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Abstract 

The parametric instability of the generalized Phillips’ model, for which 
the velocity shear is a periodic function of time and the top and bottom 
surfaces are either rigid or free, has been studied in the neighborhood of 
the classical threshold of instability. It is shown that for the linear 
problem, the ignorance of the influences of the free surface parameter 
cannot change the essential character of the instability. 

1. Introduction 

The generalized Phillips’ model is a fluid with the surfaces of top and 
bottom are either rigid or free. It has the advantage of the simplifying the 
actual fluid motions while retaining the essential dynamics of the 
instability. Many researchers discussed its baroclinic instability (see, for 
example, Li and Mu [6], Olascoaga and Ripa [8] and Li [5]), when the 
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shear of the basic current is independent of time. However, the time 
dependence is important since it can destabilize (stabilize) a flow, which 
consequently alters the transport of heat and momentum (see, for 
example, Davis [2]). The importance of time dependence has been 
emphasized in the context of internal waves in Broutman et al. [1]. 
Though the instability of time-dependent shear flows has received 
relatively little attention in comparison to that of time-independent ones, 
many researchers have done some contributions to it (see, for example, 
Davis et al. [3], Farrell and Ioannou [4], and Pedlosky and Thomson [10]). 

In this paper, the parametric instability of the generalized Phillips’ 
model on the beta-plane has been studied includes the effects of time-
varying baroclinic shear in the neighborhood of the classical threshold    
of instability. And we introduce a free surface parameter α to discuss          
the influences of the free surface approximation on the stability of 
atmosphere and oceanic motions. The results reveal that the influences of 
the free surface parameter α  may be ignored in the linear problem. 

2. Model 

We consider the instability of the zonal flow in the generalized quasi-
geostrophic two-layer model on beta-plane. The governing equations for 
the evolution of the disturbances are (see Li and Mu [6], and Pedlosky 
and Thomson [10]): 
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here t is time variable, the subscript i refers to the upper ( )1=i  and 

lower ( )2=i  layers, iii qU ϕ,,  are horizontal velocity, perturbation 

potential vorticity and perturbation streamfunction in the ith layer, 
respectively. J is the Jacobian of the two sequential functions with 

respect to x and y. μ is dissipation coefficient, 2∇  is the two-dimensional 
Laplace operator, id  is the height of the ith layer, and 
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where 0f  is Coriolis parameter (constant), ig  is the buoyancy jump 

across the interface between the ith and ( )1+i th layer, and if the top (or 

bottom) surface is rigid, then ( );00 1
2

1
0 == −− gg  and when the top (or 

bottom) surface is free, then ( ).00 1
2

1
0 >> −− gg  For convenience, without 

loss of generality, we consider the case that 1
2
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−− = gg  and the height of 

each layer is the same. We define 1
1
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−−=α gg  as the free surface 
parameter, so when the surface is rigid, then 0=α  and when the surface 

is free, then .0>α  And assume ,1
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The potential vorticity gradient of the mean flow is 
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The horizontal domain under consideration is a periodic channel in     
x direction and [ ] [ ].1,0,0 ×= XDp  For the large-scale atmosphere, =α  

( ),10 1−O  here we take .10 ≤α≤  

It is helpful to reformulate the problem in the terms of the barotropic 
and baroclinic models of the perturbation fields. With the definitions 

,, 21 ctct ϕ−ϕ=ϕϕ+ϕ=ϕ  (2.4) 

the following equations are obtained from (2.3): 

( ) .2, 22
ctcttt FqFq ϕ+α−ϕ∇=αϕ−ϕ∇=  (2.5) 

From (2.1), (2.4) and (2.5), the barotropic and baroclinic models are 
obtained respectively: 
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and sU  is the shear of the basic current, which is the function of time. 

3. Parametric Instability 

In order to study the nature of the linear problem, we ignore the 
Jacobian and consider the equation as follows: 
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We consider solutions of the form: 

( ) ( ) ,sinexp,, ∗+=ϕ ymikxtA pctct  (3.2) 

where ( )tA ct,  represent the wave amplitudes, pm  is any integral multiple 

of π and ∗ denotes the complex conjugate of the preceding expression. 

Through direct computation, two coupled ordinary differential 
equations in time for the wave amplitudes are obtained: 
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where .222
pmkK +=  
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Consider the situation in which mU  is independent of time and only 
the shear varies with time. We rewrite the problem’s variables as 
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substitute to (3.3) yields 
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Since we subsequently consider the finite-amplitude behavior of the 
waves, we will, in this study, restrict our attention to the vicinity of the 
marginal curve. It is convenient to introduce new variables: 
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here 0sU  is the initial critical value and ( )ϑδ  represents the increment 
above it. The last relation implies that we have scaled time with the 
advective time scale. So the equations for the amplitudes tB  and cB  are 
obtained: 
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 (3.5) 

If the linear problem has the steady shear, i.e., ,0=δ  then the last 
equations become the ordinary differential equations, so a critical value 
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of shear is given by: 

( ) ( ) ( ).22 22222 +α+α+−= aaaab  (3.6) 

Note that for the stability of the classical type ,22 <a  so in the following 
discussion the limit condition is always true. 

Now, we will examine the role of the increment of the shear in the 
neighborhood of the classical marginal curve for instability. For small δ, 
i.e., near the marginal curve, a perturbation expansion is useful. We let 

 be a small parameter and expand δ as follows: 

,coswTHG +=δ  (3.7) 

here G  represents the small, additional steady increment of the shear 
above critical and H  represents a larger value of the amplitude of the 
oscillating part of the shear. We also introduce a slow time variable 

ϑ= 21T  and allow the amplitudes to be functions both ϑ and T. An 
expansion of the form: 
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When (3.7) and (3.8) are substituted into (3.5) and like orders in  
are equated, yields the following results: 
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(3.9) can be written 
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( ) ( ) 12 11.311.3 γ⋅−γ⋅ ba  yields 
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we easily obtain 
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The solution follows directly from (3.15) 
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where ( )TC  is integral constant. 

If (3.16) is inserted in (3.14), we get 
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( ) ( ) 12 19.319.3 γ⋅−γ⋅ ba  yields 
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Using (3.13) and (3.18), the evolution equation of amplitude can be 
obtained 
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If we let ,0=α  then the equation is just the classical Mathieu 
equation (see, for example, Morse and Feshbach [7]). 

For slightly subcritical shears, i.e., when .0<G  In the limit ,0→H  
a natural frequency of oscillation of the system is given by 

,2 2
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2
1 Gγγ−=σ  (3.21) 

and the critical frequencies for so-called parametric instability occur 
when 

....,2,1,2 =σ= nnw  (3.22) 

The perturbations with the largest growth rates correspond the 1=n  
mode corresponding to a frequency which, for small H, is twice the 
natural frequency σ. 
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Figure 1. The amplitude behavior in the linear system (3.20) for different 

α, where ( ) ,1,5.0,0,7.0,1,1.2 41 =α=−== HGa  and the corresponding 
values of w are 1.1303, 0.91085, 0.76556, respectively. 

In the case that the shear of the basic current slightly less than the 

threshold value for instability, we take ( ) .7.0,1,1.2 41 =−== HGa  
Thus, the time-averaged shear is stable. In order to study the influences 
of the free surface parameter α, we take ,1,5.0,0=α  respectively. We 
easily obtain 91085.0,1303.1=w   and 0.76556 for corresponding α, with 
the aid of (3.22). Figure 1 shows the amplitude behavior in the linear 
system for different α, here the initial values are ( ) ( )[ ]dTdBB cc 0,0  

[ ].1.0,1.0=  

As we have seen, the disturbance amplitude will exponentially grow 
for any surface parameter α due to the parametric instability, in the 
neighborhood of the classical threshold of instability. So for the linear 
problem, the essential character of the instability will not be changed if 
the influences of the free surface parameter α are ignored. 
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