ON C_2^t -CONSTRUCTION

YOUNGKWON SONG

Department of Mathematics Research Institute of Basic Science Kwangwoon University Seoul 139-701, Korea

Abstract

Let (R, m, k) be a local commutative k-subalgebra of $M_n(k)$ with nilpotent maximal ideal m and residue class field k. In this paper, we introduce an equivalent condition for R to be an algebra of the C_2^t -construction which produces an algebra in $MC_{n+t}(k)$ from an algebra in $MC_n(k)$.

1. Introduction

In this paper, k denotes an arbitrary field and (R, m, k) denotes a local commutative k-subalgebra of $M_n(k)$ with nilpotent maximal ideal m and residue class field k. We denote the set of all local maximal commutative k-subalgebras of $M_n(k)$ by $MC_n(k)$.

Brown and Call [1] introduced C_1 -construction and Brown [2] introduced C_2 -construction.

2000 Mathematics Subject Classification: 15A27, 15A33, 13M05.

Keywords and phrases: C_1 -construction, C_2 -construction, C_2^t -construction.

The present research has been conducted by the Research Grant of Kwangwoon University in 2008.

Received November 14, 2008

In [8], C_2^t -construction is introduced which is useful to construct an algebra R in $MC_{n+t}(k)$ from an algebra B in $MC_n(k)$. Using the C_2^t -construction, an algebra B in $MC_n(k)$ with $\dim_k(B) = s$ can be embedded in an algebra R in $MC_{n+t}(k)$ with $\dim_k(R) = s + t$. Moreover, if s < n, then we can construct infinitely many algebras R in $MC_{n+t}(k)$ whose dimensions are less than the size of the matrix.

In this paper, we shall introduce an equivalent condition to be an algebra of the \mathbb{C}_2^t -construction.

Furthermore, we shall show the relation between C_2^t -construction and C_i -construction for $i=1,\,2.$

2. Theorems Prerequisite to the Main Results

A commutative k-algebra R is a C_1 -construction if R has an ideal I satisfying the equivalence condition in the following theorem.

Theorem 2.1 [1]. Let (R, m, k) be a commutative k-algebra. Then R is a C_1 -construction if and only if there is an ideal I satisfying the following conditions:

- (1) $Ann_R(I) = I$,
- (2) $0 \to I \to R \to R/I \to 0$ splits as k-algebras.

Theorem 2.2 [2, 3]. Let (B, m_B, k) be a finite dimensional commutative k-algebra with identity and N be a finitely generated faithful B-module. Suppose B is isomorphic to $Hom_B(N, N)$ via the regular representation. Then there exists an element $w \in soc(B)$ with $\dim_k(Nw) = 1$.

Theorem 2.3 is an equivalent condition for a k-algebra R to be an algebra of the C_2 -construction. The proof can be found in [3].

Theorem 2.3 [3]. Let (R, m, k) be a finite dimensional commutative k-algebra with identity. Then R is a C_2 -construction if and only if R

contains a k-subalgebra (B, m_B, k) and an element $x \in m$ satisfying the following conditions:

- (1) $0 \neq x^p \in soc(B)$ for some positive integer p > 1,
- (2) $m_B x = (0)$,
- (3) $\dim_k(R) = \dim_k(B) + (p-1)$.

The k-algebra R of the following Theorem 2.4 is called a C_2^t -construction that can be found in [8].

Theorem 2.4 [8]. Let (B, m_B, k) be a finite dimensional commutative k-algebra with identity. Let N be a finitely generated faithful B-module of dimension n. Suppose B is isomorphic to $Hom_B(N, N)$ via the regular representation. Let t be a positive integer and

$$R = B[X_1, X_2, ..., X_t]/I,$$

where I is an ideal generated by the following:

$$m_B X_1, ..., m_B X_t, X_1^2 - w, ..., X_t^2 - w, X_i X_j \ (1 \le i \ne j \le t).$$

Here, $w \in soc(B) - \{0\}$ with $\dim_k(Nw) = 1$ in Theorem 2.2. If we let $M = N \oplus (\oplus_{i=1}^t)Nw$, then the k-algebra R is isomorphic to $Hom_R(M, M)$ via the regular representation. In other words, R is isomorphic to a maximal commutative subalgebra of $M_{n+t}(k)$, where $\dim_k(M) = n + t$.

3. C_2^t -construction

The following theorem is the main result of this paper which is an equivalent condition to be a C_2^t -construction.

Theorem 3.1. Let (R, m, k) be a finite dimensional local commutative algebra and t be a positive integer. Then R is a C_2^t -construction if and only if there exist a commutative subalgebra (B, m_B, k) of R and elements $x_i \in m$, i = 1, 2, ..., t satisfying the following properties:

(1)
$$x_i^2 = x_j^2 \in soc(B) - \{0\}$$
 for all $1 \le i, j \le t$,

(2)
$$x_i x_j = 0 \text{ for all } 1 \le i \ne j \le t$$
,

(3)
$$m_B x_i = (0)$$
 for all $1 \le i \le t$,

(4)
$$\dim_b(R) = \dim_b(B) + t$$
.

Proof. Suppose R is a C_2^t -construction. Then, by the definition of C_2^t -construction, R has a commutative subalgebra (B, m_B, k) and elements $x_i \in m$ satisfying the four conditions (1), (2), (3) and (4).

Conversely, suppose there exist a subalgebra B and elements $x_i \in m$ such that the four conditions are satisfied. Let $x_i^2 = w \in soc(B)$ and I be the ideal generated by the following elements:

$$m_B X_1, ..., m_B X_t, X_1^2 - w, ..., X_t^2 - w, X_i X_j \ (1 \le i \ne j \le t).$$

Define a map

$$\psi:B[X_1,\,X_2,\,...,\,X_t]/I\to R$$

by

$$\psi(b+I) = b, \ \ \psi(X_i+I) = x_i, \ \ 1 \le i \ne j \le t,$$

where $b \in B$. Then ψ is a k-algebra homomorphism. Suppose $\psi(a+a_1X_1+a_2X_2+\cdots+a_tX_t+I)=0$. Then $a+a_1x_1+\cdots+a_tx_t=0$. Here, we may assume $a_i \in k$ since $m_Bx_i=(0)$ for all i=1,2,...,t. Assume $a\neq 0$. Then $a \notin m$. If $a \in m$, then for x_i

$$ax_i = 0$$
, $a_i x_i x_i = 0$, $i = 1, 2, ..., t$.

Since $x_j^2 = w$ and $0 = ax_j + a_1x_1x_j + \cdots + a_jx_j^2 + \cdots + a_tx_tx_j$, we have $a_jw = 0$. Thus, we should have $a_j = 0$, and so, $a_i = 0$, for all i = 1, 2, ..., t. But then a = 0 which is impossible. Thus, $a \notin m$ and hence $a + a_1x_1 + a_2x_2 + \cdots + a_tx_t$ is a unit which is impossible. Thus, we have a = 0. If $a_j \neq 0$ for some j, then

$$(a_j^{-1}a_1)x_1 + (a_j^{-1}a_2)x_2 + \dots + (a_j^{-1}a_t)x_t = 0.$$

By multiplying x_i each side, we get

$$0 = (a_j^{-1}a_1)x_1x_j + (a_j^{-1}a_2)x_2x_j + \dots + (a_j^{-1}a_t)x_tx_j = x_j^2 = w$$

which is impossible and so $a_j=0$ for all $j=1,\,2,\,...,\,t.$ This implies ψ is monomorphism. Note that

$$\dim_k(im(\psi)) = \dim_k(B[x_1, x_2, ..., x_t]) = \dim_k(B) + t = \dim_k(R).$$

Therefore, ψ is an isomorphism and we can conclude that the algebra R is a C_2^t -construction.

Here, we have an example of C_2^t -construction. We shall let E_{ij} be the (i, j)-th matrix unit.

Example 3.2. Let $R = m \oplus kI_{t+2}$ be a k-algebra in $MC_{t+2}(k)$ such that $r \in m$ is of the following form:

$$r = a_1(E_{21} + E_{t'2}) + a_2(E_{31} + E_{t'3}) + \dots + a_t(E_{t''1} + E_{t't''}) + cE_{t'1},$$

where $a_i, c \in k$ for i = 1, 2, ..., t and t' = t + 2, t'' = t + 1.

If we let $B = k[E_{t'1}]$, then $soc(B) = kE_{t'1} = m_B$. Thus, the elements

$$x_{i-1} = E_{i1} + E_{t'i}, \quad i = 2, 3, ..., t+1$$

satisfy the conditions in Theorem 3.1 and so R is a C_2^t -construction.

The socle and the index of nilpotency of R and B in Theorem 3.1 have the following relations:

Corollary 3.3. If R and B are k-algebras in Theorem 3.1, then soc(R) = soc(B) and $i(m) = i(m_B) + 1$.

Now, we want to prove the relation between C_1 -construction, C_2 -construction and C_2^t -construction.

Corollary 3.4. C_1 -construction does not imply C_2^t -construction.

Proof. Let $R = m \oplus kI_{t+1}$ be a k-algebra in $MC_{t+1}(k)$ such that the element $r \in m$ is of the following form:

$$r = a_1 E_{12} + a_2 E_{13} + \dots + a_t E_{1(t+1)},$$

where $a_i \in k$, i = 1, 2, ..., t.

Then $m^2 = (0)$ and so, the algebra R is a C_1 -construction. But, the algebra R has no element whose square is not zero and hence R cannot be a C_2^t -construction by Theorem 3.1.

Corollary 3.5. C_2^t -construction does not imply C_1 -construction.

Proof. Let k be the real number field and $R = m \oplus kI_{t+2}$ be a k-algebra in Example 3.2. Then, R is a C_2 -construction. Suppose R is a C_1 -construction. Then there exists an ideal I of R such that $Ann_R(I) = I$ by Theorem 2.1. If we let $r \in Ann_R(I)$, then for some real numbers a_i , the element r is of the following form:

$$r = a_1(E_{21} + E_{t'2}) + a_2(E_{31} + E_{t'3}) + \dots + a_t(E_{t''1} + E_{t't''}) + aE_{t'1},$$

where t' = t + 2, t'' = t + 1. Since $Ann_R(I) = I$, we have

$$0 = r^2 = \sum_{i=1}^{t} a_i^2 E_{t'1}$$

and hence $a_i=0$ for all i=1,2,...,t. Thus, $r=aE_{t'1}$ and so $I=Ann_R(I)=kE_{t'1}$. But, then $E_{21}+E_{t'2}\in Ann_R(I)=I$ which is impossible. Thus, the algebra R in Example 3.2 is a C_2^t -construction but not a C_1 -construction.

Corollary 3.6. C_2 -construction does not imply C_2^t -construction.

Proof. Let k be the real number field and $R = m \oplus kI_{t+2}$ be a k-algebra in $MC_{t+2}(k)$ such that $r \in m$ is of the following form:

$$r = a_1(E_{21} + \dots + E_{t''t}) + a_2(E_{31} + \dots + E_{t''t-1}) + \dots + a_t E_{t''1} + a_{t+1} E_{t'1},$$

where $a_i \in k$ for all i = 1, 2, ..., t and t' = t + 2, t'' = t + 1.

Now, let

$$B = k[E_{t''1}, E_{t'1}].$$

Then for an element $r = E_{21} + E_{32} + \cdots + E_{t''t}$ in m, we have the following properties:

- (1) $E_{t''1} = r^t \in soc(B)$.
- (2) $rm_B = (0)$.
- (3) $\dim_k(R) = \dim_k(B) + (t-1)$.

This implies R is a C_2 -construction.

Now, suppose R is a C_2^t -construction. Then R contains a k-subalgebra B such that for some $x_i \in m$,

- (1) $x_i^2 \in soc(B) \{0\}, i = 1, 2, ..., t,$
- (2) $x_i x_j = 0$, for all $1 \le i \ne j \le t$.

For some $a_{ij} \in k$, the elements $x_i \in m$ can be written as follows:

$$\begin{aligned} x_1 &= a_{11}(E_{21} + \dots + E_{t''t}) + a_{12}(E_{31} + \dots + E_{t''t-1}) + \dots + a_{1t}E_{t''1} + a_{1t''}E_{t'1}, \\ x_2 &= a_{21}(E_{21} + \dots + E_{t''t}) + a_{22}(E_{31} + \dots + E_{t''t-1}) + \dots + a_{2t}E_{t''1} + a_{2t''}E_{t'1}, \\ & \vdots & \vdots & \vdots \end{aligned}$$

$$x_t = a_{t1}(E_{21} + \dots + E_{t''t}) + a_{t2}(E_{31} + \dots + E_{t''t-1}) + \dots + a_{tt}E_{t''1} + a_{tt''}E_{t'1}.$$

Then for all i we have the following identity:

$$x_i^2 = a_{i1}^2(E_{31} + \dots + E_{t''t-1}) + a_{i1}a_{i2}(E_{41} + \dots + E_{t''t-2}) + \dots + a_{i1}a_{it-1}E_{t''1}.$$

Especially, for i = 1, we have

$$x_1^2 = a_{11}^2(E_{31} + \dots + E_{t''t-1}) + a_{11}a_{12}(E_{41} + \dots + E_{t''t-2}) + \dots + a_{11}a_{1t-1}E_{t''1}.$$

Since $x_1^2 \neq 0$, there exists some j with $1 \leq j \leq t-1$ such that $a_{11}a_{1j} \neq 0$. That is, $a_{11} \neq 0$. Moreover,

$$x_1x_2 = a_{11}a_{21}(E_{31} + \dots + E_{t''t-1}) + \dots + a_{11}a_{2t-1}E_{t''1}.$$

Since $x_1x_2=0$, we should have $a_{11}a_{2\ell}=0$ for all ℓ with $1\leq \ell \leq t-1$. Furthermore, $a_{11}\neq 0$ implies $a_{2\ell}=0$ for all ℓ with $1\leq \ell \leq t-1$. But then, $x_2=a_{2t}E_{t''1}+a_{2t''}E_{t'1}$ and so $x_2^2=0$ which is impossible and so we can conclude that R is not a C_2^t -construction. Therefore, C_2 -construction does not imply a C_2^t -construction.

Corollary 3.7. C_2^t -construction implies C_2 -construction.

Proof. Obvious by the definition.

References

- [1] W. C. Brown and F. W. Call, Maximal commutative subalgebras of $n \times n$ matrices, Communications in Algebra 21(12) (1993), 4439-4460.
- [2] W. C. Brown, Two constructions of maximal commutative subalgebras of $n \times n$ matrices, Communications in Algebra 22(10) (1994), 4051-4066.
- [3] W. C. Brown, Constructing maximal commutative subalgebras of matrix rings in small dimensions, Communications in Algebra 25(12) (1997), 3923-3946.
- [4] R. C. Courter, The dimension of maximal commutative subalgebras of K_n , Duke Math. J. 32 (1965), 225-232.
- [5] T. J. Laffey, The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra and its Applications 71 (1985), 199-212.
- [6] D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic Press, 1968.
- [7] Youngkwon Song, Maximal commutative subalgebras of matrix algebras, Communications in Algebra 27(4) (1999), 1649-1663.
- [8] Youngkwon Song, A construction in $MC_n(k)$, Far East J. Math. Sci. (FJMS) 25(3) (2007), 585-592.