ∂|  depends on f, not on v. At a positive 

singularity and in an appropriate coordinate system { }321 ,, xxx  with 
{ }01 =x  defining X∂  and 01 >x  — the interior of X, 

( ) ,2
33

2
221 xaxaxcxf +++=  

where c and 0≠ia  being constants. At a negative singularity, one has 

( ) .2
33

2
221 xaxaxcxf ++−=  

Let ±∑1  be the set of positive/negative singularities of Xf ∂|  and let 

0∑ —the set of f-singularities in the interior of X. Denote by cX≤  the set 
( ){ }.cxfXx ≤|∈  

Crossing the critical value �c  of a positive singularity causes the 
topological type of cX≤  to change, while crossing �c  of a negative 
singularity has no effect on the topology of cX≤  as illustrated in Figure 1. 

 

Figure 1. A positive singularity of index 1 and a negative singularity of 
index 2 on the boundary of a solid. The gradient-like field v is horizontal. 

For a generic field v, the locus L where the field is tangent to X∂  is 
a 1-dimensional submanifold of the boundary; L divides X∂  into two 

domains: X+∂  where v is directed inwards of X, and in ,X−∂  where it is 
directed outwards. 

Morse noticed that, for a generic vector field v, the tangent locus L 

inherits a structure in relation to X+∂  analogous to that of X∂  in 
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relation to X [28]. To explain this point we need to revise our notations in 
a way which will be amenable to recursive definitions. 

Let ,:0 XX =∂  and .:1 XX ∂=∂  Denote by XX 12 ∂⊂∂  the locus, 

where v is tangent to .1X∂  For a generic v, X2∂  divides X1∂  into a 

domain ,1 X+∂  where v is directed inwards X and a domain ,1 X−∂  where v 

is outwards X. Evidently, .11
±± ∑⊃∂ X  Consider the set ,2X∂  where v is 

tangent to .2X∂  The set X3∂  divides X2∂  into a set ,2 X+∂  where v is 

directed inwards X+∂1  and a set ,2X−∂  where v is directed outwards .1 X+∂  

Finally, � ,333 XXX −+ ∂∂=∂  where v is directed inwards X+∂2  at the 

points of .3 X+∂  

From now and on, we call ( )vf ,  generic if (1) all the strata { } 31 ≤≤∂ jjX  

are regularly embedded smooth manifolds and (2) all the restrictions 

Xjf ∂|  are Morse functions. Most of the time, the second property will be 

irrelevant, but when we need it, we do not want to modify our definition. 
At some point, the word “generic” will mean an additional general 
position requirement imposed on the field v (see Definition 5.2). When we 
say that a Riemannian metric is generic, we imply that ( )ff ∇,  is generic. 

We introduce critical sets Xjj
±± ∂⊂∑  of Xjf ∂|  in a way similar to the 

one we used to define .1
±∑  With a generic metric in place, let jv  be the 

orthogonal projection of v onto ,Xj∂  and let jn  denote the field normal 

to Xj∂  in Xj 1−∂  and pointing inside of .1Xj
+
−∂  Note that, away from the 

singularities from ( ) .0, >∑ jj vdf  
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Figure 2. The patterns of fields v (the 3D-arrows) and 1v  (the parabolic 

flow) in vicinity of a point from X+∂3  (on the left) and a point from X−∂3  
(on the right). 

For a vector field kv  as above on kX  with isolated singularities 
{ ( )},kk XIntx ⊂∑∈�  denote by ( )kx vInd

�
 its index at ,�x  and by 

( )kvInd+  – the sum ( )∑ +∈∑kx kx vInd
� �

.  Then, according to [28], one has 

two sets of equivalent relations: 

Theorem 2.1 (Morse Law of Vector Fields). For any generic metric 
and ,30 ≤≤ k  

• ( ) ( ) ( )1+
+++ +=∂χ kkk vIndvIndX 6 

• ( ) ( ) ( )∑ =
++ ∂χ−= 3 .1kj j

j
k XvInd  

 
Figure 3. A more realistic picture of the boundary X1∂  in vicinity of 

X−∂3  in relation to the horizontal gradient field v. 

                                                      

6By definition, ( ) ( ) ,33
++ ∑= #vInd  and ( ) .04 =+ vInd   
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Corollary 2.1. For generic vector field v on X, 

( ) ( ) ( )∑
=

+∂χ−=
3

0
.1

k
k

k XvInd  

For an engaging discussion of the Morse Theorem 2.1 see the paper of 
Gottlieb [13].7 In particular, it describes a link between the Morse 

stratification { }jj X+∂  and the geometry (normal curvature K) of :1X∂  

Theorem 2.2. Let 3: R→Φ X  be a smooth map with a nonzero 

Jacobian on the boundary X∂  and RR →3:p  a generic linear function, 
so that the function ΦDpf :  has only isolated singularities in ( ).XInd  

Then the degree of the Gauss map 2: SXg →∂  can be calculated either 

by integrating the normal curvature K of ( ) 3R⊂∂Φ X  (Gauss-Bonnet 

Theorem), or in terms of the v-induced stratification XXX +++ ∂⊂∂⊂∂ 123  

:X⊂  

( ) ( ) ( )∫∂ −χ=μ
π

=
X

vIndXKdg 4
1deg  

( ) ( ) ( ).321 XXX +++ ∂χ+∂χ−∂χ=  (2.1) 

We notice that formulas from Theorem 2.1 and Corollary 2.1 admit 
equivariant generalizations [22]. For any compact Lie group G, a 
G-manifold X, an equivariant function ,: R→Xf  and a generic 

G-equivariant gradient-like field v, the invariants { ( )},Xk
+∂χ  as well as 

the degree ( ),deg g  can be interpreted as taking values in the Burnside 
ring ( )GB  of G. 

There is another degree-type invariant of ( )fX ,  linked to generic 

Morse data ( )., vf  The set XX +∂⊂∂ 12  carries two non-zero vector fields: 

the normal field 2n  that points inside X+∂1  and trivializes the oriented 
tangent bundle of X1∂  along ,2X∂  and the field .1vv =  Therefore, v 

                                                      
7That nice paper attracted my attention to the topic of Morse theory on manifolds with 
boundary. 
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defines a map .: 1
2 SXh →∂  We view h as an element in the one-

dimensional oriented bordism group ( )1
1 SΩ  of the circle. This group 

splits as ( ) ( ) ( )ptptpt 001 Ω≈ΩΩ ⊕  (see [5]), i.e., an element 11: SMh →  

in ( )1
1 SΩ  is determined by the degree class ( )hdeg  [ ( )] .1 Z∈= − pth  

Any deformation of v preserves the class of 1
2: SXh →∂  in ( )1

1 SΩ  

and thus the degree [ ( )].1 pth−  Deformations of f that change the 

singularity set 1∑  do change the degree class. This degree can be easily 

computed in terms of the cusp sets X+∂3  and .3 X−∂  

Lemma 2.1. For a fixed f, the number ( ) ( )XX −+ ∂−∂ 33 ##  equals to 

twice the degree of the map 1
2: SXh →∂  and is independent of the fields 

., 2nv  

Proof. Each loop from X2∂  either entirely belongs to one of the two 

sets X+∂2  and to ,2X−∂  or the arcs of belonging to X+∂2  and to X−∂2  
alternate. In the first case, the contribution of γ  to ( )hdeg  is zero. In the 
second case, the contribution of each arc with the ends of opposite 
polarity is also zero. Each arc with two positive ends contributes a 
rotation of v by ,π+  while each arc with two negative ends contributes 

a rotation by π−  (see Figure 7). Hence the total rotation along γ is 

[ ( ) ( )].33 XX −+ ∂−∂π ##  � 

By Corollary 9.2, a more refined count of the cusps from X3∂  will 

produce a very different formula for the degree of .: 1
2 SXh →∂  

For a given nonsingular ,: R→Xf  each choice of a gradient-like 

field v locally gives rise to a map .: 2R→Xp  Let us outline the 
construction of p. Add an external collar W to X and extend the Morse 
data ( )vf ,  into WXY ∪=:  without adding new singularities. At each 
point ( )WIntx ∈  the ( ) flow-v−  defines a surjection xp  of a neighborhood 

YUx ⊂  onto a neighborhood xV  of x in ( )( ).1 xff −  Consider the 
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restriction XUp xx 1: ∂∩  ,, 1XxVx ∂∈→  to the boundary .1X∂  According 

to Whitney [36], generic smooth maps 22 RR →  have only folds and 
cusps as their stable singularities. Therefore, for generic Morse data 
( )vf ,  and ,\ 21 XXx ∂∂∈  xxx VXUp →∂1: ∩  is a surjection, for 

,\ 32 XXx ∂∂∈  xp  is a folding along an arc of ,2X∂  and at ,3Xx ∂∈  xp  
is a cusp map with ( )Xpx 2∂  being the cuspidal curve. Note that along 

xx VXpX →∂+ :,2  is locally onto, while along ,2X−∂  it is not. 

It is especially easy to visualize the stratification { }Xj∂  when X is 

embedded or immersed in 3R  and f is induced from a generic linear 

function l on .3R  In such a case, a global surjection 2: R→Xp  is 
available. Its fibers are parallel to the gradient vector .lv ∇=  Now, X2∂  

can be identified with the folds of the map 2
1: R→∂ Xp  and X3∂  with 

its cusps. 

As we deform a nonsingular field v within generic one-parameter 
families, the local structure of the projections xp  can be described in 

terms of a few canonical forms. One of them, the cusp, 

( ) ( )yxyxyxF ,, 3 +=  (2.2) 

is a stable singularity of a map from 2R  to itself.8 

The dove tail t-parameter family 

( ) ( )yxytxxyxFt ,, 24 ++=  (2.3) 

describes a cancellation of two cusps that will play a significant role in 
Section 9.9 

                                                      
8It comes from the universal unfolding of the 3A -singularity ( ) .3xxf =  
9It is the universal unfolding of the codimension 1 singularity of a mapping 2R  to 2R  
coming from the universal (two-parameter) unfolding of 4A -singularity. 
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3. Surgery on the Morse Stratification 

Let X be a compact 3-fold X with boundary .1X∂  Given a smooth 
function R→Xf :  with isolated singularities, we can construct a new 
function with no singularities inside X: just cut from X a number of 
tunnels. Each tunnel starts at the boundary X1∂  and has a dead end 
which engulfs a singularity. Denote by T the interior of the tunnels. Then 
f, being restricted to ,\ XTX ≈  is nonsingular, and its perturbation can 

be assumed to be of the Morse type on ( ).\TX∂  

Lemma 3.1. Let X be a compact 3-fold with boundary .1X∂  Let 
R→Xf :  be a smooth function with no singularities in a regular 

neighborhood N of .1X∂  Denote by v be its gradient-like field. Let 

X±∂⊂γ 1  be a simple path that connects two points from X2∂  and has an 

empty intersection with the critical set .1
±∑  

Then one can deform v in N to a new f-gradient-like vector field v~  for 

which the new set X∓1∂  will be obtained from the original one by the one-

surgery along γ. Outside of .~, vvN =  

A similar statement holds for any field v10 which is nonsingular along 
X1∂  and in general position to it. 

 

Figure 4. Performing 1-surgery on .1 X+∂  

                                                      

10not necessarily of the gradient type. 
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Proof. Let 1v  be the orthogonal projection of v onto X1∂  in the 

metric on X in which .fv ∇=  The idea is to perform surgery on X+∂1  by a 

homotopy of the field ,1vv −  while keeping f and 1v  fixed. We start with 
“1-surgery” on the fields along a band H which connects two arcs, say 

XA 2∂⊂  and .2XB ∂⊂  The band, with the exception of small 

neighborhoods of its two ends, resides in X+∂1  ( ,elyalternativ  in )X−∂1  as 
shown in Figure 4. The band avoids the singularities of the function 

,1Xf ∂|  so that 01 ≠v  everywere in the band. Denote by Q a smller band 

which is contained in H (see Figure 4). 

Let n denote the interior normal to .1X∂  We decompose the field v as 
,1 nhv ⋅+  where the function h is positive in the open domain U — the 

shaded area without the handle (it is bounded on the left and right by the 
two dotted segments) — and is negative in the interior of the complement 
to U. In fact, we can assume that 0 is a regular value of h. 

At each point ,Xx ∈  the differential df picks a particular open half-

space +
xfT ,  in the tangent space ,xT  and .+∈ fTv  Along the boundary 

,1X∂  another family of half-spaces is available: let +
xT  denote the set of 

tangent vectors at Xx ∂∈  which point inside of X. Note that, away from 

the singularities of ,1Xf ∂|  the cone ++
xxf TT ∩,  is open. 

 

Figure 5. Changing the field nhvv ⋅+= 1  at a point Xx −∂∈ 1  into a 

field nhvv ⋅+=
~~

1  for which .1 Xx +∂∈  
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Consider a smooth function R→Hh :~  which satisfies the following 

properties: (1) [ )( ) ,,0~ 1 Vh =∞+−  (2) zero is a regular value of h~  and 

( ) ,0~ 1 Vh ∂=−  (3) the field .~
1

+∈⋅+ fTnhv  The last property can be 

achieved by starting with any h~  subject to (1) and (2) and rescaling it by 

a variable factor ,0>a  so that ( ) ++∈+ TTnhav f ∩~
1  (see Figure 5). At 

each point, the existence of an appropriate a follows from the fact that 
.1

+∈ fTv  Because the cone ++ TTf ∩  is open and the domain H is 

compact, the global existence of such an a, by a partition-of-unity 
argument, follows from its existance at each point of H. 

We extend the field nhv ⋅+
~

1  inside X to get a smooth f-gradient-like 
field w in a small regular neighborhood W of V. We use a smooth 
partition of unity β+α=1  subordinate to the cover W, .\ZX  The 
function α vanishses in Z and β in .\WX  Now consider the field 

.:~ wvv β+α=  Since +
xT  is convex, .~ +∈ fTv  Moreover, in V, v~  points 

inside X and, in ,\VH  outside X. Also, outside .~, vvW =  

Finally, for a fixed f, the set of all f-gradient-like fields is open and 
convex. Hence, any modification of a f-gradient-like field can be obtained 
by its deformation. The arguments for generic (non-gradient) fields v are 
similar and simpler. � 

Corollary 3.1. Under hypotheses and notations of Lemma 3.1, the 
following claims are valid. There is a deformation of a given gradient-like 
field in the neighborhood N of X1∂  so that, for the new gradient-like field, 

both portions jX±∂1  of X±∂1  residing in each connected component jX1∂  

of X1∂  are nonempty, and jX+∂1  is homeomorphic to any given domain in 

jX1∂  with a nonempty complement. 

In particular, for a given generic f and all j’s, there exists a gradient-
like field v such that any of the two properties is satisfied: 

• jX+∂1  is homeomorphic to a disk. 

• jX+∂1  and jX−∂1  are homeomorphic surfaces. 
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A similar statement is valid in a category of generic nonsingular vector 
fields. 

Proof. Let jX1∂  be a component of .1X∂  If jj XX +∂=∂ 11  ( jX1or ∂  

),1 jX−∂=  then we can pick a point ,1Xx ∂∈  where .01 ≠v  Employing an 

argument depicted in Figure 5, we can deform the field v in the vicinity of 
x so that, with respect to the modified gradient-like field, Xx −∂∈ 1  

( ,1 Xx +∂∈  ).inglycorrespond  Thus we can assume that ,1 jX−∂ .1 ∅≠∂+ jX  

Now, by one-surgery on both X+∂1  and ,1 X−∂  we can change the 

topology of X+∂1  at will, as long as we keep the sets of both polarities 

nonempty. No matter how we change the two sets, we must keep +∑ j,1  

inside X+∂1  and −∑ j,1  inside .1 X−∂  In particular, we can deform the field 

so that jX+∂1  is a 2-disk or, say, to insure that jX+∂1  is homeomorphic to 

.1 jX−∂  

Note that typically surgery on X+∂1  will change the sets .3 X±∂  � 

4. Morse Strata and Convexity 

Definition 4.1. Given generic Morse data ( )vf ,  on a manifold X with 

boundary, we say that v is s-convex (concave), if ∅=∂+Xs  ( ,∅=∂−Xs  

).inglycorrespond  If ∅=∂+X2  ( ),2 ∅=∂−X  then we simply say that v is 
convex (concave). 

An existence of convex Morse data has strong topological 
implications. Let ∑ be a surface with boundary. We denote by ( )∑L  a 
smooth 3-fold with boundary obtained from the product [ ]1,1−×∑  by 
rounding its corners { }1±×∑∂  and by replacing a narrow cylindrical 
band [ ]εε−×∑ ,  with a ‘‘curved parabolic” one as shown in Figure 6. The 
projection ( ) [ ]1,1−→∑L  defines a nonsingular function f. The vertical 

field v in [ ]1,1−×∑  is of the f-gradient type. With respect to it, ( )∑∂−L2  
.∑∂=  We call the triple ( )( )vf ,,∑L  a lens based on ∑. 
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Figure 6. A lens ( )∑L  is convex with respect to the vertical field: 

( ) .2 ∅=∑∂+L  The set ( )∑∂−L2  is the equator of the lens. 

Lemma 4.1. A connected 3-manifold X admits convex nonsingular 

data ( )vf ,  if and only if X is diffeomorphic to a handlebody ( ).1 X+∂L  

In particular, if an acyclic 3-manifold X admits convex nonsingular 
data, it is a 3-disk. 

Proof. The first claim is straightforward (see [2], Proposition 4.2.2). 

Note that the convexity on a connected X implies that X+∂1  is connected. 

When X is acyclic, a homological argument implies that .2
1 SX ≈∂  

Thus X+∂1  must be a contractible domain in ,2S  that is, a 2-disk. 

Therefore, the manifold X must be shaped as a lens, one face of which is 
that disk. � 

Figure 7 shows a typical behavior of a vector field 1v  in a 

neighborhood of .2X∂  The arcs of X+∂2  come in tree flavors: type A is 

bounded by a pair of points from ,3 X+∂  type B is bounded by a pair of 

points from ,3 X−∂  and type C is bounded by a pair of mixed polarity. 

This time, we play our convexity game in dimension 2, not 3. At 

points of X−∂3  the field 1v  in X+∂1  is convex, at points of X+∂3  it is 

concave. 
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Figure 7. The arcs from X+∂2  of the types A, B, and C. 

According to Theorem 9.5, we can deform v (in the space of 
nonsingular gradient-like fields) so that ,3 ∅=∂ X  in other words, there 
are no topological obstructions to the 3-convexity and 3-concavity of 
(gradient) fields! On the way to establishing this fact, we need to perform 
0-surgery on .23 XX +∂⊂∂  

Lemma 4.2. Let v be a gradient-like field for 0,: ≠→ vXf R  along 

.1X∂  Let XC +∂⊂ 2  be an arc with one of its ends ,3 Xa +∂∈  the other end 

,3 Xb −∂∈  and no other points of X3∂  in its interior. Assume also that 

Cf |  has no critical points.11 Then we can deform v in the vicinity of 
XC ⊂  in such a way that: 

• with respect to the new f-gradient-like field v~  the strata X+∂1  and 
X2∂  remain the same, 

• arc C changes its polarity (from  being in X+∂2  to being in ),2X−∂  
and the points a, b are eliminated from the set .3X∂  

Proof. Let 2v  be an orthogonal projection of v on .2X∂  The 
argument is analogous to the one in Lemma 3.1. However, this time, we 
will keep both the direction of 1n -component 1vv −  of the field v and the 
field 02 ≠v  fixed in the vicinity of C, while deforming the field .1v  
Because the direction of the normal component 1vv −  remains the 

unchaged, the stratum X+∂1  and its boundary X2∂  will be preserved, 
but the arc C will change its polarity. � 

                                                      
11See Figure 7, arc C. Note that the absence of critical points of Cf |  implies that 
( ) ( ).bfaf <  
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Corollary 4.1. For any generic function R→Xf :  with no critical 
points in ,1X∂  there exists a gradient-like field v with the following 
property. Each arc ,2XC ∂⊂  which connects a minimum x of Xf 2∂|  with 

a consecutive maximum y, has: 

• a single point from ,3 X−∂  provided +∑∈ 2x  and ,2
−∑∈y  

• a single point from ,3 X+∂  provided −∑∈ 2x  and ,2
+∑∈y  and 

• no points from X3∂  when ., 2
±∑∈yx  In that case, the polarity of C 

is the same as the polarity of x and y in .2∑  

Proof. We can assume that Xf 2∂|  is Morse and its maxima and 

minima alternate. By Lemma 4.2, one can change the polarity of arcs 
XC 2∂⊂  between consecutive points a, b from ,3X∂  provided .02 ≠|Cv  

Note that the polarity of a and b must be opposite. � 

The Morse formula for the vector fields (Theorem 2.1) helps to link 
the topology of X+∂1  with the distribution of arcs from X+∂2  and points 

from X±∂3  along .2X∂  

The next lemma is similar in spirit to Theorem 4.8 from [6]. That 
theorem is a very special case of the Eliashberg general surgery theory of 
folding maps (see [6, 7]). However, we cannot apply Eliashberg’s results 
directly: our v-generated foldings ( )( )xffXpx

1
1: −→∂  have a nice 

target space only locally; a natural target space in our setting is a 
2-complex, typically with singularities. 

Lemma 4.3. Let X be a compact 3-fold with a generic nonsingular 

vector field v. Then the v-generated stratification { } 30 ≤≤
+∂ kkX  of X has the 

following properties: 

• ( ) ( ) ( ) ( ) ( ) ( )[ ]arcsarcs23311 ABXXXX #### −=∂−∂=∂χ−∂χ −+−+  

• ( ) ( ) [ ( ) ( )] .2331 XXXX +−+ ∂−∂+χ=∂χ ##  

Proof. Since 0≠v  in X, the index ( ) .0=vI  By the Morse formula, 

( ) ( ) ( ) ( ) .0321 =∂χ−∂χ+∂χ−χ +++ XXXX Thus ( ) ( ) ( )XXX ++ ∂χ+χ=∂χ 21 ( ).3 X+∂χ−  
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Loops in X+∂2  do not contribute to ( ),2X+∂χ  so ( ) (arcs2 #=∂χ +X  ).in 2X+∂  

Hence, ( ) ( ) ( ) ( ).inarcs 321 XXXX +++ ∂χ−∂χ=∂χ #+  Note, that the C-arcs 

and their ends do not contribute to the difference ( ) ( ):inarcs 32 XX ++ ∂χ−∂#  

such arcs have a single end in .3 X+∂  On the other hand, the B-arcs do not 

contribute to .3 X+∂  Therefore the difference ( )X+∂χ 2  ( )X+∂χ− 3  is equal 

( ) ( )[ ] ( ) ( ) ( ) [ ( ) −∂=−=−+ −XABABA 3arcsarcsarcs2arcsarcs ######

( )] .23 X+∂#  

Recall that for any 3-fold ( ) ( ) [ ( ) ( )].2121, 111 XXXXX −+ ∂χ+∂χ=∂χ⋅=χ  

Replacing ( )Xχ  with [ ( ) ( )]XX −+ ∂χ+∂χ 1121  in the formulas above, leads to 

the relation ( ) ( ) ( ) ( ).3311 XXXX −+−+ ∂χ−∂χ=∂χ−∂χ  � 

Combining Lemma 4.3 with Corollary 3.1, we get 

Corollary 4.2. ( ) ( )XX −+ ∂=∂ 33 ##  if and only if ( ) ( )XX −+ ∂χ=∂χ 11  
( ).Xχ=  

When X1∂  is connected, by deforming v, we can arrange for X+∂1  to 

be a 2-disk. For any such choice of Morse data ( ),, vf  

( ) ( ) ( ).2233 XXX χ⋅−=∂−∂ −+ ##  

Corollary 4.3. If a 3-fold X with ( ) 0>χ X  admits a nonsingular 

function f with ,3 ∅=∂+X  then the restriction Xf +∂
|

1
 must have at least 

( )Xχ  extrema. 

Proof. The hypotheses ∅=∂+X3  implies that only B-arcs could be 

present in .2 X+∂  The positive contribution to ( )X+∂χ 1  comes from the 

components of X+∂1  shaped as disks. We divide disks into two types: (1)  

disks with no B-arcs in their boundary (which  entirely belongs to X+∂2  

or to )X−∂2  and (2) the rest of the disks. Any disk of the first type must 

contain at least one local extremum of .
1 Xf +∂

|  Any disk of the second type 
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contains at least one B-arc. Since ,3 ∅=∂+X  we get ( ) ( )XX χ=∂χ +
1  

( ).arcs−+ B#  Now the lemma follows from writing down ( )X+∂χ 1  as the 
Euler class of all disks of the first type plus the Euler class of the rest of 

.1 X+∂  � 

Corollary 4.4. For every 3-fold X with a connected boundary and 

Euler number χ, there exist nonsingular Morse data ( )vf ,  so that X+∂1  is 

a disk .2D  For such data, we get ( ) 223 −χ≥∂+X#  and ( ) .223 χ−≥∂−X#  
As a result, when ,1>χ  the disk cannot be convex with respect to the field 

;1v  as χ grows, the disk X+∂1  becomes more “wavy”. Similarly, when ,1<χ  

the disk cannot be concave with respect to ,1v  that is, .3 ∅≠∂−X  

Proof. By Lemma 3.1, appropriate deformations of v will produce 

.2
1 DX ≈∂+  In view of Lemma 4.3, the claim follows. � 

The following theorem shows that convexity of Morse data is 
equivalent to the possibility of special ordering of the Xf 1∂| -critical 

points by their critical values, and thus, in general, fails. However, if we 

formally attach index 1+i  to each critical points −∑∈ 1x  of classical 

index i, the new self-indexing of Xf 1∂|  becomes possible. 

Theorem 4.1. Let ( )vf ,  be Morse data whose restriction ( )11, vf  to the 

boundary X1∂  is also of the Morse type. If ,2 ∅=∂+X  then there is no 

ascending trajectory ( ) Xt 1∂⊂γ  of the vector field ,1v  such that 

[ ( )] +
∞+→ ∑∈γ 1lim tt  and [ ( )] .lim 1

−
∞−→ ∑∈γ tt  

Conversely, if no such ( )tγ  exists, one can deform the gradient-like 

vector fields { }1, vv  ( ,lyequivalent  the metric g in which )fv ∇=  to a new 

gradient-like pair { }1
~,~ vv  (to  a new metric ),~g  in such a way that, with 

respect to the new fields, .2 ∅=∂+X  In particular, if ( ) ( ),11
−+ ∑<∑ ff  then f 

admits convex Morse data (convex metric ).~g  
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In contrast, no nonsingular Morse data ( )vf ,  are 2-concave: .2 ∅≠∂−X 12 

Proof. For a generic metric g, consider the vector field fv ∇=  and its 
orthogonal projection 1v  on .1X∂  The function ,: 11 R→∂ Xh  defined 
via the formula ,111 nhvv ⋅+=  where 1n  is the inward normal field, has 

zero as a regular value. Then ([ )) ( ]( )0,,,0 1
11

1
11 ∞−=∂∞+=∂ −−−+ hXhX  

and ( ).01
12
−=∂ hX  Now, if an ascending trajectory-1v  ( )tγ  which links 

−∑1  with +∑1  does exist, it must cross somewhere the boundary X2∂  of 

.1 X−∂  By definition, such crossing belongs to X+∂2  which must be non-
empty. 

On the other hand, if no such ( )tγ  exists, then we claim the existence 
of codimension 1 closed submanifold ,1XN ∂⊂  which separates X1∂  in 

two domains +∑⊃ 1A  and ( )BNAB ∂==∂∑⊃ −
1  and, in addition, has 

the following property. The vector field 1v  is transversal to N and points 
outward of A. Indeed, one can take a small regular neighborhood 
( )X1in ∂  of the union of descending estrajectori-1v  of all critical points 

from +∑1  for the role of A. Here we are employing the fact that no 

descending trajectory originating at +∑1  reaches .1
−∑  

Since, away from ,0, 111 ≠∑∑ −+ v∪  in the tangent space xT  of 

( ),1XxX ∂∈  there is an open cone +
xfT ,  containing 1v  and comprised of 

gradient-like vectors. 

With such a separator N in place, consider a smooth function 
R→∂ Xh 11 :~  with the properties: (1) zero is a regular value of 1

~h  and 

( ) ;0~ 1
1 Nh =−  (2) ( ) ,0,~ 1

1 Ah =∞−−  [ ) ;,0~ 1
1 Bh =∞+−  (3) 11

~ hh =  in the 

vicinity of ;11
−+ ∑∑ ∪  and (4) .~

11
+∈⋅+ fTnhv  Note that the field 1:~ vv =  

nh ⋅+ 1
~  points inside X along A and outside along B. 

                                                      

12Note that any X admits a field 0≠v  with respect to which ∅=∂−X2  (cf. [2]). 
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Now we can find a metric ,~g  in which v~  is the gradient of f. In vg ~,~  

is orthogonal to the plane ( ).: dfKerKx =  Denote by 1
~v  the orthogonal-~g  

projection of v~  on .xT  Since 1
~h  vanishes on N, 11

~ vv =  along N, and 
therefore, is transversal to N and points outward A. As a result, with 
respect to .,~

2 ∅=∂+Xg  

We can deform the original metric g into ,~g  thus deforming the 
gradient fields 1, vv  into the gradient fields .~,~

1vv  

The last claim follows from the observation that since 0≠v  the 
absolute maximum (minimum) of f on X must be realized at a point from 

−∑1 ( ).from 1
+∑  � 

In view of Theorem 4.1 and Lemma 4.1, we get 

Theorem 4.2. A connected 3-fold X with a connected boundary is a 
handlebody if and only if one of the following properties is valid: 

• X admits a smooth nonsingular function f whose restriction on the 
boundary X1∂  is Morse; moreover, no ascending trajectory of a gradient-

like field 1v  links in X1∂  a singularity from −∑1  to a singularity from 

.1
+∑  

• X admits a smooth nonsingular function f, and X1∂  is convex with 

respect to a gradient-like field v, that is, .2 ∅=∂+X  

Given the remarkable proof of the Geometrization Conjecture [29], 
[30], the proposition below must be viewed just as an illustration. It 
shows what advances towards the Poincaré Conjecture are possible by 
modest means of the Morse Theory alone. We get the following criteria 
for recognizing standard 3-balls in terms of Morse data: 

Corollary 4.5. An acyclic 3-fold X is a 3-ball if and only if one of the 
following properties is valid: 

(1) X admits a smooth function f with no critical points in X whose 
restriction on the boundary 2

1 SX ≈∂  is Morse; moreover, no ascending 

trajectory of a gradient-like field 1v  links in X1∂  a singularity from −∑1  

to a singularity from .1
+∑  
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(2) X admits a smooth function f with no critical points in X whose 
boundary X1∂  is convex with respect to a gradient-like field v. 

(3) X admits a smooth function f with no critical points in X, so that 
2

1 SX ⊂∂+  is connected and ∅=∂+X3  (i.e., the Morse data are 3-convex). 

Proof. Evidently, a standard 3-ball admits Morse data with the 
properties described in (1)-(3). 

By a homological argument based on the Poincaré duality, an acyclic 
3-fold X has a spherical boundary. 

By Theorems 4.1, 4.2, properties (1) and (2) are equivalent, and by 
Lemma 4.1, (2) implies that X is a 3-ball. To prove (3) we use the last 

formula from Lemma 4.3. Since ( ) 1=χ X  and X+∂1  is connected, it 

follows that ( ) ( )XX −+ ∂−∂ 33 ##  is twice the number of holes in .1 X+∂  

Hence, ( ) 03 =∂+X#  implies that ( ) 03 =∂−X#  and, therefore, X+∂1  must 

be a 2-disk with no points from X3∂  along its boundary. However, the 

boundary of the disk X+∂1  cannot belong entirely to fX :2
+∂  must attend 

its absolute maximum and minimum in .2S  We have seen already that 

this implies that .2 ∅≠∂−X  Hence, ∅=∂ X3  which implies that .2 ∅=∂+X  

Thus, under the hypotheses, the 3-convexity implies the 2-convexity. In 
turn, the 2-convexity implies that the manifold is a 3-disk. By Corollary 

3.1, we can find Morse data so that X+∂1  is a disk. � 

Example 4.1. Let X be the Poincaré homological 3-sphere from which 
a 3-ball has been removed. It follows from the theorems above that, for 
any smooth function R→Xf :  with no singularities in X, there is an 

ascending trajectory-1v  which links a singularity from 
−∑1  to a singularity 

from .1
+∑  Also, no nonsingular Morse data ( )vf ,  can insure both the 

connectivity of X+∂1  and the 3-convexity. Therefore, a “mild” connectivity 

restriction on X+∂1  turns the obstructions to 3-convexity into a topological 

phenomenon. 
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5. Cascades, 2-spines and Concavity 

Definition 5.1. Let K be a finite two-dimensional polyhedron 
(cellular complex) embedded as a subcomplex in a compact 3-fold X with 
boundary .1X∂  We say that XK ⊂  is a spine, if KX \  is homeomorphic 
(diffeomorphic) to the product ( )( ) [ ).1,0\ 11 ×∂∂ XKX ∩  

It follows that X is collapsible onto K, in particular, K is a strong 
deformation retract of X. Furthermore, X is homeomorphic to a cylinder 
of a map KXg →∂1:  which is an identity on XK 1∂∩  (cf. [25], 
Theorem 1.1.7). 

Our next goal is to use nonsingular Morse data ( )vf ,  in order to 
construct rather special spines that we call gradient. First, we focus on 
the complications arising from the concave locus .2 X+∂  It is comprised of 
a finite number of disjoint arcs or loops { }.jE  For each connected curve 

,2 XE j
+∂⊂  consider the set of points in X which can be reached from jE  

moving down along the trajectories of .v−  Denote by jW  the closure in X 

of this set. We call such a set jW  a waterfall. The union jjW∪  of all 

waterfalls is called a cascade and is denoted by ( ).2 X+∂C  We denote by 

( )X−∂3C  the finite union of the downward trajectories through the points 

of .3 X−∂  These trajectories are called free. 

 

Figure 8. Killing a 1-cycle in X+∂1  by attaching the 2-cell ( ).2 X+∂C  
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Figure 9. A waterfall of an A-arc in .2 X+∂  

 

Figure 10. The same waterfall in a cascade. 

 
Figure 11. A cascade of the Dove Tail singularity with two cusps from 

X+∂3  and .3 X−∂  Note the trajectory shared by the two waterfalls. 
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Definition 5.2. We say that the gradient-like field v is generic-2
+∂  if 

• for each Xx +∂∈ 2  there is an open interval xV  centered on x such 
that the surface ,xW  formed by the downward trajectories through ,xV  

away from ,xV  has only transversal intersections with ;2 X+∂  

• the downward trajectories of points from the finite set X3∂  are all 
distinct and each trajectory belongs to a single waterfall .jW  

Figures 8, 10, 11 show mechanisms by which generic-2
+∂  waterfalls 

are created, as well as their typical shapes. 

Lemma 5.1. A small pertubation of a gradient-like field v turns it 
into a generic-2

+∂ field. For such a field, the downward trajectories of 

points from X−∂3  terminate in the interior of the surface .1 X+∂  

Proof. For v being generic-2
+∂ is an open dense property established 

by standard transversality arguments. � 

The following proposition describes how any generic v canonically 
generates its gradient spine. 

Theorem 5.1. Let X be a compact 3-fold. We assume that a smooth 
function R→Xf :  has no singularities and its gradient-like field v is 

.-2 generic+∂  Then the 2-complex ( )XXK ++ ∂∂= 21 C∪  is a spine of X. 

 
Figure 12. A section of the retraction KXp →:  by a plane transversal 
to .2 X+∂  
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Proof. We can modify the gradient-like field v by a nonnegative 
conformal factor +→φ RX:  which is zero on X+∂1  and positive 
everywhere else. Abusing notations, denote this modification by v as well. 
Let U be a regular neighborhood of the complex K in X which is invariant 

under the flow produced by the modified .v−  The existence of U is implied 

by the invariancy of the set K. For example, one can use a metric in X, 
invariant under the flow, in order to choose U as an odneighborho-ε of K. 

Then we pick a regular odneighborho-2ε  X⊂W  of the cascade ( ).2 X+∂C  

It is properly contained in U. Let w be a field that defines a retraction of U 

onto K. It vanishes on K, is tangent to ,1 X−∂∩U  as well to ,1X∂∩W  and 
inward transversal to the portion of W∂  that is not in .1X∂  Moreover, as 
Figure 12 testifies, w can be chosen so that, away from K, it is never 
positively proportional to v. Consider a smooth partition of unity 

,1 β+α=  where α is supported in ( )XX +∂1\ ∪W  and β in U. Form the 

vector field .wvu β+α−=  It is defined globally and vanishes only on K. 

By the construction of vu −=,U  on the boundary of U. Therefore, u or is 

tangent to U∂  or points inside U (see Figure 12). As a result, positive u-

trajectories of points U∈x  must reach either the cascade, or the set 

.1 X+∂  Hence, the u-flow governs the retraction of X on K, and K is a 
strong deformation retract of X. Moreover, the ( ) flow-u−  gives a product 

structure [ )1,01 ×∂−X  to .\KX  � 

Remark 5.1. For a given field v, one can introduce an equivalence 
relation v~  among points of X: two points are defined to be equivalent if 

they both belong to the closure of the same v-trajectory. The quotient 
space vX ~  with the quotient topology is called the orbit-space of v. For a 

generic vXv ~,0≠  can be given the structure of a 2-dimensional 

CW-complex which is homotopy equivalent to X. In fact, for a generic 

,0≠v  the obvious maps vXXP ~: →  and ( ) vXXXP ~: 21 →∂∂| ++ C∪  

are Serre fibrations. Thus, for such v, the gradient spine can be also 
regarded as a homotopy substitute for the space of v-trajectories. 
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Remark 5.2. The 2-cells in which K is subdivided admit a preferred 
orientation induced by the preferred orientation of ,1X∂  so that they 
form an integral 2-chain [21]. Its boundary [ ]K∂  consists of the 1-chain 

( )XX −− ∂∂ 32 C∪  together with the singularity locus ( )Ks  of K. This locus 

is comprised of curves from the intersection ( )XX ++ ∂∂ 21 C∩  and the orbits 
shared by pairs of waterfalls. In short, each edge from the support of 

[ ]K∂  contributes to the cycle [ ]K∂  with multiplicity 1±  (and  not )3± –an 
important property which the gradient spines share with the branched 
spines (see Corollary 3.1.7, [2]). This property was originally studied in 
[8] and [9]. 

Remark 5.3. Note that changing f to f−  and v to v−  exchanges the 

strata ,11 XX −+ ∂⇔∂ ,33 XX −+ ∂⇔∂  and keeps the strata XX −+ ∂∂ 22 ,  fixed. 
Therefore, the gradient spines ( )vfK ,  and ( )vfK −− ,  “complement” each 
other in X: they share X2∂  and their cascades ( )vf ,C  and ( )vf −− ,C  
complement each other in the set spanned by all the trajectories through 

.2 X+∂  Evidently, the topologies of ( )vfK ,  and ( )vfK −− ,  could be 
radically different. However, their complexities (see Definition 7.1) are 
equal. 

 

Figure 13. Singularity types of gradient spines. 
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By its very construction, any generic gradient spine K has a very 
particular stratified local geometry. In fact, as abstract cellular 
2-complexes, gradient spines are simple spines in the sense of [25]. 
However, in our context, (as well as in the case of branched spines) the 

smooth structure of X+∂1  and waterfalls breaks the 3-fold symmetry of 

simple combinatorial spines: in other words, we distinguish between the 

“Y” and “T-shapes”. 

The stars of points in K are shown in Figure 13 and will be referred 
by their letter labels. The six types of links of points in K are depicted in 

Figure 20. A generic point from the set ( )XX −− ∂∂ 32 C∪  has a neighborhood 

shaped as a half-disk and has a link of type (2). The singular set ( )Ks  

consists of points of types R, T, and S, all having links of type (5). The 
T-type is produced by the trajectories that belong to two distinct 
waterfalls or to two branches of the same waterfall. The R-points are 

generic to loci where waterfalls hit the ground .1 X+∂  The S-points are 

generated when a waterfall transversally hits an arc from .2 X+∂  They are 

hybrids of T and R types. Topologically R, T, and S types are 
indistinguishable. The Q-type is generated where two waterfalls hit the 
ground. Stars of Q-points are shaped as a union of a disk with a half-disk 
with a quoter-disk, and their links are of type (6). The Q-type 
singularities are isolated in K. Singularities of the P-type are located 

where a free trajectory through X−∂3  hits the ground. Hence, they are 

in 1-to-1 correspondence with points of .3 X−∂  A neighborhood of a 

P-singularity is a union of a disk with a quater-disk which share a 
common radius; its link is of type (4). Finally, the singularities of the 

O-type are just points from .3 X+∂  They also have stars shaped as cones 

over a circle union a radius (see Figure 11). Topologically the O and 
P-types are the same. 

Next, we prove that 3-folds have gradient spines which are rather 
special “origami” folded from a 2-disk (see Figure 14). This result is very 
similar to Theorem 1.2 from [18], where an origami is built from a normal 
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pair. However, one technical difference is evident: in [18] the v-flow is 
transversal to the normal disk, while in our construction, the gradient 

flow is not necessarily transversal to X+∂1  along its boundary .2X∂   

Theorem 5.2. The spine ( )XXK ++ ∂∂= 21 C∪  of a 3-fold X, produced 

from generic Morse data is an image under a cellular map KS →Φ :  of 

a cellular 2-complex S homeomorphic to the surface .1 X+∂  The map Φ is 
1-to-1 in the interiors of the 2-cells in which S is subdivided, at most 
2-to-1 on the 1-skeleton without vertices, and at most 3-to-1 on the set of 
vertices. The local geometry of Φ can be described by the four identification 
patterns in Figure 15. 

Moreover, any 3-fold X has a gradient spine K which is an image of a 

2-disk 2D  under a cellular map KD →Φ 2:  which is 1-to-1 in the 

interiors of the 2-cells in ,2D  at most 2-to-1 on the 1-skeleton of 2D  
without vertices, and at most 3-to-1 on the set of vertices. 

 

Figure 14. An “origami” map KD →Φ 2:  with a collapsable K. 
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Figure 15. Identification patterns for gradient spines. 

Proof. One can resolve K along its singular set ( )Ks  so that the 

resulting space is a celluar 2-complex .:
21 ⎟

⎠
⎞

⎜
⎝
⎛∂= +∂

+ �∪ j jX WXS  It is 

obtained from X+∂1  by attaching individual waterfalls { }jW  along the 

loops and arcs forming .2 X+∂  As a result, S is homeomorphic to the 

surface .1 X+∂  In particular, when X+∂1  is a 2-disk, so is the resolution S. 

This resolution can be done by performing cuts of several types. First, 
at each singularity of any type, but the T-type, (see Figures 13, 16) the 

cut separates the cascade from the “ground” surface .1 X+∂  Then at each 

singularrity of the T-type (see Figure 17), there is a preferred “half-
waterfall” which is separated from the adjacent waterfall by a cut along a 
trajectory that they both share. 
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Figure 16. A singularity of the Q-type and its resolution. 

 

Figure 17. A singularity of the T-type and its resolution. 

The shape of the waterfalls jW ’s depends on the type of the arc or 

loop in X+∂2  from which it falls. Recall that, after an appropriate change 

of the vector fields, the arcs come in three flavors: A, B and C. The A-type 
waterfall has two “free” edges which are not affected by the gluing Φ. The 

edges emanate from the two ends Xyx −∂∈ 3,  of an A-arc. The B-type 

waterfall has no “free” edges at all. It falls from a B-arc whose edges are 

in .3 X+∂  The C-type waterfall has one “free” edge which emanates from a 

point in X−∂3 —the end of the arc. Figure 29 depicts the topological 

models of A, B, and C types in vicinity of an arc τ where they hit the 

ground .1 X+∂  
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Figure 18. A complete resolution of singularities. 

By Corollary 3.1, for appropriate Morse data, we can assume that 

X+∂1  is a disk. 

Evidently, there is a mapping KS →Φ :  which glues the complex K 
back. The map Φ is 1-to-1 on the compliment to the 1-skeleton of S, it is 
at most 2-to-1 on the interior of its edges and at most 3-to-1 on its 
vertices (see Figures 15-18). With the local topology of K being restricted 
by the list in Figure 13, one can verify that Figure 15 lists all possible 
gluing patterns for Φ (see Appendix A in [21] for details). � 

Globally, the gluing patterns of Φ can be quite intricate as shown in 

Figure 19 which depicts an example of a map KD →Φ 2:  as in 
Theorem 5.2 with a contractible, but not collapsable K. The second 
diagram in Figure 19 is obtained from the first one by elementary 
collapses performed through the free trajectories. The third diagram 
suggests contracting the shaded disk to a point, thus ignoring the 
subtleties of the Φ-gluing pattern inside the disk, but keeping the 
presentation of ( ) .11 ≈π K  



GABRIEL KATZ 

 

40 

 

Figure 19. The combinatorics of a map KD →Φ 2:  which gives rise to 

a non-collapsable K with ( ) 11 =π K  presented as { ,,, 1−=| cbacba 1−ab  

}.1,1 1 == −ac  

When X+∂1  is a 2-disk, Morse data (equivalently, gradient spines K ) 

produce a presentation of the fundamental group ( ) ( ).111 XXX +∂π≈π  Its 

generators are the oriented v-trajectories that are shared by pairs of 
waterfalls, or by two branches of the same waterfall, together with the 

free trajectories that emanate from X−∂3  (each waterfall has at most two 

free trajectories, and two waterfalls can share a number of trajectories). 
Let { }ββωi  be the set of shared trajectories in iW  and { }δδαi  be the set of 

free ones. Evidently, the homotopy class of each loop γ  in XK +∂1  is 

characterized by its traces in the waterfalls (see Figures 10 and 19). In 
each waterfall ,iW  the trace of γ  can be replaced by a word in { }ββωi  and 

{ } .δδαi  The relations are produced by looking independently at each 

waterfall marked with its shared trajectories. If we cut iW  along the 

{ }ββωi ’s, it will break into a number of polygons. Each polygon has 

certain shared and free trajectories in its boundary, and the rest of the 
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boundary consists of arcs that belong to .1 X+∂  A free trajectory belongs to 

a single polygon, and each polygon has two free trajectories at most. Each 
polygon is oriented and contributes a single relation: moving along its 
oriented boundary produces a word in the alphabet that contains free and 
shared trajectories and their inverses (the arcs of the boundary that were 

attached to X+∂1  are ignored). In fact, when a polygon contains a free 

trajectory, we can delete it from the list of generators and the polygon 
itself from the list of relations. Eventually, this will eliminate all free 
trajectories with the exception of the pairs that belong to a single 
waterfall free of shared trajectories in its interior. One of the free 
trajectories in each of such pairs can be dropped from the list of 
generators and its polygon from the list of relations. 

In general, the same recipe produces a presentation of ( ).11 XX +∂π  

Hence, 

Theorem 5.3. Let X be a connected 3-fold. Then generic Morse data 

( )vf ,  such that X+∂1  is a 2-disk give rise to a finite presentation of 

( ).1 Xπ  Thus, ( )vf ,  determine the classQ -∗∗  (as defined in [27]) of that 

presentation. By [32], this classQ -∗∗  is a topological invariant of X. 

6. Abstract Gradient Spines 

We already noticed that the geometry of gradient spines K provides 
us with a particular way of orienting their 2-cells. This orientation is 
induced by a preferred orientation of X1∂  and is spread along the 

cascade by the v-flow. Furthermore, not only the surfaces in DK  acquire a 
preferred orientation, but they also have preferred sides in the ambient X, 

the sides picked by the inner normals to .1 XX ⊂∂+  The inner normals 

uniquely extend by continuity to each waterfall W and pick its side in X. 

These properties of gradient spines can be captured in the notion of 
an abstract gradient spine. We start with a few preliminary definitions. 
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Definition 6.1. A simple polyhedron is a compact 2-dimensional 
polyhedron such that each of its points has a link homeomorphic to one of 
the shapes in Figure 2013 and the corresponding star from Figure 13. 

 

Figure 20. Link types of points in simple polyhedrons. 

The six types have a partial order induced by the inclusions of 
closures of the appropriate strata: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).35,42,51,21 >>>>  

Note that generic gradient spines are simple polyhedra. However, 
typically they admit 2-collapses; thus the need for considering link types 
(2), (3), and (4). 

The “topological boundary” ( )Ks•  of K is formed by points with links 

of type (2) degenerating into types (3) and (4). The graph ( )Ks†  is formed 

by the points with links of type (5) degenerating into types (3), (4), and 
(6). Thus a generic point from ( )Ks•  belongs locally to the boundary of a 
single surface in K, while a generic point from ( )Ks†  belongs to the 

boundaries of three surfaces. Let ( ) ( ) ( ).KsKsKs †∪•=  The finite set of 

points of types (3), (4), and (6) is denoted ( ).Kss  The bivalent vertices 
from ( ) ( ) ( )KsKsKss †† ∩•• =  are of type (4), and the rest of the vertices 

from ( )Kss  are the four-valent ones of type (6). The set formed by the 
points of type (6) is also denoted ( ).KQ  

Recall that a simple spine K is called special in [25] or standard in [2] 
if the stratification ( ) ( ) KKsKss ⊂⊂  gives K a structure of cellular 

                                                      

13Actually, type (3) does not appear in generic gradient complexes, but is present in their 1-
parameter deformations.  
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2-complex, i.e., if ( )KsKK \:=D  is a disjoint union of open 2-cells and 

( ) ( ) ( )KssKsKs \:=D  is a disjoint union of open 1-cells. 

If K is a simple special spine of X whose points have local models of 
types (1), (5), and (6), then X can be uniquely reconstructed just from a 
regular neighborhood ( )( ) KKs ⊂N  of the singular set ( )Ks  ([25], 
Theorem 1.1.17). For the reconstruction to work, it is important that 

( ),\ KsK  the disjoint union of disks, does not support non-trivial line 
bundles. For any gradient spine K, the bundle, normal to ( )KsK \  in X, is 
also trivial. This property of gradient spines K will permit a unique 
reconstruction of X from K as well. 

In order to distinguish intrinsically the T-shaped configurations from 

the Y-shaped ones, we use a particular system of markers placed along 

the edges of the graph ( ) KKs ,†  being a simple polyhedron. The marker 

is a short segment emanating from a generic point ( ).Ksx †∈  It is 

transversal to ( )Ks†  and is contained in one of the three surfaces (pages) 

that join at x. We call such segments T-markers. A T-marker m, the 
vertical leg of letter T, tells us that the two pages that do not contain m 
are thought “to form 180° angle” in the ambient X. In the category of 
branched spines K, the local geometry of K along ( )Ks  also picks one 
page out of three: recall that only two out of three tangent pages form a 
cusp, and the preferred page is the third one [2]. It suffices to place a 

single T-marker at each edge or loop of the graph ( ) ( ) ( ) :\: KssKsKs †† =D  

by continuity, the marker spreads itself along the edge or loop until it 
reaches an isolated singularity from ( ).Kss  There the marker’s pattern 
requires an additional explanation to be provided below. 

The N-marker is attached to generic points ( )Ksx †∈  and is contained 

in one of the two pages that do not carry a T-marker. Informally, one can 
think of the pages with T-markers as waterfalls. The N-markers reside 
both in the ‘‘ground” and in the waterfalls, and can be regarded as 
substitutes for the preferred normals to the oriented pages that contain 
T-markers. 
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For gradient spines K, v provides us with a T-marker at points of 

( ).1 KsX ∩+∂  For points on a trajectory shared by two waterfalls, the 
T-marker resides in the page complementary to the two pages that form 

180° angle. For each waterfall W, the vectors tangent to X+∂1  and 
pointing to the preferred side of W, produce the rest of N-markers. 
Effectively, the T and N-markers generate a coloring of 

( ( )) ( )( )KssKs NN \†  with three colors, the colors of the tree pages which 

share an edge being distinct. Here ( )~N  denotes a regular neighborhood 
in K of an appropriate set. 

 

Figure 21. TN-markers in the vicinity of a Q-singularity and the plane 
pattern they generate. Diagram C is a view of configuration A from the 
top, Diagram D is a view of configuration B from the top. 

A single pair of TN-markers approaches each singularity of types (3) 
or (4). In fact, the markers distinguish between the spines of type (4) in 

the vicinity of a point from X+∂3  (O-type in Figure 13) and a point y where 

a trajectory through X−∂3  hits the ground X+∂1  (P-type in Figure 13): in 

the first case, moving along the loop in (4) in the direction of N, we return 
from the direction marked by T; in the second case, moving along the loop 
in the direction of N, we return from the unmarked direction. 
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Four pairs of TN-markers approach each singularity x of the type (6) 
from four different directions. The link xL  of x in K is shown in Figure 
21, A and C, and the markers reflect the “plane – union half-plane – 
union quater-plane geometry” (as seen from the North Pole). Among the 
six edges of ,xL  there is a single edge α with two T-markers and a single 
edge β with two N-markers, α and β sharing a vertex. The rest of the 
markers are determined by Figure 21, A and C. There configuration B is 
obtained from configuration A by opening the quoter-plane (the higher 
waterfall) into a half-plane and bending the ground plane (along the bold 
line) so that its two halves form a right angle. We introduce diagrams B 
and D to make some of our drawings more in the spirit of the plane 
calculus of 4-valent graphs as in [2], [18], [19], [23]. 

The TN-pattern in xL  is completely determined by an ordered pair of 

edges ( )βα,  that share a vertex. Hence there are 124 2
3 =× C  ways of 

attaching a pattern of TN markers as in Figure 21 to a complete graph on 

four vertices. On the other hand, there are ( ) 1296!3 4 =  ways to mark the 
four Y-shaped beams that join at the singularity x. So, the majority of the 
four beam patterns will not match with the local geometry of a 
Q-singularity. 

Definition 6.2. An abstract TN-polyhedron is a simple polyhedron K 
with T and N-markers along the edges of the graph ( ).Ks†  We insist 

that, at each vertex x whose link is a complete graph in four vertices, 
these markers satisfy Figure 21 pattern or its mirror image. 

Given an abstract TN-polyhedron K, using the T-markers, we can cut 
it open along ( ),Ks†  so that locally each T-marked page is separated 

from the rest. For the resolution to work, it is important that the TN 
markers at the isolated singularities will obey the combinatorial rules 
depicted in Figure 21. The result of this T-resolution is a compact surface 
(not necessarily connected) which we denote by ( ).KresT  It is equipped 

with the canonical map ( ) .: KKresT →Φ  

Definition 6.3. An abstract TN-polyhedron K is said to be oriented if 
its resolution ( )KresT  is an oriented compact surface. 
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Definition 6.4. An abstract gradient spine is an abstract oriented 
TN-polyhedron. 

Hence, any generic gradient spine is an abstract gradient spine. 

Theorem 6.1. If two compact 3-manifolds 1X  and 2X  with 

boundaries have homeomorphic gradient spines 1K  and ,2K  the 

homeomorphism 21: KKh →  being a diffeomorphism along the strata 
of the spines and respecting the TN-markers, then the manifolds are 
diffeomorphic. 

Proof. The arguments are similar to the ones used in [25], Lemma 
1.1.15 and Theorem 1.1.17. Throughout this proof, an ‘‘embedding” of a 
stratified space Z in a smooth manifold means an embedding which is an 
immersion of the smooth strata of Z and which preserves their 
transversality. 

Let 3
+D  be the half-disk { }0,1222 ≥≤++ zzyx  with the equatorial 

disk { }.02 == zD  Let 3
+⊂ DQ  be the union of 2D  with the half disk 

{ } 32 0,0 ++ ≥== DzyD ∩  with the quater disk { }0,0,02 ≥≥==++ zyxD  

.3
+D∩  Up to diffeomorphisms of 3

+D  that preserve ,2D  there is a unique 
way to embed the pattern 4Γ  in Figure 21, C, (without the TN-markers) 

in 3
+∂D  in such a way that the circle in 4Γ  is mapped onto 2D∂  and the 

rest of the graph into .\ 23 DD+∂  

Note that map h must not only respect the stratifications in 1K  and 

2K  by the link types in Figure 20, but h also discriminates between the 
isolated singularities of types O, P, and Q in Figure 13. Indeed, the 
patterns of TN-markers are different for the O-cusps and the 
P-intersections of free trajectories: in the case of cusps, moving from the 
singular point y of the link (see Figure 20, pattern (4)) in the N-marked 
direction one returns to y through the T-marked direction, while in the 
P-case, leaving y in the N-marked direction results in the return to y 
through the unmarked direction. Gradient spines of O and P-type 

singularities admit preferred embeddings in .3
+D  In the case of a cusp, 
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XXD −+ ∂∂= 11
2 ∪  and the waterfall is a triangle whose interior resides in 

( )3
+DInt  and whose two sides are attached to ;2D  one of the two sides is 

realized as the arc ,2 X+∂  along the other side, the triangle is transversal 

to .2D  Let O be the gradient spine of a cusp, that is, sector X+∂1  union 
with this triangle. In the case of a P-singularity, the germ of the spine 

can be identified with .: 322
+++ ⊂= DDD ∪P  Note that each of the 

preferred embeddinds 3,, +⊂ DPOQ  admits two distinct N-markings 
that pick the preferred side of the waterfall (they are mirror images of 
each other); the T-markings are uniquely determined by the geometry of 
the embeddings. In what follows, we fix one of the two choices for the 
N-markers in .,, POQ  

For each isolated singularity ( )1Kssx ∈  and ( ) ( ),2Kssxh ∈  consider 

sufficiently small regular neighborhoods 1XUx ⊂  and ( ) .2XV xh ⊂  

Depending on the type of x, both pairs ( )xx UKU ∩1,  and ( ( ) 2, KV xh  

( ) )xhV∩  are diffeomorphic to one of the three models ( ),,3 Q+D  ( ),,3 O+D  

and ( ),,3 P+D  via the diffeomorphisms which respect the markings. Thus, 

there exist a diffeomorphism ( )xhx VU →α :  which maps xUK ∩1  to 

( )xhVK ∩2  and respects the markings. Locally (at x), the composition 

xx UKUKh ∩∩D 11
1 : →α−  can be represented by the germ of a vector 

field w tangent to 1K  ( gintegratin  w over a unit of time produces 

).1 α− Dh  This field w extends to a field ,ŵ  defined in some regular 

neighborhood of x in .xU  We use ŵ  to define a germ of a diffeomorphism 

11: XX →β  at x. Evidently, the germ of 1−βα D  is an extension ĥ  of h 

into a regular neighborhood of x in .1X  Let xÛ  be a regular neighborhood 

of x contained in the domain of ĥ  and ( ) ( ).ˆˆ:ˆ xxh UhV =  Therefore, we have 

constructed a diffeomorphism ( ) ( ( ) )xhxxx VKUKh ˆˆ:ˆ 21 ∪∪∪∪ →  of 

stratified spaces which preserves their TN-markings. 
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Let ( ) ,:,0,0,0: 2210
+== DDDD ∩  and .: 221

++++ = DDD ∩  

In a similar way, after ‘‘fattening” of h in the vicinity of ( ),1Kss  we 

can extend ĥ  into a regular neighborhood ( )( )1KsN  of ( ) ,11 XKs ⊂  while 
respecting the markings in the source and the target. To accomplish this 
we need the following models: 

• {( ) [ ]} { } { } [ ]1,0101,0 22211 ×⊂××× ++++ DDDDD ∪∪∪  

• {( ) } 12111 SDSDD ×⊂× ++∪  

• [ ] { } { } [ ]1,0101,0 2221 ×⊂××× ++++ DDDD ∪∪  

• 1211 SDSD ×⊂× ++  

The first couple models the vicinity of an arc or a loop from ( ),iKs†  

( ),2,1=i  the second one of an arc or a loop from ( ).iKs•  

The third, most problematic, extension of h occurs into a regular 

neighborhood W of ( )( )111 \: KsKK N=D  in ( )( ).\ 11 KsX N  It is possible 

because the surfaces from D
iK  have preferred normals, which results in 

the normal bundles ( )ii XK ,Dν  being trivial. This crucial observation is 
valid due to the gradient nature of the two spines. 

Recall that any smooth regular neighborhood of a spine XK ⊂  is 
diffeomorphic to X; thus, 1X  is diffeomorphic to .2X  � 

Lemma 6.1. Let ( )cG4  denote the number of connected regular four-
valent graphs with c vertices, taken up to a homeomorphism. Then the 
number of connected special abstract gradient spines whose points are of 

the types (1), (5), and (6) does not exceed ( ) .124
ccG ⋅ 14 In turn, ( )cG4  can 

be crudely estimated from above by the number of elements in the 
symmetric group cS4  that move every symbol in ( ).4...,,3,2,1 c  

                                                      

14By Theorem 7.3, the same number ( ) ccG 124 ⋅  gives an upper bound on the number of 
irreducible with no essential annuli 3-folds.  
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Proof. A special spine K, with all its points modeled after types (1), 
(5), and (6), is completely determined by a regular neighborhood U of its 

one-skeleton, a regular 4-valent graph Γ; to reconstruct K from U we just 

attach a disk to every circular component of .U∂  There are ( )cG4  such 

graphs Γ. Each edge Γ⊂γ  is a core of a beam U⊂γB  with a Y-shaped 

section. Let V be the disjoint union of c copies of the star �V  of a 

Q-singularity. With the TN markers on both ends Vba ∂∈,  of the beam 
in place, intrinsically, there is a unique way to attach the beam γB  to V. 

Therefore, any TN pattern as in Figure 21 assigned to each copy of �V  in 
V will determine the rules for attaching the beams, and thus the 

reconstruction of K. Since V supports c12  TN-patterns, the total number 

of special abstract gradient spines does not exceed ( ) .124
ccG ⋅  

Fix a graph Γ as above. Then, U is determined by assigning, for each 

edge γ of Γ a pairings between the two Y-shaped plugs in V that 

correspond to γ. For each γ, there are six pairings, so that the total 

number of non-homeomorphic U’s is bounded from above by .62c  This 

number cc 22 32 ⋅  should be compared with the estimate ccc 3212 2 ⋅=  of 
the U’s that are consistent with the abstract gradient spine structure. � 

For a simple spine K with DK  being a union of orientable surfaces, 

consider the set of integral 2-chains ( )KC
2  that are combinations of the 

fundamental cycles of connected surfaces that form ,DK  the coefficients 

in the combinations being .1±  Also consider the 1-chains ( )KC
1  that are 

combinations of the fundamental cycles of arcs that form ( ) =:DKs  
( ) ( ),\ KssKs  the coefficients in the combinations being .1±  Following [9], 

[8] and [2], we introduce the following notion: 

Definition 6.5. An oriented branching on a simple complex K with 

an orientable DK  is a 2-chain ( )KC
2∈α  such that its boundary ∈α∂  

( ).1 KC
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In other words, an oriented branching is a special choice of 
orientations for each of the components of ;DK  note that, for an arbitrary 

( ),2 KC
∈α  some edges of ( )Ks  can contribute to α∂  with multiplicity 
.3±  

Next, we introduce the notion of structureY -  for spines .XK ⊂  It 
resembles to the notion of branched spines (see Definition 6.6 and 
Lemma 6.3) and plays a significant role in the sections to follow. 

Consider a configuration Y in 3R  of three distinct half-planes that 

share a line l. For any nonzero vector 3R∈w  that is not parallel to l, 

consider a linear surjection 23: RR →wp  with the kernel generated by 

w. There are two possibilities for the map :: 2R→Ywp  (1) generic 

points in 2R  have preimages of cardinalities one and two, and wp  is 
onto; or (2) the cardinalities are zero and three ( vp  is not ).onto  We 

attach symbol Y  to the first situation and symbol W  to the second one.15 

The ionsconfigurat-Y  are generated when w and −w point into distinct 

chambers in which the three half-planes divide .3R  

At each point ( )DKsx †∈  of a simple spine ,XK ⊂  the linearization 

of the three surfaces that join at x generates a configuration xY  in the 
tangent space XTx  of X. At each point ( ),KQx ∈  the linearization of the 
four surfaces that meet at x generates a 2-complex xX  which divides 

XTx  into four pyramids. We will prefer configurations xX  for which w 

and −w point into distinct pyramids. Such configurations are said to be of 

the type.-X  For them, the fibers of wp  will be of cardinality 1, 2, and 3. 

Definition 6.6. Let X be an oriented 3-fold. We say that a spine 

XK ⊂  is a spineY -  if there exists a vector field w along ( )Ks†  in X 

                                                      

15The shapes of the letters are mimicking the desired properties of the half-plane 
configuration with respect to a horizontal w. 
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which is transversal to each of the surfaces that form K and join along 

( ).Ks†  Moreover, for ( ) ,DKsx †∈  the configuration XTxx ⊂Y  is of the 

type,-Y  and, for any ( ),KQx ∈  the configuration xX  is of the type-X  
with respect to ( ).xw  In addition, we require that the global orientations 

of surfaces in DK  will agree with their local orientations induced by w in 
the vicinity of ( ).Ks† 16 

For example, consider a union Y of three radii in a disk Y,2D  being 

symmetric under the rotation φ on the angle .32π  Let X be the mapping 

torus of 22: DD →φ  and K be the mapping torus of .: YY →φ  

Evidently, K is a spine of X, but not a spine.-Y  

Lemma 6.2. Any gradient spine ( )vfKK ,=  in X is a .-spineY  

Proof. For a generic-2
+∂  v, the waterfalls and the ground X+∂1  are 

transversal along their intersections. At a generic point ( )Ksx †∈  two 

out of three half-planes form an angle .180D  Thus, for an open and dense 

cone of vectors ( ) XTxw x∈  the configuration xY  is of the type.-Y  
Consider the two sheets TS  and NS  of K at x that are marked with the 

T and N-markers and a cone XTxx ⊂C —the convex closure of the two 

half-spaces tangent to TS  and NS  at x. Since the unmarked tangent 

half-space is never in the interior of ,xC  the cone xC  picks a unique 
chamber C among the three chambers in which K divides X in the 

vicinity of ( ) .DKsx †∈  

At each Q-singularity x, K divides the star of x in X into four 
pyramids. For a gradient spine K, the NT markers pick one of these four 
pyramids: its triangular base is built out of three edges that are marked 

                                                      

16This requirement is redundant for surfaces whose boundary mets ( )Ks†  along connected 

curves. 
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with TT, NN and TN-markers in Figure 21, diagram C. This choice is 
consistent with the choice of chambers C  of the four beams that merge at 
x. 

We already noticed that for vectors ( ) D
xxw C∈  the configuration xY  is 

of the type.-Y  By partition of unity and convexity arguments, we 
conclude that there is a vector field w along the graph ( )Ks†  such that w 

belongs to the NT-preferred chamber along ( )DKs†  and to the preferred 

pyramid P at the points of ( ) ( ).KssKQ ⊂  At the same time, −w does not 

belong to P. Moreover, w (which has a nonzero projection on the 
N-marked normal to the waterfalls) extends to a field which is 
transversal to K along ( )Ks•  as well. As Figure 12 and Figure 22 testify, 

w points into the half-spaces picked by the inner normals to X+∂1  which 
are spread by continuity along the waterfalls. Thus, w locally induces the 
same orientation of the surfaces in the spine, as the inner normals do. � 

Lemma 6.3. For an oriented X, the notions of an oriented branched 

spine XK ⊂  and of a spineY -  are equivalent. 

Proof. Assume that K is an oriented branched spine. Since X is 

oriented, the orientation of each component S of DK  picks a particular 
normal Sν  to S in X. For any ( ),Ksx †∈  an oriented branching α  on K, 

picks a preferred surface xS  out of the three oriented surfaces that join 
at x. Here is the recipe for choosing :xS  if γ  is the edge of ( )Ks†  

through x, locally, there are exactly two surfaces, say 1S  and ,2S  such 
that  contributes to 1S∂  and 2S∂  with the same sign. Then γ  contributes 
to xS∂  with the opposite sign. 

Let U be a small regular neighborhood of ( )Ks†  in X, equipped with a 

Riemannian metric. For some ( ),Ksx †∈  the normals xSν  and xSν−  

belong to the same chamber in .\KX  For those x, we employ an isotopy 
which is an identity in complement to U and in USx ∩  to “widen” the 
angle between 1S  and ,2S  so that the xSν  and xSν−  will reside in 
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different chambers. As a result, 21,, SSSx  will form a ionconfigurat-Y  
with respect to the normal field .xSν  In a sense, xSν  is a piece-wise 

smooth surrogate of the desired field ( ).xw  

By Proposition 3.1.6, [2], any oriented branching extends to ( ),KQ  

that is, for any ( ),XQx ∈  the preferred chambers of the four Y-beams 

that approach x ‘‘share” a vector XTw xx ∈  transversal to K. More 

accurately, the infinitesimal parallel shifts of this xw  along the four 
edges ( )Ks†⊂γγγγ 4321 ,,,  that emanate from x belong to the preferred 

chambers 4321 ,,, γγγγ CCCC  of the beams, while the infinitesimal shifts 

of xw−  do not belong to the preferred chambers. Next, we smoothly 
interpolate between the parallel shifts of { } ( )XQxxw ∈  in the vicinity of 

( )XQ  and the fields xSν  along the edges of ( ).Ks†  This interpolation 

gives the desired field w along ( ).Ks  

Conversely, if K admits a structure,-Y  then K is an oriented 

branched spine. Indeed, the field w, transversal to K along ( ),Ks  picks a 

particular orientation of each component S of DK  along its boundary .S∂  
Since S is orientable, according to Definition 6.6, it gets a particular 

global orientation. Thus, w generates an element ( ).2 KC
∈α  Because of 

the very nature of the ions,configurat-xY  α has the required property 

( ).1 KC
∈α∂  � 

7. Combinatorial and Gradient Complexities of 3-manifolds 

Following Matveev [26], the complexity ( )Kc  of a simple 2-polyhedron 

K is defined to be the cardinality of the set ( )KQ  formed by points of type 

(6) in Definition 6.1. This definition of ( )Kc  can be applied to gradient 
spines as well. 

Here and on, by a trajectory of a vector field we mean an integral 
curve that does not admit a continuation. 
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Figure 22. Any v-trajectory QP, tangent to X1∂  at A and B, generates a 
singularity of type (6) at Q. 

We notice that the Q-singularities of a gradient spine are in 1-to-1 
correspondence with segments [BQ] of the v-trajectories that are shared 
by either a pair of waterfalls or, locally, by two branches of the same 
waterfall (see Figure 22). The number of such shared segments in a 
cascade can be given another, less technical, interpretation. We notice 

that, for a generic-2
+∂  field v, a shared segment [BQ] corresponds to a 

unique pair of distinct points XBA +∂∈ 2,  that are linked by a 

v-trajectory [PQ]. In turn, such trajectories are exactly the ones that link 
distinct points XBA 1, ∂∈  and that are tangent to X1∂  at A and B. 

Indeed, X2∂  is the locus, where v is tangent to ,1X∂  and points of X1
2
−∂  

do not communicate through the bulk X. We call such trajectories [PQ] 
double-tangent. 

Generic Morse data ( )vf ,  provides us with an oriented tangle 

( ) Xv ⊂T  of segments [AB] of double-tangent trajectories, the orientation 

of ( )vT  being induced by v. When X+∂1  is a disk, ( )vT  produces a coupling 

of points in its circular boundary .2X∂  
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Question. How does the tangle ( )vT  and the coupling change as v 
deforms in the space of nonsingular (gradient-like) fields? 

Inspired by [25], we propose the following two definitions. 

Definition 7.1. The complexity ( )vfgc ,  of generic Morse data ( )vf ,  
is defined to be the number of double-tangent v-trajectories.17 

For gradient spines, polarities �,⊕  can be given to the isolated 
singularities of Q-type. We have seen that any ( )KQx ∈  corresponds to 

a trajectory γ tangent to X1∂  at a pair of points ., 2 XBA +∂∈  Morse data 
( )vf ,  help to break symmetry between A and B: indeed, ( ) ( ).BfAf >  

Recall that the preferred orientation of X+∂1  induces an orientation of 
.2X∂  Consider a vector Av  tangent to X2∂  at A and a vector Bv  tangent 

to X2∂ at B, the directions of both vectors agreeing with the orientation 
of .2X∂  The ( ) flow-v−  spreads Av  and Bv  and produces an ordered 
normal frame ( )AB vv ~,~  along the trajectory [ ]., QP=γ  At ,Qx =  the 
orientation induced by ( ( ) ( ))xvxv AB

~,~  can agree or disagree with the 

preferred orientation of .1 X+∂  In the first case, the polarity of x and is 
defined to be positive ( ),⊕  in the second case, it is negative ( ).�  We 

denote by ( )⊕KQ  and ( ) ,�KQ  respectively, the sets of positively and 
negatively polarized points in ( ).KQ  The same polarities �,⊕  can be 
assigned to the double-tangent trajectories γ. Note that reversing the 
orientation of ,1 X+∂  reverses the orientation of ,2X∂  and thus the frame 
( )AB vv ,  is replaced by ( )., AB vv −−  Therefore, the ( )�,⊕  polarity is 
independent of the choice of an orientation in .1X∂  

Definition 7.2. The polarized gradient complexity ( )vfgc ,⊕
�  of generic 

Morse data ( )vf ,  is defined to be the difference between the number of 
positive and negative double-tangent trajectories. 

                                                      

17By a general position argument, we can assume that each trajectory is tangent to X1∂  at 
two points at most. 
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The polarized gradient complexity ( )vfgc ,⊕
�  can be given another 

interpretation which has the flavor of a “self-linking number” for the 
1-cycle [ ].K∂  

By Lemma 6.2, the gradient spine ( )vfKK ,=  has a preferred vector 

field w along ( )Ks  which gives K its structure.-Y  This field is transversal 

to K and points inside X along X+∂1  and into the preferred side of each 
waterfall from the cascade. 

We view the 1-cycle [ ]K∂  with support in ( )Ks  as an oriented graph. 
Employing a preferred field w, we push [ ]K∂  a bit in the direction of the 
field. Denote [ ]wK∂  the perturbed graph. By the construction of w, the 

2-chain [K] and the 1-cycle [ ]wK∂  are in a general position in X, and their 

intersection points occur only in the vicinity of ( ),KQ  a single intersection 
per each point of ( ).KQ  Therefore, ( ) ( )Kcvfgc =:,  ( [ ] [ ]).KK w ∩∂= #  

We claim that an algebraic count [ ] [ ]KK w D∂  of intersection points in 

[ ] [ ]KK w ∩∂  also makes sense18, provided that X is oriented. Let us 

explain this observation. Each vertex of the oriented graph [ ]K∂  whose 
multiplicity 2>  is a Q-singularity. It has valency four, a pair of 
incoming, and a pair of outgoing edges. Therefore, at each ( ),KQx ∈  
there are exactly two oriented resolutions of the graph [ ]K∂  into a pair of 
arcs. One of the resolutions is the boundary of the resolved surface 

( ) XKresT ⊂  (see Figure 18, the right diagram). The other resolution of 

[ ]K∂  is denoted by [ ]( ).Kres ∂  We denote by [ ]( )wKres ∂  its w-shift. 

Consider the algebraic intersection [ ]( ) ( )KresKres Tw D∂  of the curve 

[ ]( )wKres ∂  with the surface ( ).KresT  It is easy to see that the points of 

[ ]( ) ( )KresKres Tw D∂  and of [ ] [ ]KK w ∩∂  are in 1-to-1 correspondence. I 

requires more effort to check that the standard orientation assigned to 

                                                      

18Recall that intersection theories on spaces with singularities of codimension one fail 
miserably. 
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each point of [ ]( ) ( )KresKres Tw ∩∂  is positive if and only if the 

corresponding singularity ( )KQx ∈  has positive polarity ⊕. Since the 

preferred sides of the surfaces from K that join at x depend only on Morse 
data (and not on the orientation of )X1∂  and so does the choice of w, one 
needs to consider only the interaction of a particular w-shift with the 
eight choices for the orientations of the two waterfalls and the ground. 
We leave to the reader the rest of the verification. 

Define the self-linking number [ ] [ ]( )KKlkw ∂∂ ,  by the formula 

[ ]( ) ( ).KresKres Tw D∂  By standard homological reasoning, [ ] [ ]( )KKlkw ∂∂ ,  

depends only on the graph [ ]K∂  and its preferred framing w (which, in 

turn, depends only on the marked germ of ( )Ks  in X ). 

Combining Definitions 7.1 and 7.2 with the arguments above, we get 

Theorem 7.1. For generic Morse data ( )vf ,  and its gradient spine 

( )vfKK ,=  carrying the preferred framing w along ( ),Ks  

( ) ( [ ] [ ]),, KKvfgc w ∩∂= #  (7.1) 

( ) [ ] [ ]( ).,, KKlkvfgc w ∂∂=⊕
�  (7.2) 

Hence, the number of double-tangent v-trajectories is at least 
[ ] [ ]( ) ., KKlkw ∂∂  

We can refine the gradient complexity and view it as an ordered pair 

of nonnegative integers ( [ ( ) ] [ ( ) ]),, �KQKQ ## ⊕  where ( )., vfKK =  We 

will see that once a pair ( )�cc ,⊕  has been realized by some Morse data, 

then ( )1,1 ++ �cc⊕  can be realized as well (see Figure 31). 

Contemplating about formula (7.2), we realize that it makes perfect 

sense for any simple spine-Y  .XK ⊂  This leads to 

Definition 7.3. Let X be a compact 3-fold with boundary. Its 

,-complexityY  ( ),XcY
G  is the minimal combinatorial complexity ( )Kc  of 

spines-Y  K in X. 
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Alternatively, ( )XcY
G  can be defined as { } ( [ ] [ ]),min , KK wwK ∩∂#  

where ( )wK ,  runs over the set of spines-Y  XK ⊂  equipped with their 
preferred fields w. 

Definition 7.4. Let X be a compact 3-fold with boundary. Its gradient 
complexity, ( ),Xgc  is the minimum, over all nonsingular generic-2

+∂  
gradient-like fields v, of the number of double-tangent v-trajectories. 

Alternatively, we can define ( )Xgc  as { } ( [ ] [ ]),min , KK wwK ∩∂#  

where ( )vfKK ,=  runs over generic gradient spines equipped with their 
preferred fields w. 

Evidently, ( ) ( ) ( ).XcXcXgc Y ≥≥ G  Our Theorem 8.1 implies that 

actually ( ) ( ).XcXgc Y
G=  In general, ( ) ( ).XcXgc >  For example, for the 

punctured lens space ,1,3
°L  one gets ( ) ,01,3 =°Lc  while ( ) .21,3 ≥°Lgc   

Since, for any handlebody X and appropriate Morse data, ,2 ∅=∂+X  
it follows that the gradient complexity of handlebodies equals to zero. 

In general, computing ( )Xc  is hard; it is much easier to estimate it 
from above or below. For instance, if X admits a triangulation comprising 
n tetrahedrons, then ( ) nXc ≤  ([25], Proposition 2.1.6). 

An embedded surface X⊂∑  is called proper, if .1X∂∑=∑∂ ∩  Recall 

the X is irreducible if any embedded sphere XS ⊂2  bounds a 3-ball; in 

such a case 2S  is called inessential. X is called prime if no essential 
embedded 2-sphere separates it19. We say that X is boundary irreducible 
if, for any proper 2-disk ( ) ( ),,, XXDD ∂⊂∂  there is a 3-ball XB ⊂  so 
that its boundary B∂  consists of D and the complementary disk DB\∂  

.1X∂⊂  A proper annulus ( ) ( )XXAA ∂⊂∂ ,,  is called nonessential if 
either A is parallel to X1∂  or the core loop of A is contractible in X. The 
rest of annuli are called essential. 

                                                      

19 12 SS ×  is prime. 
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Note that if a 3-ball is deleted from an irreducible 3-fold, then the 
resulting manifold with boundary is boundary irreducible and has no 
essential annuli. 

For boundary irreducible with no essential annuli 3-folds, we can 

reduce generic spines-Y  to special ones without compromising their 
combinatorial complexity (cf. Theorem 2.2.4 in [25]). 

Theorem 7.2. Let X be a boundary irreducible with no essential 

annuli 3-fold ( ),1 ∅≠∂ X  and let XK ⊂  be a simple spine such that DK  

is orientable. Then X has another simple spine K ′  such that 

• ( )KsK ′′\  is a collection of 2-disks, 

• ( )Ks ′  is a connected graph whose vertices are of multiplicity 1 and 4, 

• ( ) ( ),KcKc ≤′  

• when K is a ,-spineY  so is ,K ′  

• when K is an abstract gradient spine, so is .K ′  

If ( ) ,0>Kc  then K ′  is a special spine. 

Proof. Recall that X is PL-homeomorphic to the mapping cylinder of 
a cellular map .: 1 KXq →∂  Denote by KXr →:  the retraction 
induced by the q-mapping cylinder structure. In fact, one can choose r so 

that: (1) for any ( ) ( )xrKsKKx 1,\ −=∈ D  is homeomorphic to a closed 

interval, and (2) for any ( ) ( )xrKsKx 1,\ −∈ †  is homeomorphic either to 

a closed interval or to a singleton. 

Pick a regular open neighborhood N  of ( ) ( )KssKs †† •\  in K so that 

the singularities with the links of types 3 and 4 from Figure 2020 are 
excluded from .N� Let S be a connected component of the compact 
surface .\NK  The boundary S∂  of S consists of the set ( ) SS ∩N∂=∂†  

                                                      
20For the gradient spines, these are the cusps from X+∂3  and the loci where the trajectories 

through X−∂3  hit .1 X+∂  
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and its complement ,\ SSS †∂∂=∂•  each of the two sets being a union of 

simple arcs and loops. 

When S is a closed surface, SK =  and X is a segment bundle over S. 

Consider a simple closed path S⊂γ  which is not contractible in S 
and such that the restriction of the normal line bundle ( ) γ|ν XS,  is trivial 

(for gradient spines, γ|ν  is automatically trivial). In fact, such a loop γ  

always exists, unless ,, 22 SDS =  or .2PR  Since S is orientable, 2D  and 
2S  are the only exceptions. If ,2SS =  then ( ) .∅=Ks  In such a case, 

2SK =  and [ ].1,02 ×= SX  

Denote by A the annulus ( ).1 γ−r  Since no essential annuli are 

permitted, either (1) A is parallel to the boundary ,1X∂  or (2) γ is 
contractible in X. 

In the first case, γ must divide S. Indeed, if it does not, we can find a 
loop S⊂δ  which intersects with A at a singleton; this will imply that A 
is essential. Moreover, by the definition of A being parallel to ,1X∂  there 

is a solid torus XT ⊂  whose boundary is divided into A and the 
complementary annulus .1XA ∂⊂′  As we delete T from X, we do not 

change the topological type of X but do change K to a new =′K  

( ).\ D∩ TKK  Again, due to the construction of A, deleting T preserves 

the r-induced product structure in ,\KX  and thus K ′  is a spine. Now 

( ) XKKs 1∂′=′⊂γ • ∩  (so that each point of γ has a link in K ′  of type 2 

from Figure 20). 

Next, consider the case when γ is nullhomotopic in X. Then, by Dehn’s 
Lemma, each of the two loops 1γ  and 2γ  comprising the boundary of A 

and residing in X1∂  bounds a disk in X. Since X is boundary irreducible, 

1γ  bounds a disk XD 11 ∂⊂  and 2γ  bounds a disk .12 XD ∂⊂  Push 2D  
slightly inside X so that the loop 2D∂  slides along A and denote by 2D′  

the pushed disk. Consider the proper 2-disk XD ⊂  formed by 2D′  and 
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the portion of A between 2D′  and .1D  Its boundary is .1D∂  Note that 
.γ=KD ∩  Recalling that X is boundary irreducible, we conclude that D 

bounds a 3-ball XB ⊂  whose boundary is .1DD ∪  Thus γ must divide S 

into SBS ∩=′′ :  and its complement ( ) ,\: SBXS ∩D=′  and K into 

KBK ∩=′′ :  and its complement ( ) .\: KBXK ∩D=′  Denote by A′  the 

subannulus of A bounded by γ and .2D′∂  We notice that 2: DAKK ′′′= ∪∪�  

is a spine of .\ DBX  In fact, we have replaced S by a new component 

2: DASS ′′′= ∪∪�  in which γ is  contractible. 

We already noticed that any closed loop γ in S with γ|ν  being trivial, 

can be a source for one of the two previous spine modifications. By 
modifications of the second type, we can insure that each S is 
incompressible in X. Then, by modifications of the first type, we can make 
sure that all the nontrivial homotopy classes of simple loops in S will be 
represented in S•∂  and thus will be disjoint from ( ).Ss†  Therefore, we 

can assume that S has no handles, and any nontrivial loop in S is 

homotopic to a loop contained in S•∂  ( 2unless SS =  and ×= 2SX  

[ ]).1,0  Thus, S must be either (1) a disk, or (2) a disk with a number of 

holes. 

Next, we claim that any simple path with S•∂⊂γ∂  must separate S. 

Assume to the contrary that such non-separating γ exists. Since ( )xr 1−  is 

a segment or a singleton for all ( )γ∈ −1, rSx  is a disk XD ⊂  whose 

boundary .1XD ∂⊂∂  Since X is boundary irreducible, there exists a 

3-ball XB ⊂  whose boundary B∂  comprises D union with another disk 
.1XD ∂⊂′  The intersection BK ∩  bounds γ (on one side), contrary to 

the hypothesis about γ. Therefore, S•∂  is present in no more than one 

loop from :S∂  otherwise a non-separating path γ as above must exist. On 
the other hand, we have already arranged for any non-trivial loop in S to 
be homotopic to a loop from .S•∂  Thus, S is either an annulus, or a disk. 
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If S is an annulus, one of its boundary loops must be in S•∂  and the 
other one in .S†∂  So we can collapse S onto S†∂  and further onto ( ),Ks†  

thus simplifying K. Therefore, we managed to construct a spine K with 
all the components S being homeomorphic to a disk. Some of these disks 
S could have the property ,∅≠∂•S  in which case they also can be 
collapsed, further simplifying the spine. 

The moment we arranged for DK  to be a disjoint union of 2-disks, the 
graph ( )Ks  becomes connected. Suppose, to the contrary, that ( ) =Ks  

( ) ( )� ,KsKs ′′′  where ( ),Ks′  ( ) .∅≠′′ Ks  Consider regular neighborhoods 

N ′  and N ′′  of ( )Ks′  and ( )Ks ′′  in K, respectively. Then the boundaries 
N ′∂  and N ′′∂  each is a disjoint union of circles. In order to form K, we 

attach disks to N ′∂  and ;N ′′∂  however this will lead to a disconnected K, 
clearly a contradiction. 

The vertices of ( )Ks  are isolated singularities of K of types (3), (4), 

and (6) from Figure 20. Types (3) and (4) have a single edge of ( )Ks†  of 

type (5) and at least one free edge of type (2) that terminates there; type 
(6) is a four-valent vertex. After all the collapses, the free edges will 
disappear and ( ) ( )KsKs †=  will become a regular four-valent graph. 

Let us examine how the spine modifications above have affected the 

given abstract gradient or structures-Y  of the original spine. Let w be a 

preferred vector field along ( ).Ks  Note that all we did amounts to 

deleting from X a number of relative 3-balls B and solid tori T. In all 
cases, but one, the effect on a spine K was deleting its portion BK ∩  or 

.TK ∩  Evidently, these operations neither increase the complexity of K, 
nor destroy the orientations of S and the TN markers (in the case when K 

is an abstract gradient spine). In the case of spines,-Y  the cuts do not 

change the fact that w along ( )Ks  is transversal to each surface S and 

that the configurations XTxx ⊂Y  are of the type-Y  with respect to v. 

The only less trivial case occurred when we replaced K with 

,: 2DAKK ′′′= ∪∪�  but again, the procedure could only eliminate a 
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portion of ( )Ks  which was disjoint from the rest and thus did not affected 

the transversality of w to S or the TN markers. Note that the orientation 
of S′  uniquely spreads over the cup .2DA ′′ ∪  

The only simplifying move that could harm an abstract gradient 
structure of a given spine is the collapse of some of the disks or annuli S 
in the very end of the game. So, if we want to keep the abstract gradient 
structure of K, we should stop there. � 

An important warning. Note that elementary expansions and 
collapses of abstract gradient (or oriented branched) spines K are very 
different from the elementary expansions and collapses of K, viewed just 
as the underlying 2-dimensional complexes. The orientations can prevent 
us from executing some collapses which non-oriented complexes would 
support. Also, we need to pay close attention to the choice of NT markers, 
an integral part of the abstract gradient complex structure. 

For example, take a plane on which a circular fence is erected. The 
fence divides the plane into two domains, the disk and its exterior. If the 
orientations of the two domains disagree, we cannot collapse the fence. 

Because the T-resolution of an abstract gradient spine leads to an 
oriented surface, we can always collapse a fence marked with T. In fact, 
an unmarked fence also can be collapsed. 

Our Theorem 8.2 claims that ( ) ( ).XcXgc Y
G=  In any case, the obvious 

inequality ( ) ( )XcXgc ≥  can be combined with a number of results about 

( )Xc  in order to get a lower bound on the number of double-tangent 

trajectories. 

Matveev proved that, up to a homeomorphism, there are only finitely 
many compact boundary irreducible 3-folds X that have no essential 
proper annuli and with a bounded combinatorial complexity ( )Xc  (see 

[25], Theorem 2.2.5). We can be a bit more specific: 

Theorem 7.3. Let X be a compact 3-fold X with .1 ∅≠∂ X  For any 

nonsingular generic-2
+∂  gradient-like field v, the number of double-

tangent v-trajectories is greater or equal to ( ).Xc  
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The number of topological types of boundary irreducible X with no 
essential annuli and gradient complexity ( ) cXgc =  does not exceed 

( ) ,124
cc ⋅Γ  where ( )c4Γ  is the number of topological types of four-valent 

connected graphs with c vertices at most21. In particular, there are no more 
than ( ) cc 124 ⋅Γ  distinct orientable hyperbolic 3-folds X with ( ) .cXgc =  

Proof. Since we established that gradient spines are special kind of 
spines and in view of the arguments centered on Figure 22, the first 
claim is clear. 

In order to prove the second claim, consider a gradient spine 
( ) XvfK ⊂,  with ( ) ( ) ., cXgcvfgc ==  Then by Theorem 7.2, we can 

simplify ( )vfK ,  to a special abstract gradient spine K with c 
Q-singularities at most. Examining the constructions that lead to the 
proof of Theorem 7.2, we see that deleting 3-disks and solid tori adjacent 
to ,1X∂  did not change the combinatorics of the special abstract gradient 
spine in the vicinity of the remaining Q-singularities (as depicted in 
Figure 21). After collapsing all its 2-cells whose boundary touches the 
topological boundary ( )Ks•  of K, we could eliminate some of the 
Q-singularities and transform the Y-beams that connect them into 
I-shaped ones. We conclude that, in the end, ( )Ks†  must be a connected 

regular 4-valent graph with c vertices at most. By Lemma 6.1, the 
number of such abstract gradient spines has a upper boundary ( ) .124

cc ⋅Γ  
By Lemma 1.1.15 in [25], any special simple spine XK ⊂  determines 
the topological type of its ambient X. � 

The v-flow through the “bulk” X and the flow-1v  trough its boundary 
X1∂  are intimately linked. For instance, we get the following proposition: 

Corollary 7.1. Let ( )vf ,  and ( )1,1 vf X∂|  be generic Morse data on X 

and ,1X∂  respectively, and .0≠v  If there is no ascending trajectoryv -1  

                                                      

21The number of labeled regular four-valent graphs with c vertices is less than ( ) !!14 −c  

where !!k  denotes the product of all odd numbers that do not exceed k. 
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that connects in X1∂  a point of −∑1  to a point of ,1
+∑  then v has no 

double-tangent trajectories; in other words, ( ) .0=Xgc  

On the other hand, ( ) 0≠Xc  implies that, for each nonsingular f, 

there is an ascending trajectory-1v  that connects in X1∂  a point of −∑1  to 

a point of .1
+∑  

Proof. By Theorem 4.1, the absence of an ascending trajectory-1v  γ  

that connects in X1∂  a point in −∑1  to a point in +∑1  implies covexity of 

the Morse data. On the other hand, if ,2 ∅=∂+X  then no v-trajectory 

links a pair of points Xyx 1, ∂∈  and is tangent to X1∂  at x and y. � 

Given manifolds X ′  and X ′′  with boundary, two types of connected 
sum operations are available: XX ′′′#  and .XX ′′′ ∂#  In the first 
construction, a 1-handle is attached to the interiors of X ′  and ;X ′′  in the 

second one, a 1-handle is attached so that the boundary � XX ′′∂′∂ 11  is 

subjected to 1-surgery as well. 

Theorem 7.4. The Morse complexity is a semi-additive invariant: 

( ) ( ) ( ),XgcXgcXXgc ′′+′≤′′′#  

( ) ( ) ( ).XgcXgcXXgc ′′+′≤′′′ ∂#  

In particular, attaching a solid 1-handle to the interior of X or to its 
boundary does not increase its gradient complexity. Also deleting a 3-ball 
from the interior of X does not change its gradient complexity. Therefore, 
only 2-surgery on X has the potential to increase its gradient complexity. 

Proof. The semi-additivity ( ) ( ) ( )XgcXgcXXgc ′′+′≤′′′ ∂#  is easy to 

validate. Let ( )vf ′′,  delivers ( )Xgc ′  and ( )vf ′′′′ ,  delivers ( ),Xgc ′′  where 

XX ′′′,  are 3-folds with boundary. Assume that f ′′  attains its minimum 

at Xa ′′∂∈ +
1  and f ′  attains its maximum at .1 Xb ′∂∈ −  By adding a 

positive constant to ,f ′′  we may assume that ( ) ( ).maxmin ff ′>′′  By 

perturbing v ′′  a bit, we can arrange that the cascade in X ′′  has an empty 

intersection with a small disk ,1
2 XDa ′′∂⊂ +  centered at a, without 
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changing the original topology of the gradient spine .K ′′  Similarly, by 
perturbing v′  if necessary, we can pick a sufficiently small disk 

XDb ′∂⊂ −
1

2  so that the v′−  trajectories through 2
bD  do not intersect the 

cascade in .X ′  Then we attach an one-handle [ ]1,02 ×≈ DH  to XX ′′′ ∪  

at a and b and extend the Morse data from the top disk 2
aD  and the 

bottom disk 2
bD  inside H. The neck 21: 2 ×∂=γ D  belongs to the set 

( )XX ′′′∂+ #2  and the annulus [ ]1,212 ×∂D  to the set ( ).1 XX ′′′∂ ∂
+ #  

Thus, the cylindrical waterfall streaming from γ does not intersect with 

the cascade in X ′  and hits X ′∂+
1  without producing new shared 

trajectories. By the choice of ,2
aD  the cascade in X ′′  does not fall through 

H. Thus ( ) ( ) ( ).XgcXgcXXgc ′′+′≤′′′ ∂#  

Deleting a 3-ball B from the interior of X does not change its gradient 
complexity. Indeed, if ( )vf ,  delivers ( ),Xgc  then we pick a sufficiently 

small ball B whose center lies on a v-trajectory γ that is not in the 
cascade. Then B∂  is concave with respect to v, and the trajectories 
tangent to B∂  are separated from the old cascade. As a result, they do 
not contribute to the set of double-tangent trajectories of v in .\BX  

Hence ( ) ( ).\ XgcBXgc ≤  On the other hand, if ( )vf ,  delivers ( ),\BXgc  

then there is a trajectory which connects a point Bx ∂∈  to a point in 
Xy 1∂∈  and is transversal at x and y to the boundary of .\BX  Drilling 

a narrow tunnel BXW \⊂  centered on γ and with a concave bottleneck 

produces a manifold X̂  homeomorphic to X (we need to smoothen X̂  at 
both ends of the tunnel). This can be done in such a way that BX \  and 

X̂  will share the same cascade. Hence, ( ) ( ) ( ).ˆ\ XgcXgcBXgc =≥  

Now XX ′′′#  can be obtained by the following operations: (1) deleting 

3-balls BB ′′′,  from X ′  and ,X ′′  respectively, (2) forming a connected 

sum ( ) ( )BXBX ′′′′′′ ∂ \\ #  by attaching a 1-handle [ ] 22 1,0 SDH ⊂×=  

[ ]1,0×  to ,BB ′′∂′∂ ∪  and (3) by attaching a 3-ball to the boundary of 
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( [ ]) .\1,02 HS ×  By the previous arguments, these operations lead to the 

inequality ( ) ( ) ( ).XgcXgcXXgc ′′+′≤′′′#  

Let T denote a solid torus. Since ( ) ,0=Tgc  we have ( )TXgc ∂#  
( )Xgc≤  and ( ) ( ).XgcTXgc ≤#  Therefore, only 2-surgery on X has the 

potential to increase its gradient complexity. � 

To establish the additivity of ( )Xgc  seems to be much harder. The 
additivity of ( )Xc  is a nontrivial fact which relies on Haken’s theory of 
normal surfaces ([25], Theorem 2.2.9). We notice that the defect 

( ) ( )XcXgc −  is also semi-additive under the connected sum operation. 

Corollary 7.2. For any non-negative integer n, there exists a gradient-
like flow on X with ( ) nXgc +  double-tangent trajectories. 

Proof. First we notice that the ball { }12223 ≤++= zyxD  admits a 
gradient flow with a single double-tangent trajectory. Indeed, start with 

convex non-singular function R→3: Dz  and form two indents in :3D  

the first one being formed by inserting in 3D  the half-plane { ,01 ≥= xP  
},5.0=z  the second one by inserting the half-plane { }5.0,02 −=≥= zyP  

(four cusps are formed as a result of this deformation). More accurately, 

one deletes the parabolic cylinders {( ) }xz ε<− 25.0  and {( ) }yz ε<+ 25.0  

(ε  being sufficiently )small  from 3D  and then smoothens the corners. 
Next, use the Morse data ( )vf ,  which deliver ( )Xgc  and form a connected 

sum ,3DX ∂#  equipped with the new Morse data as in the proof of 
Theorem 7.4. Evidently, the number of new double-tangent trajectories in 

3DXX ∂≈ #  is ( ) .1+Xgc  Recycling this construction proves the claim. � 

Each time we have a lower bound on the combinatorial complexity 
( ),Xc  for any gradient-like nonsingular flow, the number of double-

trajectories must be at least ( )Xc  (Theorem 7.3). Fortunately, [25] 
contains a complete list of punctured closed irreducible 3-manifolds of 
combinatorial complexity .6≤  To assemble this list is a labor-intense 
accomplishment. For example, using computations in [25], pp. 77 and 
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407-408, for punctured elliptic manifolds we get: ( ) ,424
3 ≥DPSgc  

( ) ( ) .5,5 120
3

48
3 ≥≥ DD PSgcPSgc In fact, for ( ) .,62 4

3 nQSgcn n ≥≤≤ D  

For punctured lense spaces ,,
D

qpL  one has: ( ) ,11,4 ≥DLgc  ( ) ;12,5 ≥DLgc  

( ) ,21,5 ≥DLgc  ( ) ,22,7 ≥DLgc  ( ) ;23,8 ≥DLgc  ( ) ,31,6 ≥DLgc  ( ) ,32,9 ≥DLgc  

( ) ,33,10 ≥DLgc  ( ) ,33,11 ≥DLgc  ( ) ( ) ,3,3 5,135,12 ≥≥ DD LgcLgc  etc. 

Reinterpreting Theorem 2.6.2 in [25] (see also [26]), one gets a lower 
homological bound on the number of double-tangent gradient-like 
trajectories in manifolds with simply-connected boundary. 

Corollary 7.3. Let X be a 3-fold obtained from a closed irreducible 
and orientable 3-fold Y, different from the lens space ,1,3L  by removing a 

number of 3-balls. Then any generic gradient-like nonsingular flow on X 
has at least 

( )( ) ( )( ) 1;;log2 115 −+⋅ ZZ XHrkXHTor  

double-tangent trajectories. Here ( )( )Z;1 XHTor  denotes the order of the 

torsion subgroup ( )( ) ( ).;; 11 ZZ XHXHTor ⊂  

For hyperbolic X, both ( )Xc  and ( )Xgc  exhibit at least linear growth 
as functions of the hyperbolic volume. 

Theorem 7.5. Let X be a compact 3-fold obtained from a closed 
hyperbolic 3-fold Y by removing a number of 3-balls. Let ( )YV  denote the 

hyperbolic volume of Y, and 0V  the volume of a regular ideal tetrahedron 

in the hyperbolic space .3H  Then, any generic gradient-like nonsingular 
flow v on X has at least ( ) 0VYV  double-tangent trajectories. 

Proof. The statement follows from [25], Lemma 2.6.7 and Corollary 
2.6.8, coupled with the inequality ( ) ( ).XgcXc ≤  � 

Let G be a finitely presented group. The length of a relation is the 
number of generators and their inverses that are present in the relation. 
The complexity of a presentation is defined to be the sum of lengths of all 
its relations (for  example, the complexity of the presentation in Figure 
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19 is ).7223 =++  Presentation complexity ( )Gc  is the minimum 
complexity among all G-presentations. 

Let us return to the description of the presentation of ( )XX +∂π 11  
given by a generic gradient cascade and described prior to Theorem 5.3. 
Its generators are shared segments of trajectories of the cascade together 
with some free trajectories of waterfalls that have two free trajectories 
and no shared segments at all. Each waterfall of this kind contributes a 
single ‘‘free” generator and no relations. We notice that each shared 
segment in a cascade belongs to three polygons (see Figure 10). 
Therefore, it is present in the relations three times at most. 

As a result, the complexity of the presentation of ( )XX +∂π 11  induced 
by a cascade does not exceed three times the number of shared segments 
of the v-trajectories. 

This leads to the following analogue of Proposition 2.6.6 from [25] 
which claims ( ) ( )( )XcXc 1311 π⋅+−≥  for any closed irreducible 

orientable 3-fold X, different from ,, 33 PS R  and .3,1L  In fact, we can 

drop the assumption of irreducibility of X: 

Corollary 7.4. For any 3-fold X and generic Morse data ( ),, vf  

 • ( ) ( ( ));31, 11 XXcvfgc +∂π⋅≥  

• for any generic Morse data with a disk-shaped ,1 X+∂  

( ) ( )( );31, 1 Xcvfgc π⋅≥  

• for any 3-fold X whose boundary is a union of spheres, 

( ) ( )( ).31 1 XcXgc π⋅≥  

Proof. In view of the discussion above, we need to clarify only the 
statement in the last bullet. Since the image ( ) ( )XX 1111 ∂π→∂π +  

( )X1π→  is trivial, attaching a cone with the base X+∂1  to X can only 

add new free generators to a representation of ( )XX +∂π 11  given by an 

optimal (that  is, ( ) )realizing-Xgc  cascade. Hence ( )X1π  and ( )XX +∂π 11  
share the same set of relations which implies that ( ) ( )( ) .31 XcXgc π≥  � 
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Each self-indexing Morse function on a closed manifold Y provides an 
upper bound for ( ),Xgc  where X is obtained from Y by removing a 
number of 3-balls. 

Let Y be a closed 3-fold with a self-indexing Morse function 
R→Yh :  which has a single minimum. Then h and its gradient-like 

field v give rise to a presentation vP  of ( ):1 Yπ  its generators are in 1-to-1 

correspondence with the h-critical points x of index one and its relations 
are generated by some of the h-critical points y of index two. Recall that, 
for all x, y, we have ( ) 1=xh  and ( ) .2=yh  Denote by xD  the ascending 

2-manifold of x and by yD  the descending 2-manifold of y. Each relation 

1=yR  is obtained by moving along the boundary y∂  of the unstable 

disk [ ] yDh ∩2,5.11−  and recording oriented transversal intersections of 

the loop y∂  with the disks { [ ] }xxDh ∩5.1,11−  (in  the surface ( ))5.11−h  in 

the order they appear along .y∂  This generates a word yR  in the alphabet 

{ }1, −xx  and thus a presentation .vP  

Consider the number ( ) { } ( ),min , vvhM lengthyc P=  the minimum 

being taken over all pairs ( )vh,  as above. Evidently, ( ) ( )( ).1 YcYcM π≥  

Theorem 7.6. Let X be a 3-fold obtained from a closed manifold Y by 
removing a number of 3-balls. Then ( )( ) ( ) ( ).431 1 YcXgcXc M⋅≤≤π⋅  

Proof. In view of Corollary 7.4, we need to validate only the second 
inequality. Consider ( )vh,  as above. Delete from Y some balls centered 

on the critical points of h. Their size is picked so that, in the vicinity of 
each critical point of indices 1 and 2, the variation of h in the balls is less 
than .5.0<ε  Also we assume that, in the balls, h admits a canonical 
Morse form. Denote by X the complement to the balls in Y and restrict 
( )vh,  to X. Then each critical point x of index 1 contributes an 

“equatorial” annulus ,xA  and each critical point y of index 2 contributes 

a pair of “polar” disks ±
yB  to the set .1 X+∂  The boundaries of xA  and ±

yB  

form the set .2 X+∂  These observations are based on the quadratic nature 
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of h in the Morse coordinates. Moreover, .1 X+∂  consists of { }xxA  and 

{ }yyB±  together with the sphere ( )ε−= − 11hS  centered on the point 

( )01−h  of the absolute minimum 0. The cascade ( )vh,C  falls from the 

union of loops ( )( ) ( ( ))±∂∂ yyxx BA ∪∪∪  on the “ground” S. Note that this 

particular choice of Morse data ( )vh,  on X has the property ∅=∂ X3  

and thus are 3-convex! 

Denote by ±
xW  the two waterfalls from .xA∂  By choosing ε small 

enough we insure that each of the two waterfalls ±
yW  from ±∂ yB  follow 

the unstable manifold yD  very closely. In particular, we make sure that, 

for each x, the two loops { [ ]},: ±±± =γ xxy WASWcl ∪∪∩  are “parallel” 

and close to the loop { [ ]},: ±=γ xxy WASDcl ∪∪∩  where “cl” stands for 

the closure. Again, by choosing a small ε, each intersection point from 

( ) xy DhD ∩∩ ε+− 11  corresponds to a unique point in ,xD∩γ  the 

corresponding points acquiring similar orientations. Thus, each point 

from ( ) xy DhD ∩∩ ε+− 11  corresponds to four points in .±±γ xWS ∩∩  

These 4-tupples are exactly the Q-singularities of the spine in X 
generated by ( )., vh  

Therefore ( ) {( ) ( ) ( )}yyxx DhDvhgc ∪∩∩∪ ε+⋅= − 14, 1# —four times 

the length of the representation .vP  Employing Theorem 7.4, we conclude 

that the same holds for any other manifold X~  obtained from Y by 
deleting any positive number of disks. 

Note that locally the picture of the spine is symmetric with respect to 
the planes of xD  ( ),and yD  so that the Q-singularities of the spine occur 

in pairs of opposite polarities ., �⊕  As a result, ( ) .0, =vhgc⊕�  � 

As an example, consider a matrix ( )Z2SLA ∈  whose first row is 
( )sq,−  and the second one is ( ),, rp  ( ).1=+ psqr  We employ A to form 
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a closed manifold qpL ,  from two solid tori 1T  and .2T  Their boundaries 

11
1 SST ×=  and 11

2 SST ×=  are glued via A. Here we assume that 
the first multipliers in the two products are, respectively, the meridians 
of 1T  and of .2T  We denote by X any manifold obtained from qpL ,  by 

removing a number of balls. 

Corollary 7.5. For any ( )3
, \ iiqp BLX ∪=  as above, ( ) 4≤Xgc  

{ },,min qq ′⋅  where pqq ⋅±=′ mod1  and .1,1 −≤′≤ pqq  

Proof. The corollary is obtained by constructing a Morse function 
R→qpLh ,:  such that: (1) on hTT ,21 =  is constant, (2) h has a single 

minimum and a single critical point of index 1 in ,2T  (3) h has a single 
maximum and a single critical point of index 2 in .1T  Then apply to h the 
construction in Theorem 7.6. Since qpL ,  and qpL ′,  are diffeomorphic, 

provided ,mod1 pqq ⋅±=′  the claim follows. � 

8. Which Spines Are Gradient? 

Next, we address a natural question: Which spines K are produced in 

the form of a cascade ( )XX ++ ∂∂ 21 C∪  by appropriate generic Morse data 
( ) ?, vf  In other words, Which spines are gradient? 

It turns out that any spine,-Y  and thus any branched spine, can 
be  approximated by a gradient spine without compromising its 
combinatorial complexity. 

Theorem 8.1. Let K be a simple spineY -  in a 3-fold X. Then, there 
exist a nonsingular function R→Xf :  and its gradient-like field v so 
that the Morse data ( )vf ,  produce a gradient spine ( ) XvK ⊂  with the 
following properties: 

• K is homeomorphic to a 2-complex obtained from ( )vK  by 
elementary collapses of some of its 2-cells, 

• ( )( ) ( ).KcvKc =  
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Moreover, for any simple spine K and generic Morse data ( )vf ′′,  in X, 

such that v′  delivers K as a ,-spineY  and for any ,0>ε  there exist new 

Morse data ( )vf ,  as above which satisfy two additional properties: 

• f and f ′  coincide when restricted to K, 

• the f-controlled size of the 2-collapses ( ) KvK →  does not exceed ε.22  

Proof. Let w be a field which delivers the structure-Y  to .XK ⊂  

We start a construction of the appropriate Morse data ( )vf ,  by extending 

w from the graph ( )Ks  to a smooth field v in a open neighborhood of 

( ).Ks  Since ( )Ks  is 1-dimensional and w is transversal to K along ( ),Ks  

for a sufficiently small ,0>ε  the v-flow tφ  will have the property 

( )( ) ( )( ) ∅=φφ ′ KsKs tt ∩  for all .0 ε≤′<≤ tt  Hence, the set 

( ){ } ( ) ε≤≤∈φ= tKsxt xL 0,:  can be given a product structure ( )KsLH ≈:   

[ ],,0 ε×  H being a diffeomorphism of stratified spaces. We define a 

function R→Lf :ˆ  as the composition of H with the projection on [ ].,0 ε  

Next, we extend f̂  to a smooth function .:~ R→Xf  We can assume that 

the singularities of f~  are not located on K and thus can be removed by 
finger moves which originate at X1∂  and are confined to .\KX  The 

resulting nonsingular smooth function R→Xf :  and its gradient field 

( ) ,, wvv Ks =|  give K its spine-Y  structure. 

Consider a small open regular neighborhood N of .XK ⊂  The 

Regular Neighborhood Theorem (see [17], Theorems 2.11, 2.16) implies 
that K is a spine for N and that there is a PL-homeomorphism 

Xg →N:  which is an identity on K. In dimension three, we can 
assume that N∂  is a smooth surface and that g is a diffeomorphism. 

                                                      

22i.e., the f-images of the collapsing 2-cells are ε-small. 
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Figure 23. Field v is orthogonal to the plane of drawing Π. Let 

Π→∂ Np 1:  be the projection along .v−  Note the three bold curves in 
the left diagram and the single bold curve in the right one, all marked as 

.2N∂  These are the p-images of the folds. On the right, ( )Np 2∂  is a 
simple curve, so no double-tangent v-trajectories are present. 

 

Figure 24. Note the intersection point b of the two bold curves—the 
p-images of the folds of the projection Π→∂ Np 1:  along .v−  Point b is 

the p-image of unique double-tangent v-trajectory. 

Using the smooth product structure in ,\KN  we can construct a 

smooth function [ ]1,0: →NF  so that: (1) ( ) ,01 KF =−  (2) ( ) ,11 N∂=−F  

(3) ( ]1,0  being the set of regular values, and (4) K being the critical set. 

The minus gradient-like flow of F defines a collapse of N on K.  
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Next, we pick ,0>ε  so small that [ ]( )εN ,0: 1−
ε = F  interacts with 

the v-flow as is depicted in Figure 23, the right diagram, Figure 24, and 
Figure 27, diagrams 1 and 2. This depiction—a linearization at a point 
from ( )Ks†  of the surfaces that form K—is based on v being in general 

position with respect to DK  and giving K its .structure-Y  

Let us take a closer look at the interaction of v with the boundary 
::1 εε ∂=∂ NN  

(1) in the vicinity of ( ) ( ),\ KQKs†  

(2) in the vicinity of ( ),KQ  

(3) along the loops of v-tangency which are located in ,DK  

(4) in the vicinity of ( ) ( ),\ KsKs †••  

(5) in the vicinity of ( ).Ks †•  

In the first case (see the three-page book in Figure 23, (2), and its 
2D-section in Figure 27, (2)), the gradient spine ( )vfKK ,,εε = N�  
generated by the Morse data ( )vf ,  on εN  is locally homeomorphic to the 

given spine K. This conclusion depends heavily on the nature-Y  of the 

field. Moreover, because of this nature, for a sufficiently small ε, the 

image of the fold is a simple arc—no double-tangent trajectories are 
present in the vicinity of ( ) ( )KQKs \†  (see Figure 23, (2)). Compare 

diagrams 2 and 3 in Figure 27: diagram 2 reflects the fact that v is of the 

,type-Y  while in diagram 3 the field is of the .type-W  

In the second case (see Figures 24 and 27, diagram 1, where εN  is 
abbreviated to N ), the surface ε∂ N1  and the field v at a Q-singularity 
are transversal, and v points into two (out of four) chambers-pyramids in 
which X is divided by K. Each of the other two chambers provide a fold of 

,2X∂  shown in Figure 24 as a bold arc. The intersection b of the two arcs 
is the image of a single double-tangent v-trajectory for the v-generated 
gradient spine �

εK  of .εN  
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Figure 25. Slicing the gradient spine �
εK  of εN  in the vicinity of a cusp. 

The arrows indicate collapses of �
εK  onto a 2-complex homeomorphic to 

the given K. 

 

Figure 26. A regular neighborhood of a cusp from ( )vK ,3
D∂  and its 

gradient spine with a single double-tangent trajectory. 
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Figure 27. Sections of a spine K and its regular neighborhood by a plane 
transversal to ( )Ks  and containing (vertical) v. Diagrams 3 and 4 

illustrate complications arising when v is of type-W  and when XK ⊂  is 
not simple. 

 

Figure 28. Sections of the gradient spine εε ⊂ N�K  by a family of 
“parallel” surfaces in vicinity of a Q-singularity. The surfaces are 
invariant under the v-flow. 
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The third case (see Figure 27, (1), and Figure 25), the behavior of v 

with respect to DK  is similar to the behavior of a generic field with 

respect to X1∂  along .2X∂  Consider a smooth arc DKL ⊂  where v is 

tangent to the surface DK  and transversal to L. In the vicinity of a point 
ε∈ N,Lx  and the flow are represented, up to a diffeomorphism, by the 

product of first diagram in Figure 27 with a segment. Note the portion of 

the cascade �
εK  generated in εN  by v and marked with a dotted line. 

Collapsing this portion produces a complex locally homeomorphic to the 
original K. Points Lx ∈  where v is tangent to L require special 

attension. There DK  and v have local geometry similar to the geometry of 
X1∂  in the vicinity of a cusp point from X3∂  (see Figures 25 and 26). 

Figure 25 demonstrates how �
εK  collapses onto the given K. We notice 

that each cusp from ( )vK ,3
D∂  contributes a single Q-singularity to �

εK  

(i.e., one double-tangent trajectory to ),εN  a singularity which has no 
counterpart in the original K! Fortunately, according to Therem 9.6, we 
can modify our Morse data ( )vf ,  away from a neighborhood of ( )Ks  

(where  v is transversal to XK ⊂  and gives it its )structure-Y  so that the 

modified data will have no cusps in .DK  Therefore, we get ( )vfgc ,,εN  

( ) ( ).KcKc == ε
�  

Simpler cases (4) and (5) (cf. Figure 25) are treated similarly. None of 
them contributes Q-singularities to the gradient spine of .εN  

Next, we use the diffeomorphism ε
−
ε → NXg :1  to transplant the 

previously constructed Morse data ( )vf ,  from εN  to X. Evidently, the 
transplanted data and their gradient spine still have all the desired 
properties. 

We leave to the reader to verify that the size of elementary collapses, 
as measured in terms of the f-variation, can be made arbitrary small. The 
argument uses the uniform continuity of the smooth functions F and f 
together with the fact that v is in general position with respect to K. 
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These imply that, for a sufficiently small ,0>ε′  there is 0>ε  so that in 

[ ]( )ε= −
ε ,0: 1FN  the variation of f along each v-trajectory does not 

exceed ε′  (see Figure 27, (1)). Moreover, the f-controlled size of 
elementary collapses does not exceed the f-controlled size of the 
trajectories inside .εN  This property is preserved under the 

diffeomorphism .1−
εg  � 

Theorem 8.1 has an important implication: 

Theorem 8.2. For any compact 3-fold X with a nonempty boundary, 
( ) ( ).XgcXcY =G  Moreover, for any boundary-irreducible with no essential 

annuli X with ( ) ,1>xc  

( ) ( ) ( ).6 XcXgcXc ⋅≤≤ 23 

Proof. Let XK ⊂  be a simple spine with ( )Xc  Q-singularities. If 

such a spine admits a structure,-Y  by Theorem 8.1, ( ) ( )XcXc Y
G=  

( ),Xgc=   and we are done. 

By Theorem 7.2 (cf. [25], Theorem 2.2.4), any boundary irreducible 
with no essential annuli X has a special spine K of complexity ( )Xc  at 

most, provided ( ) .1>Xc  According to [2], Theorem 3.4.9, for any special 

spine K, there exists a sequence of not more than ( )Kc⋅5  oriented 

Matveev-Piergallini moves (see [25], Figure 1.12) which convert K into an 
oriented branched spine (this theorem is based on a rather intricate 
argument). Furthermore, each move increases the combinatorial 
complexity of the modified spine by one. Thus, these moves result in a 
branched spine of complexity ( ).6 Xc⋅≤  Next, by Lemma 6.3, any 

branched spine is a spine.-Y  By Theorem 8.1, it admits an approximation 

by a gradient spine of the same complexity. Thus ( ) ( ).6 XcXgc ⋅≤  � 

                                                      

23Note that for ( )3,8Lgc  both Theorem 8.2 and Corollary 7.5 give the same upper boundary 

12. 
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Corollary 8.1. For any X which is a connected sum of boundary-
irreducible with no essential annuli compact 3-folds whose complexity 
exceeds 1, ( ) ( ).6 XcXgc ⋅≤  

Proof. The claim follows from the semi-additivity of ( )~gc  (Theorem 
7.4) and the additivity of ( )~c  (Theorem 2.2.9, [25]), coupled with 
Theorem 8.2. � 

For example, (( ) ) [ ( ) ( )] ( )2266 8
3

1,58
3

1,5 +=+≤ DDD QScLcQSLgc #  

.24=  However, using Corollary 7.5, this estimate can be improved: 

(( ) ) ( ) (( ) ) .162648
3

1,58
3

1,5 =⋅+≤+≤ DDD QSgcLgcQSLgc #  Thus, ≤4  

(( ) ) .168
3

1,5 ≤DQSLgc #  

Since every handlebody X admits a convex gradient flow, ( ) .0=Xgc  
By Theorem 7.4, deleting a few open 3-balls from X produces a new 
manifold X ′  also with zero gradient complexity. Note that ( )X1π  is free. 
It seems natural to expect that any X with ( ) 0=Xgc  is a handlebody 
with holes. However, Theorem 8.3 below claims that there are other 
examples of 3-folds X with ( ) 0=Xgc  and rather complex fundamental 
groups. We are going to describe a combinatorial scheme that generates 
all of them. At the same time, when X1∂  is just a union of 2-spheres and 

( ) ,0=Xgc  then the topology of X is very special (Theorem 8.4), and 
indeed ( )X1π  is free. Moreover, ( ) 0=Xgc  is definitely a stronger 
requirement on X than ( ) .0=Xc  

We start building a combinatorial scheme that captures the topology 
of abstract gradient spines of zero complexity. 

Consider an oriented 3-fold X which admits a simple (abstract) 
gradient spine K with ( ) .∅=KQ  Let KXp →:  be the collapsing map. 

The singularity set ( )Ks†  consists of a number of disjoint simple 

loops and arcs. The orientation of X, coupled the NT-induced orientation 
of the normal to ( )Ks†  bundle, picks a preferred orientation of the arcs 

and loops in ( ).Ks†  As a part of the abstract gradient spine structure, the 

surfaces in DK  are oriented. 
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Consider a regular neighborhood ( ( )) .KKs ⊂†N  Figure 29 shows the 

three patterns τN  of ( ( ))Ks†N  in the vicinity of each arc τ from ( )Ks†  (cf. 

Figure 13). These patterns reflect the fundamental assumption ( ) .∅=KQ  

The TN-markers along τ are not shown, but suggested by the shapes: the 
T-marker is normal to the ovals, the N-marker points towards the viewer. 

 

Figure 29. The three types of regular neighborhoods of arcs from ( ).Ks†  

In the first pattern, the portion ( ( ))Ks†N∂  of the topological boundary 

of ( ( ))Ks†N  that is shared by ( ( ))Ks†N  and its complement ( ( ))KsK †N\  

(marked as ‘‘N-boundary” in Figure 29) is a loop and an arc; in the second 
pattern, it is a single arc; in the third case, it is again a loop and an arc. 

Let ( ( )).\: KsKK †N=  Because ( ( ( ))) ( ( ))KsKspp †† NN ∂→∂−1:  is 

a trivial fibration with a segment for a fiber, K  is an abstract gradient 

spine of the 3-fold ( ).1 Kp−  

Each of the patterns in Figure 29 has two free arcs that belong to 
,K•∂  the topological boundary of K. In the first and third patterns, K is 

obtained from K  by attaching a 2-disk to the loop in τ∂N  and then a 
rectangular band H with its two opposite edges being the free edges 
shown in the figure. In the second pattern, we can collapse τN  onto 

,I∪∪ τ∂ τN  where the segment I is a generator of the cone (to visualize 
this fact, perform two ‘‘finger moves” on K that originates at the free 
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edges and terminates at I). Therefore, X is obtained from ( )Kp 1−  by 
attaching to its boundary either (1) a 2-handle followed by a 1-handle, or 
(2) a 3-ball (the  thickening of )τ∪I  along its northern hemisphere. So, 
we can assume that X is obtained by attaching 2-handles24, followed by 
1-handles, to the boundary of an oriented 3-fold .X ′  It has an abstract 
gradient spine K ′  with ( )Ks ′†  being only a union of loops. 

Next, consider the case when a component of ( )Ks†  is a simple loop 

ω. Because ( ( )) KKs ⊂†N  admits TN-markings, in the vicinity of each 

( ( )),, Ks†N∂ω  consists of three simple loops parallel to ω and residing on 

the boundary of the solid torus ,ωT  the regular neighborhood of ω in X. 

Let ( ( )) ωω = TKs ∩†NN :  and ( ( )) .: ωω ∂=∂ TKs ∩†NN  Recall that ω 

contributes with the multiplicity 1±  to the boundary of the fundamental 
2-chain, so that the orientation of one of the three loops disagrees with 
the orientations of the other two. 

Thus K is obtained from � �� ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

τ τω ω NNN :  by attaching 

compact connected and oriented surfaces { }κκS  to N∂  along some 

disjoint loops and arcs in their boundaries. When an arc ( )Ks†⊂τ  is of 

types 1 and 3 in Figure 29, we include the 2-disk, residing in τN  and 
bounding the loop from ,τ∂N  into the surface that is attached to that 
loop. If an arc or a loop in κ∂S  remains unattached to N∂  (that is, free), 
it is possible to collapse κS  onto a 1-dimensional graph ,κκ ⊂Γ S  so that 
homotopically attaching κS  is equivalent to attaching κΓ  to .N∂  In 
particular, any κS  that is attached to an arc in τ∂N  must have a free 
portion in its boundary. Therefore, attaching such a surface results in 
attaching a handlebody, the thickening of ,κΓ  to a portion X ′  of X. The 
attaching diffeomorphism must reverse the boundary orientations, so 
that X is orientable when X ′  is. 

                                                      
24Later on, we will incorporate these 2-handles into the combinatorial scheme. 
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We concentrate of surfaces κS  whose entire boundary is attached to 
loops in N∂  (We  already cupped the boundary components of κS ’s that 

where attached to loops in ).� τN  Now we deal only with the surfaces 

whose boundary loops are attached to .ω∂N  

We will use a graph ( )KΓ=Γ  to organize and record the structure of 
a spine K, the result of attaching oriented surfaces κS  to N∂  only along 

its loops. The vertices of Γ are divided into two groups { }iiA  and { } .jjB  

Each vertex from the first group depicts a loop iω  from ( ),Ks†  each 

vertex from the second group stands for one of the connected and oriented 
surfaces .κS  The edges of Γ record the way the components of κ∂S  are 

attached to the iω ’s. A typical edge which links iA  with jB  is denoted 

., kijγ  We require that Γ will satisfy the following properties: 

(8.1) 

(1) Γ is connected, 

(2) for each vertex ,iA  its multiplicity ( ) ,3=μ iA  

(3) a number ( ) 1, ±=γε kij  is assigned to each edge kij,γ  so that, for 

each ( )∑ ±=γεkj kiji , ,1,  

(4) an integer ( ),jBχ  the Euler number of ,jS  is attached to each 

vertex .jB  

Next proposition describes all orientable 3-folds of zero gradient 
complexity. 

Theorem 8.3. Let X be an orientable 3-fold such that ( ) .0=Xgc  
Then X is a connected sum of a handlebody with an orientable 3-fold X ′  
which has an abstract gradient spine K uniquely defined by the 
combinatorial data (8.1). If X has no essential annuli, then Γ is a tree, and 
each ( ) ( ).2 jj BB μ−=χ  

On the other hand, each Γ, subject to (8.1), gives rise to an orientable 
3-fold X ′  of gradient complexity zero. Its Euler number is given by the 
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RHS of formula (8.2), and its fundamental group has a presentation 
described by formulas (8.3) and (8.4). 

Proof. We keep notations and use conclusions introduced and 
derived prior to the formulation of Theorem 8.3 and centered on Figure 
29. 

As before, we fix an orientation for each loop iω  in ( )Ks†  and an 

orientation for each surface .jS  In the induced orientation, each 

component kjS ,∂  of ,jS∂  glued to iω  in K, is attached via either an 

orientation-preserving homeomorphism, in which case ( ) 1, =γε kij  or an 

orientation-reversing homeomorphism, in which case ( ) .1, −=γε kij  The 

branched orientation of K enforces ( )∑ ±=γεkj kij, , .1  

The number of components in jS∂  is the multiplicity ( )jBμ  of the 

vertex .jB  Therefore, the topological type of jS  can be reconstructed 

from ( )jBχ  and ( ).jBμ  Let jŜ  be the closed surface obtained from jS  by 

cupping each component of jS∂  with a disk. Denote by jg  the genus of 

.ˆ jS  Then ( ) ( ).22 jjj BgB μ−−=χ  We get 

( ) ( ( )) ( )∑ ∑ −−=μ−−=χ
j j

jjj kgBgX ,31222  (8.2) 

where k is the number of loops in ( ),KS†  that is, the number of vertices 

{ }.iA  Indeed, as we paste the jS ’s along their boundaries to form K, we 

identify the vertices and the edges of the appropriate triangulations in 
triples, the number of the edge triples being the same as the number of 
the vertex triples. As a result, formula (8.2) is valid. 

Recall that ( ) ( ).21 XX χ⋅=∂χ  Thus, if X1∂  is connected, it must be 

an oriented surface of genus ( )∑ +−−j j kg .1312  On the other hand, for 

X with X1∂  being a union of q copies of ( ) .,2 qXS =χ  Thus, 

Corollary 8.2. For any X and any abstract gradient spine XK ⊂  
with ( ) ∅=KQ  ( )( )0=Xgcthus  and such that ( )Ks†  is a union of k 
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loops, we have 

( ) ( ) ( )∑ ⋅−=χ⋅=χ
j

jgXandkX .3mod1,2mod  

In particular, if X1∂  is a union of q spheres, then ,2mod⋅= kq  and 
( ( )) .3mod\0 ⋅π−= KSKq †  

Each edge Γ⊂γ kij,  encodes a particular component of .jS∂  Let 
D
jkij S⊂β=β ,  be a loop parallel to that component. If kij,γ  is a part of a 

cycle μ in Γ, then X has an essential annulus ( ),1 β−p  where KXp →:  
is the collapsing map. Indeed, μ helps to construct a loop K⊂μ~  which 
intersects the annulus transversally at a single point. Therefore, Γ must 
be a tree for the 3-folds X with no essential annuli and ( ) .0=Xgc  
Similarly, if X has no essential annuli, no jS  can have a handle: for 

any pair of loops D
jS∈ητ,  which transversally meet at a singleton, the 

annulus ( )τ−1p  must be essential. Moreover, τ and η can be pushed into 

,1X∂  where they still will intersect at a singleton: note that ( )DjSpp 1: −  
D
jS→  is a trivial fibration with a closed segment for the fiber. So, when X 

has no essential annuli, each jŜ  is a 2-sphere, and .0=jg  

For any X, note that both loops in the boundary of the annulus 
( )β−1p  are homotopic in X to ;1±β  therefore, for an appropriate choice of 

the base point ,0x  each loop ( )Ksi †⊂ω  is in the image of the inclusion-
induced homomorphism ( ) ( ).,, 01011 xXxX π→∂π  

Now we would like to investigate the case when � .2
1 SX =∂  Again, 

in such a case, no jS  has a handle. Since ( )DjSp 1−  is a trivial fibration 

over the interior ,DjS  any two loops in D
jS  which intersect at a singleton 

can be pushed into the boundary � ,2
1 SX =∂  where they still share 

only a singleton, a clear impossibility. So, each jŜ  must be a 2-sphere. 
Moreover, by the argument above, each loop ( )Ksi †⊂ω  is contractible 
in ( ( ) ( )XXX 111 π→∂π  is trivial), and thus is contractible in K. 



GABRIEL KATZ 

 

86 

In general, ( )K1π  is generated by the basic cycles in Γ, being lifted to 

K (these are free generators), by the oriented components kj,β  of ,jS∂  

and by the basic loops jj gjgjjj baba ,,1,1, ,...,,,  in ,jS  where ( )jj Bg χ−= 22  

( ).jBμ−  These generators are subject to the following relations: 

(1) for each j, 

[ ] ,,
1

,,,
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=β= ∏ ∏
=k

g

l
ljljkjj

j

baR  (8.3) 

(2) for each i and the triple of edges 332211 ,,, ,, kijkijkij γγγ  that 

terminate at ,iA  

    { ( )} .3,2,1,,
,, =ω=β=

γ ssksij
ss ikijsi

ε
T  (8.4) 

In the case of � ,2
1 SX =∂  according to the previous arguments, all iω  and 

jj gjgjjj baba ,,1,1, ,...,,,  are trivial, which forces ( ) ( )Γπ≈π 11 X  to be free or 

trivial. Note that the same conclusion also follows from Corollary 7.4. 

According to Matveev’s classification Table 9.1 on page 407 in [25], 

the only closed oriented 3-folds Y with ( ) 0\ 3 =DYc  are the connected 

sums of the following prime blocks: (1) spheres ,3S  (2) products of 

spheres ,12 SS ×  (3) projective spaces ,3PR  and (4) lens spaces .1,3L  

Since ( ) 0\ 3 =DYgc  implies ( ) 0\ 3 =DYc  and, as we have seen, 

( )3
1 \DYπ  must be free or trivial, the presence of the 3PR ’s and 1,3L ’s 

in the connected sums is ruled out. In particular, any generic gradient 

flow on 33 \DPR  and 3
1,3 \DL  must have at least one double-tangent 

trajectory25. 

                                                      
25Soon we will show that any gradient flow on these 3-folds must have two double-tangent 
trajectories at least. 
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Therefore, if � 2
1 SX =∂  and ( ) ,0=Xgc  X must be a connected 

sum of 3-balls with a number of ,12 SS ×  a claim of Theorem 8.4 below. 

In fact, any such sum X is of zero gradient complexity. Indeed, 

consider a Morse function R→2: Sh  with only two critical points, a 

and b, and a Morse function R→1: Sg  with only two critical points, c 
and d, so that ( ) ( ) ( ) ( ) .3,0,2,0 ==== dgcgbhah  By an argument as 

in the proof of Theorem 7.6, applied to the Morse function ,ghf +=  we 

construct a gradient spine of 12 SS ×  from which four small balls, 
centered on the critical points of f, have been removed. Let us denote this 
3-fold by M. Its boundary consists of four 2-spheres, two of which are 

( )11−f  and ( ).41−f  Since ( ) ( ),adfcbf ×>×  the f-critical point of index 1 

lies above the f-critical point of index 2. Hence, these two critical points 

are not linked by a gradient trajectory in .12 SS ×  As a result, the 
waterfalls in M, generated in the vicinity of these two points, do not 

intersect each other. They hit the sphere ( ) Mf 1
1 1 ∂⊂−  along four disjoint 

simple loops. Therefore, ( ) .0=Mgc  By Theorem 7.4, ( [ ]( )) =− 4,11fgc  

( [ ]( )) ( ) .04,01 ==− Mgcfgc  Since any connected sum X is assembled 

from the blocks of the types [ ]( ),4,11−f  and [ ]( ),4,01−f  the semi-additivity 

of ( )~gc  under connected sums implies the claim. 

If we combine the previous arguments (or just Corollary 7.4) with 
[14], Exercise 5.3, and with the validated Poincaré Conjecture [29], [30], 
we could avoid using the classification in [25]. In fact, the following (well-
known) proposition is valid: 

If ( )X1π  is free of rank r and q∑∑ ...,,1  are the components of ,1X∂  

then 

,11 sq EEHHX ##### ""=  

where iH  is a handlebody with ( )( )i∑χ−221  handles, jE  is a 

2-sphere bundle over 1S  (trivial when X is orientable), and rs =  
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( )( )∑ =
∑χ−−

q
i i1 .221  In particular, when the boundary is a union of q 

copies of ., 1
33

1
2

rq EEDDXS ##### ""=  

Next, moving from spines K to the corresponding manifolds, we claim 
that any set of combinatorial data as in (8.1) generates an abstract 
gradient spine K and the corresponding (see Theorem 6.1) orientable 
3-fold X with ( ) .0=Xgc  Indeed, using data in (8.1), we assemble X from 
the oriented blocks [ ]{ }1,0×κS  and the solid tori .iTω  In the process, we 

attach annuli in the oriented boundaries of the blocks by orientation-
reversing diffeomorphisms. Depending whether ( ) 1+=γε  or ( ) ,1−=γε  
the attaching diffeomorphism must reverse or preserve the orientations 
the radial segments in the two annuli. Now the claim follows from our 
realization Theorem 8.1 and Lemma 6.3. Indeed, the oriented branched 

structure of N allows for the structure-Y  in the vicinity of the thickening 

of ( ).Ks†  As a result, there is a gradient flow on X with no double-tangent 

trajectories. 

This completes the proofs of Theorem 8.3 and of Theorem 8.4 below. � 

Theorem 8.4. Let X be a connected oriented 3-fold with its boundary 
being a union of spheres. If ( ) ,0=Xgc  then X is a connected sum of 

several 3-balls with several copies of .12 SS ×  In particular, if any 

essential 2-sphere in such an X is parallel to its boundary ,2
1 SX =∂  then 

X is a 3-ball. 

The group presentations as in (8.3) and (8.4) allow for a great variety 
of fundamental groups ( ).1 Xπ  Although I do not have a good conjecture 
describing all these groups intrinsically, such a description seems 
feasible. 

Example 8.1. We consider a few basic examples of 3-folds X with 
( ) .0=Xgc  They are generated by gradient spines K with ( ) ( )KsKs †=  

being a single loop ω. There are three possibilities for Γ: it has (1) three 
vertices ,,, 321 BBB  (2) two vertices ,, 21 BB  and (3) one vertex .1B  In 
the first case, ( )X1π=π  is generated by three groups of generators 
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{ },,...,,, 1111 gg baba  { },,...,,, 2211 gg dcdc  { },,...,,, 3311 gg fefe subject to 

the relations [ ] [ ] [ ]∏ ∏∏ = =
−−

=
== 2 31

1 1
11

1 .,,, g
j

g
k kkjj

g
i ii fedcba  Note that 

[ ]πππ ,  is free abelian of rank ( ).2 321 ggg ++  

In the second case, there are two distinct options. Either ( )X1π=π  is 
generated by two sets of generators { },,...,,, 1111 gg baba  { ...,,, 11 dc  

}22 , gg dc  and an additional free generator f (it corresponds to the loop in 

Γ), subject to a single relation [ ]∏ =
=1

1 ,1,g
i ii ba  or π is generated by 

{ },,...,,, 1111 gg baba  { }22 ,...,,, 11 gg dcdc  and f, subject to a single 

relation [ ] [ ]∏ ∏= =
−−

⎭
⎬
⎫

⎩
⎨
⎧

=1 2
1

2

1
11 .,,g

i
g
j jjii dcba  In both options, [ ]πππ ,  is 

free abelian of rank ( ) .12 21 ++ gg  

In the third case, π is freely generated by { }11 ,...,,, 11 gg baba  

together with 21, ff  (they stand for two basic loops in Γ). 

In all these descriptions of π we have assumed that .0,, 321 >ggg  

Numerous exceptions to this assumption lead to groups π of a slightly 
different kind. For example, when Γ is as in the second case and ,01 =g  

we get a group π with the 2-torsion element [ ]∏ =
2
1 ;,g

j jj dc  however, it is 

trivial in the homology [ ]., πππ  

Next we show that there is no orientable 3-fold with simply-
connected boundary and of gradient complexity one. In contrast, 

( ) 11,4 =DLc  and ( ) .12,5 =DLc  Despite little evidence, we conjecture that 

( ) ,4≥Xgc  provided � .2
1 SX =∂  

Theorem 8.5. No orientable 3-fold X with � 2
1 SX =∂  is of gradient 

complexity one. In fact, if an X, whose boundary is simply-connected, 
admits a gradient flow with a single double-tangent trajectory, it also 
admits a gradient flow with no double-tangent trajectories at all. In such 

a case, X is a connected sum of a number of 3-balls and products .12 SS ×  
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Figure 30. The three patterns for the graphs ( ( ( )))Ks†N∂  corresponding 

to abstract gradient spines K with ( ) 1=Kc  and a connected singular set 

( ) .∞=Ks  The intersections of the lines should be ignored. 

Proof. Assume that ( ) .1=Xgc  Then ( ) .1≤Xc  

If ,2
1 SX =∂  according to the classification in [25], X can only be: (1) 

of combinatorial complexity zero, or (2) a connected sum of either D
1,4L  or 

D
2,5L  with a closed manifold of combinatorial complexity zero. 

Let XK ⊂  be an abstract gradient spine of complexity ( ) .1=Kc  A 

neighborhood of its Q-singularity A is depicted in Figure 21. In the 
vicinity of A, there are four arcs in ( )Ks†  that emanate from A. If one of 

these arcs γ terminates at a point B of type P from Figure 13, then, in the 
vicinity of B, the topological boundary K•∂  of K has a free arc that can 

be used to collapse K onto a subcomplex KK ⊂′  such that ( )Ks ′†  does 

not contain ( ),γInt  and hence ( ) .0=′Kc  This contradicts with the 
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assumption ( ) .1=Xgc  Similarly, if γ terminates at a point B of type O 

from Figure 13, then again a free arc in K•∂  can be used to initiate a 

collapse KK ′→  which will result in K ′  of zero complexity. Therefore, 
each arc γ must join with another arc γ′  emanating from A, that is, the 

A-component of K†∂  must be homeomorphic to figure ∞. Examining 

Figure 21, we notice that there are only three (up to mirror symmetry) 
possible patterns for the connected component AN  of ( ( )) KKs ⊂†N  

( ),AA N∈  provided that ( ( ))Ks†N  admits an oriented branching in the 

sense of Definition 6.5 ( ,lyequivalent  admits TN-markings which must 

be consistent along the core ∞ of ).AN  These three patterns are shown 

in Figure 30. The figure does not show the singular set ∞. A regular 
neighborhood of AN  in X is a handlebody whose core is ∞ and whose 

boundary is a surface ∑ of genus 2. The three graphs AN∂  in Figure 30 

should be imagined as residing in ∑. They are collections of simple loops 
(ignore the self-intersections). In fact, the cardinality of ( )AN∂π0  in the 
three patterns in Figure 30 are 1, 2, and 3, correspondingly. 

When X has no essential annuli, by Theorem 7.2, we can assume that 
the abstract gradient spine K as above is obtained by attaching 2-disks 
and annuli (with one of their two boundary components left free) to 
the boundary .AN∂  When only the disks are attached, the following 

three outcomes are available: (1) ( ) ,10 =∂π AN  and ( )X1: π=Π  is 

generated by a, b, subject to a single relation [ ] 1, 1 =−bbaa  (so  that 

( ) );1 Z≈XH  (2) ( ) ,20 =∂π AN  and ( ) { } ;11,1, 2
1 ≈==|=π − bbababaX  

(3) ( ) ,30 =∂π AN  and again ( ) .11 ≈π X  Here a, b are the two 

generators of the free group ( ).1 ∞π  In the second case, two 2-handles are 

attached to ∑ so that .3DX =  In the third case, three 2-handles are 

attached so that [ ].1,02 ×= SX  Recall that ( ) ( [ ]).1,00 23 ×== SgcDgc  

Clearly, 
D3PR  and D

1,3L  have different fundamental groups. Hence 

( ) 13 >
D

Pgc R  and ( ) .11,3 >DLgc  Table 9.2 from [25] implies that 1,4L  and 
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2,5L  are the only two new possibilities for prime blocks in X with 

( ) ;1≤Xc  and again, they both fail because the fundamental groups do 
not match with the ones supported by the three previous TN-marked 
patterns in Figure 30. 

Now consider an arbitrary 3-fold X with � 2
1 SX =∂  and ( ) .1≤Xgc  

Let XK ⊂  be an abstract gradient spine with a single Q-singularity, 
and KXp →:  a collapsing map. As for abstract gradient spines of zero 
complexity, we can organize the information about K into a labeled graph 
Γ. If ( ) ,1=Xgc  we can assume that ( )Ks†  consists only of oriented loops 

iω  and one copy of figure ∞ graph, with its two oriented loops a, b being 

attached to the isolated Q-singularity. A regular neighborhood 
( ) K⊂∞N  can be only of one of the three types depicted in Figure 30. In 

each of the cases, the loops in ( )∞∂N  come with a preferred orientation. 

The oriented connected surfaces jS  in ,\: NKK =  where [( ( )∞= NN�:  

( ( ))],ii ωN∪∪  each gives rise to vertex jB  of Γ. The Euler number jχ  of 

jS  and its genus jg  are recorded as a part of the combinatorial 

structure. Denote by jŜ  the closed surface obtained from jS  by attaching 

a 2-disk to each component of .jS∂  As before, each loop iω  is represented 

by a vertex iA  of multiplicity 3. The singularity set ∞ is represented by a 

special vertex .∞A  Depending on the three types of ( )∞N  in Figure 30, 

the multiplicity of ∞A  in Γ is 1, 2, or 3, respectively. Each edge Γ⊆γ  

represents a connected component γ∂ ,jS  of the boundary .jS∂  Each γ is 

equipped with a label ( ) .1±=γε  If attaching the oriented surface jS  to N 

preserves the preferred orientations of the loop jjj SS ∂⊂∂=β γγ ,, :  and 

of the corresponding loop in ,N∂  we put ( ) ,1=γε  otherwise, ( ) .1−=γε  

Let us go back to the case � .2
1 SX =∂  Under this assumption, each 

loop γβ ,j  is parallel to the boundary of the annulus ( )γ
− β ,
1

jp  residing in 

� ,2
1 SX =∂  and therefore, is null-homotopic in X. Since XK ⊂  is a 
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homotopy equivalence, γβ ,j  must be null-homotopic in K as well. 

Therefore, the quotient map �KK →  which shrinks each loop γβ ,j  to 

a  point �
� Kj ∈β γ,  is a homotopy equivalence of 2-complexes. Thus, 

( ) ( ).11 �KX π≈π  Now, ( )�K1π  can be easily computed from Γ. Let 

( )∞�N  be a 2-complex obtained from ( )∞N  by capping each component 

of its boundary with a 2-disk. Let Γ⊂T  be a maximal tree. Then 
( )�K1π  is a free product of the group ( ( ))∞π �N1  and the groups 

{ ( )}jjŜ1π  with a free group F whose rank is the number of basic cycles in 

Γ (the  number of edges in ).\TΓ  Recall that ( ( ))∞π �N1  is either 

{ [ ] },,, 1−|=Π bbaaba  or trivial. As before, � 2
1 SX =∂  implies that jS  

has no handles ( ).ˆ.,e.i 2SSj =  As a result, ( ) ,1 FX ∗Π≈π  or ( ) ,1 FX ≈π  

provided ( ) 1≤Xgc  and � .2
1 SX =∂  

On the other hand, the additivity of ( )~c  under the connected sums 

implies that X could only be a connected sum of several 3D ’s, 12 SS × ’s, 
3PR ’s and 1,3L ’s with a single copy of either 1,4L  or .2,5L  Thus, ( )X1π  

must be a free product of a number of copies of the groups { ,,, 32 ZZZ  
},, 54 ZZ  and ( )Z;1 XH  must have torsion elements, unless X is a 

connected sum of 3D ’s and ( )12 SS × ’s, a manifold of vanishing gradient 
complexity. None of the other prime blocks allow for the fundamental 
group ( ) ,1 FX ∗Π≈π  or ( ) .1 FX ≈π  � 

In contrast, if one does not require X1∂  to be simply-connected, then 
an argument similar to the one used in the proof of Theorem 8.3 (see the 
last paragraph of the proof) shows that plenty of 3-folds of gradient 
complexity one do exist. Here is a description of the main example. Let M 
be a 3-fold obtained from a handlebody H with H∂  of genus 2 and 
longitudes a, b by attaching a 2-handle along the simple non-separating 
loop [ ] 1, −=ρ bbaa  in .H∂  Since ( ) 0=χ M  and ρ is non-separating, M∂  

is a 2-torus. Recall that ( ) { [ ] }.1,, 1
1 =|=Π≈π −bbaabaM  
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Theorem 8.6. Any labeled graph Γ as above with a single vertex ,∞A  

modeled after ( )∞N  as in Figure 30, pattern 1, gives rise to an oriented 

3-fold X of gradient complexity one. In fact, ,XHX ′= φ#  where an 

arbitrary oriented 3-fold X ′  of gradient complexity zero is attached 
along an annulus XA ′∂⊂′  to an annulus ,HA ∂⊂  the core of A being 
the loop ρ, by an orientation-reversing diffeomorphism .: AA ′→φ  Thus, 

( )X1π  maps onto the group ( ).1 AX ′′π∗∏  The group ( )X ′π1  admits a 

presentation as in (8.3) and (8.4). 

In particular26, any connected sum ,XMX ′= #  where ( ) ,0=′Xgc  is 

of gradient complexity one. Its fundamental group ( ) ( ).11 XX ′π∗Π≈π  

9. How Deformations of Morse Data Affect the Spine 

Now we will study the effect of deforming the Morse function f and its 
gradient-like field v on the gradient spines they generate. We start with 
deformations of nonsingular functions that do not introduce singularities 
in the process. 

Since the gradient spines in our inquiry play an auxiliary role, and 
the true heros are the gradient flows, we cannot restrict our 
considerations only to special (‘‘standard” in [2]) spines; there is nothing 
natural about the flows that produce special gradient spines. In this 
context, there is little of value in developing some combinatorial calculus 
of special gradient spines based on 1-dimensional graphs (appropriately 
decorated). In terminology of [3], the required version of the Combed 
Calculus is ‘‘not local”. It looks that we have no choice, but to keep track 
of the whole spine evolution as we deform ( )., vf  The reader can view 

this section as an attempt to build an analogue of the Benerdetti-Petronio 
Combed Calculus of concave traversing flows (cf. [2] Figure 4.7, and [3]) 
for the category of generic non-vanishing gradient fields (which are never 
concave). 

                                                      
26the core loop of A′  being contractible in X ′  
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New orientations can be given to isolated singularities from .3X∂  
These orientations depend on the Morse data and the preferred 
orientation of X1∂ 27, i.e. on the structure of an abstract gradient spine 
inherited by the cascades. Any point of X3∂  comes equipped with one of 

the two polarities marked by “⊕” and “�”: if at Xx 3∂∈  the orientation 

of the arc from X2∂  defined by the tangent vector ( )xv  agrees with the 

orientation of that arc induced by the preferred orientation of ,1 X+∂  then 

we assign ⊕ to x; otherwise, we assign �. The polarities �,⊕  divide X3∂  

into two sets X⊕
3∂  and .3 X�∂  As a result, the set X3∂  is subdivided into 

four disjoint subsets: ,3 X⊕+∂  ,3 X⊕−∂  ,3 X�+∂  .3 X�−∂  Put XXA ⊕+∂=∂ 33 :  

X�−∂3∪  and .: 333 XXXB �+− ∂∂=∂ ∪⊕  

As we deform Morse data and watch the transformations of the 
corresponding spines, we will pay a close attention to the evolution of 
signs attached to the Q-singularities and to the points from .3X∂  

 
Figure 31. The move-α  shown as a change in the shape of cascades (a) 
and as a change in the shape of 2-complexes (b). 

Two types of elementary transformations of gradient spines are 
instrumental. The first one is depicted in Figure 31 as the passage from 

                                                      
27which, when X is orientable, is induced by an orientation of X. 
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the left to right diagrams and back. We call it an .-moveα  An move-α  is 
similar to the second Reidemeister move, where the role of the link 

diagram is played by the folds .2 X+∂  The two Q-singularities generated in 

an move-α  have opposite signs (that is, ⊕ and �). If we forget the markers 

(which break the symmetry between the left and right surfaces in Figure 
31, (b)), then moves-α  make sense for any unmarked 2-complex K. 

 

Figure 32. The move-1−β  shown as a change in the shape of cascades 

and as a v-projection of X+∂2  on .1 X+∂  

The move-β  is an analogue of the third Reidemeister move (see 

Figure 32). In a move,-β  three branches of X+∂2  form a triangular 

configuration, as viewed from the v-direction. In the deformation process, 
the configuration degenerates into one with “triple intersection”, i.e. into 
a cascade that has a trajectory tangent to X1∂  at three distinct points. 

The moves-β  come in different flavors depending on the orientations and 

coorientations of the three folds from X+∂2  and their ordering by the 

function f (Figure 32 shows only one of the possible flavors). 

Theorem 9.1. Let { } [ ],1,0,: ∈→ tXft R  be a continuous family of 

smooth nonsingular functions and { }tv  be a corresponding family of 

gradient-like vector fields. Let ( )tvK  denote the spine ( )XX ++ ∂∂ 21 C∪  
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generated by .tv  Assume that 0v  and 1v  are .-2 generic+∂  Then the 

2-complexes ( )0vK  and ( )1vK  are linked by a finite sequence of 

elementary expansions and collapses of two-cells, combined with a 
sequence of  α- and moves-β  and their inverses. 

In the deformation process, the cusps from X3∂  can cancel in pairs as 

shown in Figure 34, diagrams 1-6, and their mirror images. The change 

in topology of X+∂1  is accompanied by cancelations of pairs from X3∂  

with the opposite second polarity ( )., �⊕  The cancellations of pairs with 

the opposite first polarity ( )−+,  do not change the topology of .1 X+∂  The 

pairs sharing the same first and second polarities cannot be canceled. 

 

Figure 33. Elementary surgery on ( )X+∂1  and its effect on ( )X+∂2  (bold 

arcs) and ( )X+∂3  (bold dots). 
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Figure 34. In diagrams 1-4 the topology of X+∂1  changes, in diagrams 
5-6 it does not; diagrams 7-8 show “impossible cancellations”. 

Proof. We can assume that there are only finitely many ( )1,0∈t  for 

which tv  is not generic.-2
+∂  As we deform Morse data ( ),, tt vf  the 

topology of the sets ( )tvXX ,: 11
++ ∂=∂  is changing by surgery which can 

be decomposed into a sequence of elementary surgeries depicted in 
Figure 33.28 All these events take place in the vicinity of a point 

Xx 1∂∈�  (where the two singularities from X3∂  merge at a moment )�t  
and propagate inside of X via the waterfalls. In Figure 33, the vector field 

( )�� txv ,1  is directed upward. 

                                                      

28Actually, the third and fourth moves can be decomposed into similar moves applied to a 
number of convex (round) holes with a single arc for ( )tvX ,2

+∂  followed by 1-surgeries as in 
the first and second moves. 
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Diagrams 1 and 2 in Figure 34 depict 1-surgery, and diagrams 3 and 
4 depict 0-surgery and 2-surgery on .1 X+∂  In each diagram, the curves 
from X2∂  are oriented; so the points from X3∂  acquire four flavors: 
( ) ( ) ( ) ( ).,,,,,,, �� −⊕−+⊕+  Reversing the orientation of X2∂  flips the 
polarities .�⇔⊕  Such a flip leads to another four diagrams (not shown 
in Figure 34) which are the mirror images of the diagrams 1-4. They 
complete the elementary surgery list. We notice that in the process, the 
first polarities ( )−+,  of the canceling singularities from X3∂  are the 
same, and the second polarities ( )�,⊕  are opposite. The orientation of 

X2∂  prevents pairs of the types ( ) ( )⊕+⊕ ,,,+  or of the types ( ),, �−  
( )�,−  from cancelation (see diagrams 7 and 8). Again, we think about 
moves depicted in Figure 34 as localized events (occurring at a point of the 
boundary )X1∂  whose effect on the gradient spine propagates inside X. 

Note that each pair of canceling singularities from X3∂  has one point 

in XA
3∂  and the other in .3 XB∂  Hence, the difference ( ) ( )XX BA

33 ∂−∂ ##  
stays invariant under the transformations from Figure 34. Actually, by 
Theorem 9.5, this difference is always zero. 

Diagrams 5 and 6 from Figure 34 show another generic mechanism 
by which the singularities from X3∂  cancel, a mechanism which has no 

effect on the topology of ,1 X+∂  but which modifies .2 X+∂  In fact, this type 
of cancellation is generated by the universal dove tail family (2.3). Again, 
reversing the orientations of the arcs from X2∂  will produce two more 
diagrams not shown in Figure 34. This time, the cancelation occurs 
among the points of opposite first and same second polarities. 

Let us first examine the effect of 1-surgery (the first and the second 
moves) on the shape of the cascades. Figure 35 shows what happens 
with cascades as two cusps merge (as in Figure 34, diagrams 1 and 2). 
Viewed in terms of the local projections ( )( ),: 1

1 xffXpx
−→∂  this 

transformation is generated via a generic one-parameter family of 
mirror-symmetric merging cusps. The upper diagram depicts the case 
when the “groovings” are located in ( )X+∂1  (Figure 35, diagram 2), and 
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the lower diagram when they are in ( )X−∂1  (Figure 35, diagram 1).29 In 
the upper diagram the cusp points a and b of opposite second polarities 
belong to the set ( ).3 X+∂  

 

Figure 35. Change of cascades by elementary collapses and expansions 
of 2-cells that corresponds to 1-surgery on ( ).1 X+∂  

Consider the arc-shaped band marked with a dotted line in the 
upper-right diagram. The band belongs to ( ).1 X+∂ 30 In order to get the 
upper-left diagram, we collapse a 2-cell (the middle rectangle) in that 
band onto a segment. In the lower diagram, the cusp points c and d of 
opposite second polarities belong to the set ( )X−∂3  and are assumed to be 
very close to each other. Therefore, the ( ) estrajectori-v−  through c and d 
will hit the same plato (shown as the lower disk)—the cascades are 
assumed to be generic. Locally, the spine in the left-lower diagram can be 
obtained from this plato by two elementary expansions of 2-cells, while 
the spine in the right-lower diagram by a single elementary expansion. 

                                                      
29In the first case, the f-controlled size of collapses and expansions is small, while in the 
second case it can be rather big—a localized change in convexity of the boundary X1∂  
causes a distributed change in the shape of cascades. 
30most of the band is in the rear and thus invisible. 
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The spirit of considerations centered on 0-surgery and 2-surgery of 
( )X+∂1  is similar. It is illustrated in Figure 8 which portrays a small 

indent in a round 3-ball 3D  and its effect on the spine. (The indent 
generates a hole in the set ( )3

1 D+∂  of the original round ball.) 

Figure 11 shows the cascades that corresponds to diagram 6 in Figure 
34. Again, the cascades before and after the dove tail cancelation are 
linked by elementary 2-collapses or expansions. 

In short, we have seen that changing topology of the pair ( ) ⊃∂+ X1  

( )X+∂2  via surgery induces two-dimensional expansions and collapses of 
the corresponding gradient spines. 

Next, let us examine how the spines are affected by deformations 
of the Morse data ( )vf ,  that do not change the topology of the pair 

( ) ( ).21 XX ++ ∂⊃∂  Evidently, under such deformations, the corresponding 
spine can change only via changing interactions of waterfalls among 
themselves and with the “ground” ( ).1 X+∂  We analyze these interactions 

by considering the v-projections of ( )X+∂2  into ,1 X+∂  while keeping track 

of the f-height of the branches from .2 X+∂  

 

Figure 36. Generating a new Q-singularity by deforming the cascade, 

while keeping the topology of ( )XX ++ ∂∂ 21 ,  fixed. 
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Within generic families of deformations, these changes in the shapes 
of spines can be decomposed into sequences of three basic moves, the 
second and third of which resemble to the second and third Reidemeister 
moves, respectively. Let us describe them. 

(1) Consider two waterfalls 1W  and 2W  that fall from two arcs 21, CC  

( ),2 X+∂⊂  locally 1C  being above .2C  Initially, 1W  and 2W  are disjoint in 

the vicinity of a given trajectory γ. Then, as the field v changes, 2C  can 

pierce 1W  transversally at a single point x (see Figure 36) (this change of 

the spine is impossible when ).3 ∅=∂ X  

(2) Alternatively, 2C  can touch 1W  at a point x and then penetrate it 

at a pair of nearby points y and z as shown in Figure 31, (a). In such a 
case, the topology of the cascade is changing via the move,-α  and its 

complexity changes by .2+  Recall that the ( ) polarities-, �⊕  of the two 

Q-singularities generated by an move-α  are opposite. 

(3) Finally, the move-β  is generated where the three branches of 

X+∂2  form a ‘‘triangular” configuration that deforms into a new 

‘‘triangular” configuration via Morse data that has a trajectory tangent to 
X1∂  at three distinct points (see Figure 32). As a result of the move,-β  

the complexity of the gradient spine jumps by one; moreover, the 
polarized complexity also changes by one. 

Note that these three moves resemble to the generic moves that 
describe deformations of plane curves in [1]. Before and after 
deformations, the curves are allowed to have only double-crossings and 
cusps (in our context, the cusps are “semi-stable”: they are born and die 
in pairs), but no self-tangencies or triple intersections. 

The proof of Theorem 9.1 is complete. � 

It seems that it is hard to control the birth and death of 
Q-singularities that accompany deformations of Morse data. For example, 
canceling two cusps via a dove tail deformation reduces the number of 
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Q-singularities (equivalently, double-tangent trajectories) by one. The 
situation becomes more manageable in the category of Morse data with 
no cusps (see Corollary 9.3). 

Next, consider the space ( )XF  of smooth nonsingular functions on a 

compact oriented manifold X with boundary. It coincides with the space 
of all submersions .: R→Xf  Let ( )XV  be the space of smooth 

nonsingular vector fields on X. Philips’ remarkable Theorem B [31] 
claims that, for a fixed metric, the gradient map ( ) ( )XX VF →∇ :  is a 

weak homotopy equivalence. When X is an oriented connected 3-fold with 
boundary, the tangent bundle of X is trivial, and Philips’ Theorem 
reduces to the following known proposition: 

Theorem 9.2. Let X be a connected oriented Riemannian 3-fold 
with boundary. Fix a trivialization of the tangent bundle Xτ  of X. Then 
the trivialization-induced normalized gradient map ( ) →∇∇ XF:  

( ),, 2SXMap  where ( )2, SXMap  stands for the space of mapsC -∞  from 

X to ,2S  is a weak homotopy equivalence. 

Corollary 9.1. Let X be in Theorem 9.2. Then the trivialization-
dependent map ∇∇  induces a homotopy groups isomorphism 

( )( ) ( ( ))., 2SXMapX nn π≈π F  

In particular, as sets, ( )( ) ( )Z;2
0 XHX

h
≈π F  and ( )( )fX ,1 Fπ  can be 

identified with the set ( ) ( ).;; 21 ZZ XHXH ⊕  

Proof. In order to prove the corollary, we need to explain just the 
validity of the last two isomorphisms. With a trivialization β of Xτ  being 

fixed, any nonsingular f gives rise to a map 2: SXff →∇∇  whose 

homotopy class is an element of ( ).2 Xπ  Since X is 3-co-connected31, by 

                                                      

31that is, ( ) 0; =GXHi  for all 3≥i  and any coefficient group G. 
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Hopf’s Theorem (see Theorem 11.5, [16]), the natural map ( )Xh 2: π  

( )Z;2 XH→  is an isomorphism. We denote by ( )fh  the element 

( ) ( ).;2 ZXHffh ∈∇∇ 32 Thus, ( )fh detects the element [ ] ( )( ).0 Xf Fπ∈  

Any loop in ( )XF⊂γ  can be viewed as function R→× 1: SXF  

which is nonsingular when restricted to each fiber .,: 1SXX ∈θθ×=θ  

Hence, γ produces a map ,: 21 SSXG →×  and the homotopy class 

[ ] ( )( )fX ,1 Fπ∈γ  corresponds to an element ( ) ( )12 SXH ×π∈γ  which 

restricts to ( ) ( ).;2 ZXHfh ∈  Thus, ( )( )fX ,1 Fπ  can be identified with 

the elements of the set ( )12 SX ×π  that map to ( )fh  under the natural 

map ( ) ( ) ( ).;; 21212 ZZ XHSXHSX →×→×π  Obstructions to linking 

any pair 10 , FF  of such maps by a homotopy lie in ( ;1SXH j
j ×⊕  

( )).2Sjπ  Since X is 3-co-connected, ( ) ( ),2
3

2
2 SS π≈≈π Z  and fF X =| ×00  

,01 ×|= XF  via the Künneth formula, these obstructions lie in ( )Z;1 XH  

( ).;2 ZXH⊕  With a little more work, one can show that any element 

of  ( ) ( )ZZ ;; 21 XHXH ⊕  is realizable as an obstruction between ×X  

R
fp

XS →→1  and some function F as above. � 

Another invariant ( ) ( )Z;2 XHfe ∈  of nonsingular Morse functions 

R→Xf :  on an orientable 3-fold X is available. Its definition is 
independent of the choice of a trivialization of .Xτ  Consider an oriented 
2-dimensional vector bundle η on X formed by the planes tangent to the 
constant level surfaces of f. The orientation of η is induced by the 
orientation of X and by .f∇  Note that R⊕η  is isomorphic to the 

tangent bundle of X and therefore is trivial. Let ( ) ( )Z;2 XHfe ∈  be the 

                                                      

32The choice of ( )fh  is equivalent to the choice of a structure-cSpin  on X. 
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Euler class of η. The element ( )fe  is invariant under homotopies of f 

through nonsingular functions. 

Since the bundle R⊕η  is trivial, for each choice of the trivialization 
β, the isomorphism class of η is described by the homotopy class of the 

appropriate map ( ) ( ) ( ) .23: 2SSOSOXfE ≈→  In turn, the class of E 

is detected by the Euler class of the bundle η. The relation between ( )fE  

and ff ∇∇  is well known. It is described by the lemma below whose 
proof is left to the reader. 

Lemma 9.1. The homotopy class of the map ( ) 2: SXfE →  is twice 

the homotopy class of the map ( ) .: 2SXfh →  Thus, ( ) ( ).2 fhfe =  

Combining Theorem 9.1 with Corollary 9.1 we get one of our main 
results: 

Theorem 9.3. Let ( )00 , vf  and ( )11, vf  be a pair of generic Morse 

data, where the fields 10,vv  are nonsingular, and such that ( ) ( ).10 fhfh = 33 
Then there exists a sequence of elementary 2-expansions, 2-collapses, 

moves-,,, 11 −− ββαα  which transforms the gradient spine ( )0vK  into the 

gradient spine ( ).1vK  Therefore, if ( ) ,0;2 =ZXH  then any two gradient 

spines of X are linked by a sequence of elementary 2-expansions, 
2-collapses, intermingled with α and moves-β  and their inverses. 

It remains to sort out what happens to a gradient spine ( )vK  when 

the value of the invariant ( ) ( )Z;2 XHfh ∈  jumps. In fact, due to Theorem 
9.3, it suffices to analyze how the spine changes as a result of critical 
points of { } ,10, << tft  “traveling through X” along arcs that represent a 

generator of ( )Z;,1 XXH ∂  (see Figure 37). Here we assume that 0f  and 

1f  are nonsingular and that the traveling critical points are of the Morse 
type. 

                                                      

33Both fields define equivalent structures-cSpin on X. 
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Figure 37. Changing ( )fh  by the dual of the 1-cycle ( ) [ ]Ji1−  via an 
isotopy. The spine changes by mushroom flips. Note the change in the 
orientation (shown by small normal bars) of the newly formed disk, the 
mushroom head in the lower diagram. 

The class ( ) ( )ZXHfh ;2∈  is Poincaré-dual to the oriented 
1-dimensional locus XJ ⊂  where v has fixed, up to proportionality, 
coordinates in the basis that trivializes JX .τ  is as a union of oriented 
loops and arcs in X with end in .X∂  

Suppose we have a homotopy { } [ ],1,0∈ttf  of Morse functions on X so 

that the singular set 

{ } {( ) [ ] xXtxft |×∈=∑ 1,0,  is a (Morse) critical point of }tf  

consists of a collection J~  of arcs in ( )1,0×X  with endpoint in ( ).1,0×∂X  

Let J be the image of J~  under the projection onto X. By transversality, 
we assume that XJ ⊂  is a union of disjointly embedded arcs { }αJ  with 
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end points in .X∂  These arcs are oriented according to the direction in 
which the t parameter is increasing. 

Lemma 9.2. The cohomology class ( ) ( )01 fhfh −  is dual to the relative 

1-cycle ( ) [ ],1∑α α
α− Ji  where αi  is the Morse index of the critical point 

that traces the arc .αJ  When all indices are even, ( ) ( ) [ ],2
01 Sgfhfh ∗=−  

where 2: SXg →  is the map defined by the Thom-Pontjagin construction 

on this union of arcs ( ( )).1 ∗= −gJ  

Proof. Figure 37 reflects the spirit of the argument. It depicts the 
case of a critical point an index two tracing an oriented arc J in X. In 
fact, the figure shows an isotopy of the manifold X against a background 
of a “stationary” Morse function f and a trivialization β, both defined on 

a larger manifold XX ⊃ˆ  (X̂  is obtained from X by two elementary 

expansions using 3-dimensional ).cells  

The isotopy of X is supported in a cylinder .ˆˆ: 2 XJDC ⊂×=  When 

we isotop X inside of ,X̂  the original trivialization changes by a homotopy 
which is constant outside C. As long as ,0≠v  this deformation does not 

change the class of the map ff ∇∇  in ( ).2 Xπ  

Examining the locus where v is vertical and points up (see the upper 
diagram in Figure 37), we conclude that the Poincaré-dual of the 
variation of ( )fh  can be represented by the oriented arc J—the bold 
arrow in the figure. The case of index one critical point is similar: the 
gradient f∇  will flip its direction (in comparison to the one shown in 
Figure 37) causing the change in the orientation of J. In the case of the 
Morse index i, the variation of the Poincaré-dual of ( )fh  is given by the 

formula ( ) [ ].1 Ji−  Note that when the critical point x of f is inside X, the 

map ff ∇∇  is only well-defined in .\xX  

Now we are in position to prove Lemma 9.2. Put [ ].1,0×= XY  

Consider a bundle τ tangent to the fibers of the obvious projection 
XY →  and its trivialization β. The gradient-like fields tv  define a 
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section w of τ that vanishes on ,~ tJ tt ×∑= ∪  and thus a map JY ~\:Φ  
2S→  is well defined. Denote my U a small regular neighborhood of 

J~   such that all the fibers xU  of the projection XYU →⊂  are 
homeomorphic to two-disks (the disks get truncated as they approach 

)X1∂  in which the Morse function tf  acquires its “almost canonical” form 

( ) ( ) ( ) ( ) ( ) ( ) ,2
33

2
22

2
11 txtatxtatxta ++  

with ( ) ( ) ( ) .321 tatata <<  Along ,~J  the Morse coordinates ( ( ),1 tx  
( ) ( ))txtx 32 ,  could disagree with the trivialization β. However, this 

disagreement happens along a bunch of arcs [ ]1,0~ ×⊂α XJ  that have 
disjoint projections αJ  in X. Because each arc is contractible, we can 

homotop β in the vicinity of each αJ  so that the new trivialization will be 

adjusted to the Morse coordinates. (Recall,  that a homotopy of β does not 

change the invariants ( ) ).tfh  Now, by general position, we can assume 

that (1) Φ is transversal to a base point ,2S∈∗  (2) ( ) ( )01 ×∗Φ− X∩  

( ) ( )∗∇∇= −1
00 ff  and ( ) ( ) ( ) ( ),1 1

11
1 ∗∇∇=×∗Φ −− ffX∩ (3) ( ) U∩∗Φ−1  

is given by ( ) ( ) ( ) .0,0 132 >== txtxtx  Let Z be the surface ( )∗Φ−1  

( )UY \∩  equipped with an orientation induced by the orientations of 2S  
and Y. The boundary of the 2-chain Z is the 1-cycle which satisfies the 
equation 

( ) ( ) ( ) ( ) ( ) ,~11
00

1
11 ∑

α
α

−− ′−+∗∇∇−∗∇∇=∂ α JffffZ i  

where UJ ∂⊂′α
~  is parallel to .~

αJ  Hence, ( ) ( )01 fhfh −  is dual to the 

relative 1-cycle ( ) [ ]∑α α
α− .1 Ji  � 

Imagine cutting a disk 2D  out of an oriented surface ,DK  flipping 

the orientation of ,2D  and gluing it back. This would be a clear violation 

of the orientation in .DK  To protect the consistency of the orientation, let 

us erect a circular wall [ ]1,01 ×= SW  along the cut and orient it so that 

the singularity locus { }012 ×=∂ SD  contributes with the multiplicity 1±  
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to the boundary of the oriented 2-chain [ ].WK ∪D  This results in adding 

a disjoint oriented circle to the singularity set ( ).Ks†  Although WK ∪D  

is collapsible on ,DK  within the category of branched spines, we cannot 

collapse the wall on its circular base: the reversed orientation of 2D  
prevents the collapse. There are two ways of marking the new spine 

WK ∪  with TN-markers. Either (1) we mark the inner normal of 2D∂  

with T, and place marker N in W along { }01 ×S  so that it points towards 

{ },11 ×S  or (2) we mark with T the outer normal of KD ⊂2  and place N 

on wall { }01 ×S  so that it points towards { }.11 ×S  

We call such spine changes mushroom flips. They are manifestations 
of jumps of the structure-cSpin  on X. The first type of flip occurs when a 
critical point of index 2 is traversing X, the second type corresponds to a 
critical point of index 1 (see Figure 37). 

Theorem 9.4. Let ( )00 , vf  and ( )11, vf  be two generic pairs of Morse 
data on a compact oriented 3-fold X with boundary, the fields 10 , vv  being 
nonsingular. Then there exists a sequence of 2-expansions, 2-collapses, 

,-,,, 11 moves−− ββαα  and mushroom flips which transform the gradient 
spine ( )0vK  into the gradient spine ( ).1vK  

Proof. Combining Theorem 9.3 with Lemma 9.2 reduces the problem 
to understanding the changes in the shape of gradient spine that are 
affected by critical points of an appropriate index traversing X along 
oriented arcs { }αJ  representing a given generator in ( ).;,1 ZXXH ∂  The 
arcs representing γ  can be chosen in general position with respect to a 

given gradient spine K. That is, they are transversal to DK  and have an 
empty intersection with ( ).Ks  Furthermore, if an oriented arc αJ  hits 
the cascade KC ⊂  transversally at a point x, then we can replace it 
with two oriented arcs α′J  and α′′J  such that αα ′′′ JJ ∪  is homologous to 

aJ  and ( ) ( ) .\xCJCJJ a ∩∩∪ =′′′ αα  To construct the new arcs, use the 
down trajectory xγ  through x and a band B with the core Bx ,γ  being 
transversal to the waterfall that W contain x. 
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By somewhat similar construction, we can find a representative of γ 
so that each arc αJ  hits X+∂1  at a single point x. For example, if we have 

an arc αJ  with two ends, ,, 1 Xyx +∂∈  then we pick a path δ connecting a 

point ( )α∈ JIntz  to a point ,1 Xw −∂∈  form a narrow band B to with the 
core δ, and use two arcs in B∂  to replace αJ  with two arcs α′J  and ,α′′J  
each having the desired property. Therefore, we can assume that each 

αJ  either is oriented in accordance with the vector ( ),xv  or opposite to it. 
In the first case, we send a critical point of an even index to trace ,αJ  in 
the second case, we send a critical point of an odd index. 

Thus we need to describe only the case where an arc αJ  hits 

KX ⊂∂+
1  transversally away from the cascade .KC ⊂  Each intersection 

of this type will be responsible for one mushroom flip as shown in Figure 
37. � 

Theorem 9.5. Let X be an an oriented compact 3-fold. Any generic 
Morse data ( )vf ,  can be deformed into new data ( ),, vf ′′  so that the new 

( ) ,3 ∅=′∂ vX  and ( ) ( ).vgcvgc =′  In particular, there are no topological 
obstructions to the 3-convexity. 

Theorem 9.5 employes Theorem 9.6 below. It is similar in spirit to 
some results from [6], [7] concerned with folding maps of surfaces. 

Theorem 9.6. Let XS ⊂  be a connected compact oriented and two-
sided surface regularly embedded in the ambient 3-fold X, and let ( )vf ,  

be non-singular Morse data such that v is transversal to S along its 
boundary .S∂  Then there exists a deformation of ( )vf ,  which is fixed in the 

vicinity of S∂  and such that the new generic data do not have cusps in S. 

Since the surface S has a preferred side in X, it can be divided with 

the help of v into two domains +S  and −S  which share a common 

boundary L. In ,+S  the field points into the preferred side of S and is 
tangent to S along locus L. Since v is transversal to S along ,S∂  for a 

generic v, L is a collection of loops. The preferred orientation of +S  
induces a particular orientation on L. The 1-submanifold L is divided by 



CONVEXITY OF MORSE STRATIFICATIONS AND GRADIENT …  111 

the cusp locus C into portions +L  and .−L  Along vL ,+  points inside .+S  

As before, the points from C acquire four flavors: ( ) ( ) ( ),,,,,, ⊕⊕ −−+ �  

and ( )., �+  The first { }−+,  polarity reflects the fact that v points inside 

or outside of .+L  The second polarity { }�⊕,  tells us whether the field 

agrees or disagrees with the orientation of L. We denote by AC  the 

points of the first two flavors ( ) ( )�,,, −+ ⊕  and by BC  of the last two 
flavors ( ) ( ).,,, �+− ⊕  

We divide the proof of Theorem 9.6 in three lemmas. 

Lemma 9.3. Under the hypotheses of Theorem 9.6, ( ) ( ).BA CC ## =  

In particular, for generic Morse data ( ),, vf  

( ) ( ) ( ) ( ) .03333 =∂−∂+∂−∂ −−++ XXXX ⊕⊕ #### ��  (9.1) 

Proof. We already remarked that L must be a disjoint union of 
simple loops. Each loop iL  from L either has no cusps, or the arcs from 

+L  and −L  alternate along .iL  For an arc from ,+L  we examine the four 

possible flavors attached to its end points a and b and see that one the 

two polarities of a and b must be different. Therefore, if ,ACa ∈  then 

.BCb ∈  As a result, ( ) ( ).BA CC ## =  In the case of ,1XS ∂=  this leads 

to (9.1). � 

Lemma 9.4. Let Cba ∈,  have flavors either (1) ( )⊕,+  and ( )�,+  or 

(2) ( )⊕,−  and ( ),, �−  respectively. In the first case, assume that a and b 

can be connected by simple path ,+⊂γ S  in the second case, assume that 

.−⊂γ S  Then a and b can be cancelled via a deformation of ( )vf ,  as in 

Figure 34, diagrams 1-2. The deformation is an identity away from a 
regular neighborhood of .γ  

Proof. The two cusps are mirror images of each other in the sense 
that there are ambient coordinates zyx ,,  in the vicinity of X⊂γ  so 

that the Morse function is ( )zyxf ,,  has a form ( )yxgz ,+  and the 
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surface S is given by ( )zaxzy −+= 3  at the cusp ( )0,0,a  and by 

( )zbxzy −−= 3  at the cusp ( ).0,0,b  In local coordinates, the path can 

be given by 0== zy  with x ranging from a to b. The surface is 
transverse to f∇  along ( ),γInt  and the space of all germs of two-sided 

oriented surfaces with this property has the homotopy type of 0S  (there  

is no topological obstruction to making the surface standard along ).γ  So, 

we can cancel the two cusps by embedding a standard model and the 
deformation as in Figure 35. � 

Lemma 9.5. If two consecutive cusps a and b along a loop L are as in 
Lemma 9.4, then a, b can be canceled so that the new Morse data has a 
tangency locus SL ⊂′  which is the result of 0-surgery on L. The 
deformation of the Morse data has a support in an arbitrary small 
neighborhood of the arc [ ] ., Lba ⊂  

Proof. There is a path γ  along the surface that links a and b inside 

of +S  in the case of ( )�,+  and ( )⊕,+  or −S  in the other case. This path 

can be found in an arbitrarily small neighborhood of the arc [ ] ., Lba ⊂  

By Lemma 9.4, the cancellation is possible.  � 

Lemma 9.6. Let XS ⊂  be as in Theorem 9.6. Then in the vicinity of 

any point +∈ Lx  of the tangency locus SL ⊂  there is a deformation of 
the Morse data so that two new consecutive cusps of types ( )⊕,+  and 

( )⊕,−  or of types ( )�,+  and ( )�,−  are introduced in L via the dove tail 

deformation. The deformation is an identity away from x. 

Proof. See Figure 34, diagrams 5-6, and Figure 11 depicting the dove 
tail surface.  � 

Proofs of Theorems 9.5 and 9.6. Take any two consecutive cusps a, 

b along L so that the connecting arc [ ]ba,  lies in .+L  Say a is of type 

( )., ⊕+  Then b is either of type ( )�,+  or ( )., ⊕−  In the first case, 

according to Lemma 9.4, a and b can be cancelled. In the second case, by 
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Lemma 9.5, we can introduce two cusps [ ]badc ,, ∈  of type ( )�,+  and 

( ),, �−  respectively. Then, by Lemma 9.4, a and c can be cancelled, as 

well as d and b. The same argument works in the case when a is of any 
other type than ( )., ⊕+  Continuing in this way, all cusps can be 

eventually eliminated, which completes the proof of Theorem 9.6. 

In order to prove Theorem 9.5, we need to examine carefully the 

previous argument. Consider all the arcs (but not loops) [ ] Xba −∂⊂ 2,  

with the different first polarities of a and b (then, by an argument in 
Lemma 9.3, the second polarities of a, b agree). For every such arc [ ],, ba  

we introduce a pair of cusps [ ]badc ,, ∈  as above. Because [ ] ,, 2Xba −∂⊂  

the new waterfall of [ ] Xdc +∂⊂ 2,  is ‘‘protected” by X−∂1  and isolated 

from the rest of waterfalls; as a result, the original gradient complexity is 
not affected by the introduction of c, d (contrast this with Figure 11 
where complexity increases by 1). Introducing c, d also has no affect on 

the degree ( ) ( ) ( )XXh −+ ∂−∂= 33deg ##  of the map 1
2: SXh →∂  from 

Lemma 2.1. Thus, we can assume that every arc from X−∂2  has cusps of 

opposite second polarity. 

Now, for each arc [ ] ,, 2Xba −∂⊂  we pick a path X±∂⊂γ 1  which 

connects two canceling cusps a, b (as in Lemma 9.5) and resides in the 
vicinity of [ ]., ba  The new portion of the waterfall that is generated after 

the cusps’ cancelation is also localized in the vicinity of [ ]., ba  Hence it is 

”protected” by X−∂1  and separated from the old waterfalls that existed 

before the cancellation (see Figure 35, the upper diagram). Therefore, 
canceling a, b via such γ, again, does not change the gradient complexity 
of the original Morse data. Since the first polarities of a and b agree, each 
cancelation does change the degree of the map h by one. So, we will need 
at least ( )hdeg  cancellations to get to the Morse data with .3 ∅=∂ X  � 

Corollary 9.2. In terms of the polarized cusps, the degree of the map 
1

2: SXh →∂  can be expressed as follows: 
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( ) [ ( ) ( )]XXSXh ⊕⊕ ## −+ ∂−∂=→∂ 33
1

2:deg  

[ ( ) ( )] ( ) ( ).2 133 XXXX +−+ ∂χ−χ=∂−∂= �� ##  (9.2) 

Hence, for the Morse data with fixed values of ( ),1 X+∂χ 34 the number 

( ) ( ) ( ) ( )XXXX �� −+−+ ∂−∂=∂−∂ 3333 #### ⊕⊕  is a topological invariant. 

Proof. By Lemma 9.3, ( ) ( ) ( ) ( ) .03333 =∂−∂+∂−∂ −−++ XXXX ⊕⊕ #### ��  

Combined with Lemma 2.1, this leads to the formula for the degree of 
1

2: SXh →∂  claimed in the corollary.  � 

Now, consider only nonsingular Morse data ( )vf ,  such that v is 

transversal to the submanifold .12 XX ∂⊂∂  Denote by ( )XW  their 

space. In particular, for elements ( ) ( ) .,, 3 ∅=∂∈ XXvf W  

Similar spaces of smooth maps with folds only from a manifold nM  

to a manifold nN  have been studied in great generality in [6], [7]. In our 

context, we are lacking a nice target space .2N  Its role is played by the 
space vX ~  of v-trajectories, a space which has a structure of a cellular 

2-complex and is singular in general. 

Recall that, according to Theorem 9.5, 

( ) ( ) ( ){ } ( ).,min , vfgcXgc Xvf W∈=  (9.3) 

Let ( ) ( )XX WW ⊂∗  be an open and dense subspace of Morse data 

( )vf ,  for which no v-trajectories, tangent to X1∂  at three distinct points, 

exist. Note that no β-move is possible within ( )X∗W  (see Figure 32). The 

codimension one walls ( ) ( )XX ∗WW \  can be cooriented by the following 

rule: a path ( ),XW⊂γ  which represents a β-move, defines a positive 

coorientation when (as a result of the β-move) the difference between the 

                                                      

34For example, for Morse data with X+∂1  being a disk. 
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numbers of ⊕ and � double-tangent trajectories35 jumps by .1+  This 

coorientation is similar in spirit but different from the one used by V. 
Arnold in his studies of the spaces of immersions of plane curves [1]. 

We have shown that any pair ( )vf ,  can be deformed into a pair with 

no cusps. For Morse data with ,3 ∅=∂ X  both X+∂2  and X−∂2  are 
collections of simple oriented loops in ,1X∂  the orientation being induced 

by the orientation of .1 X+∂  

Within the space ( ),XW  no surgery on ,2X∂  induced by 
deformations of Morse data ( ),, vf  is possible (see Figures 33 and 34). 
Indeed, the transversality of v to X2∂  is imposed by the nature of ( )XW  
and prevents loops from X2∂  from touching each other, or being 
born/annahilated. Thus, each component of ( )XW  has its own oriented 

and polarized loop pattern ( ) � .122 XXXv ∂⊂∂∂=θ −+  

Questions. For a given X, what is the minimal number of 
positive/negative loops for nonsingular Morse data with ?3 ∅=∂ X  

Evidently, the equation ( ) ( )XX χ−=∂χ +
1  imposes constraints on the 

number of loops in .2X∂  For a given X, which oriented loop patterns 

X±∂2  in X1∂  are realizable? 

Within the space ( )X∗W  no β-moves are permitted. Therefore, there 

is a well-defined map from ( ( ))X∗π W0  to skew-symmetric integral-valued 

bilinear forms Ψ. In a sense, the forms are induced by the intersections of 

1-cycles forming X+∂2  in the v-orbit space .~vX  Since vX ~  has 

singularities of codimension one, in general, this intersection has no 
homological interpretation. However, within the constraints of a given 

chamber of ( ),X∗W  it is well-defined. Consider a free Z-module M 

                                                      
35equivalently, [ ( ) ] [ ( ) ].�KQKQ ## ⊕ −  
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generated by the oriented loops iγ  from ( ).2 X+∂  Define ( )ji γγΨ ,  to be 

the sum of 1±  which are contributed by the Q-singularities Xxij
+∂∈ 1  

that correspond to the double-tangent trajectories linking iγ  to .jγ  The 

sign contributed by ijx  is the �⊕  polarity that has been associated with 

.ijx  Evidently, the form Ψ is preserved under the α-moves—the only 

admissible transformations within a given chamber of ( )X∗W  (see 

Figures 31, 32). 

If ,3 ∅=∂ X  then, for each component jX1∂  of the boundary, the 

degree ( ) ( )jj XX −+ ∂−∂ 33 ##  of the map 1
2: SXh jj →∂  is zero. By Lemma 

4.3, we get ( ) ( ).11 XX −+ ∂χ=∂χ  This property is shared by all Morse data 

from ( )XW  (cf. [6]). 

These considerations lead to 

Theorem 9.7. The oriented and polarized loop patterns ( ) Xv 1∂⊂θ  

are locally constant on the space ( )XW  of Morse data with the property 

.3 ∅=∂ X  

The skew-symmetric form Ψ and the linking number 

[ ] [ ]( ) ( ( ) ) ( ( ) ),, �KQKQKKlkv ## ⊕ −=∂∂  

( ),,vfKK =  are locally constant on the subspace ( ) ( )XX WW ⊂∗  of Morse 

data ( )vf ,  with no triple-tangent trajectories. 

Corollary 9.3. If ( )vf ,  and ( )vf ′′,  belong to different chambers of 

( ),X∗W  then any generic path γ which connects in ( )XW  the points ( )vf ,  

and ( )vf ′′,  must have at least ( ) ( )vfgcvfgc ′′− ,, ⊕⊕
��  intersections with 

the walls ( ) ( )XX ∗WW \  of various chambers of ( ),X∗W  that is, the 

deformation family must have at least ( )vfgc ,⊕
�  ( )vfgc ′′− ,⊕

�  members 

with triple-tangent trajectories. 
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Most likely, these and many other results of the paper admit 
multidimensional generalizations. 
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