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Abstract 

The semi-wΔ spaces are defined in terms of semi-open covers and they 
generalize simultaneously the wΔ spaces and the semi-developable 
spaces. We prove the following results in this paper: 

• A topological space is a semi-wΔ space if and only if it is a q-space and 
a β-space. 

• The semi-wΔ property is invariant under continuous, finite to one, 
pseudo-open maps. 

• An isocompact semi-wΔ space with a semi- ( )2C  property is θ-refinable. 

• A topological space is semi-metrizable if and only if it is a semi-
developable space with a quasi ( )1α -diagonal. 

• A topological space is a Hausdorff semi-metrizable space if and only if 
it is a semi-wΔ space with an ( )2α -diagonal. 

• A topological space is a regular semi-metrizable space if and only               
if it is a semi-wΔ space with a semi- ( )2C  property and a quasi 

( )1α -diagonal. 

The following results are corollaries of the main results about the semi- 
wΔ spaces: 
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• A topological space is a Moore space if and only if it is a wΔ-space with 
a semi- ( )2C  property and a quasi ( )1α -diagonal. 

• A regular topological space is a Moore space if and only if it is a 
wΔ-space with an ( )2α -diagonal. 

• A topological space is a metrizable space if and only if it is a wM space 
with a semi- ( )2C  property and a quasi ( )1α -diagonal. 

• A topological space is a metrizable space if and only if it is a wM space 
with an ( )2α -diagonal. 

0. Introduction 

By a space X we mean a topological space X without assuming any 
separation axiom it satisfies unless specifically mentioned. Let X be a 

space and .XA ⊂  Let 0A  denote the interior of A in X and A  denote 
the closure of A in X. We use the standard notations and definitions in 
[6]. Let N denote the set of natural numbers. Let ξ and η be collections of 

subsets of a space X. Let .ξ=ξ∗ ∪  ξ is called a refinement of η (written 

),ηξ ≺  if ∗∗ η=ξ  and for each ,ξ∈O  there is a η∈G  such that 

.GO ⊂  Let { }nnξ  be a sequence of covers of a space X. { }nnξ  is called a 

decreasing sequence provided nn ξξ + ≺1  for each .Nn ∈  Let ξ be a 

collection of subsets of a space X. Let ( ) { }., ∪ GxGxSt ∈|ξ∈=ξ  ξ is 

called a semi-open collection in X provided ( )0, ξ∈ xStx  for each .∗ξ∈x  

A space X is called a semi-wΔ space provided it admits a sequence of 
semi-open covers { }nnξ  such that if ( )nn xStx ξ∈ ,  for each ,Nn ∈  then 

the sequence { }nnx  clusters [12]. The sequence { }nnξ  is called a semi-wΔ 

sequence and without loss of generality we may assume that { }nnξ  is a 

decreasing sequence. A space X is called a wΔ space provided it admits             
a sequence of open covers { }nnξ  such that if ( )nn xStx ξ∈ ,  for each 

,Nn ∈  then the sequence { }nnx  clusters [4]. The sequence { }nnξ  is 

called a wΔ sequence and without loss of generality we may assume that 
{ }nnξ  is a decreasing sequence. A space X is called a semi-developable 
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space provided it admits a sequence of semi-open covers { }nnξ  such that 

for each ,Xx ∈  the collection ( ){ }NnxSt n ∈|ξ,  is a neighborhood (in 

short, nhd) base at x [1]. The sequence { }nnξ  is called a semi-development 

and may be assumed to be decreasing. The class of semi-wΔ spaces 
includes the wΔ spaces and the semi-developable spaces. A space X is 
said to have a semi- 2C  property ( ),resp. 2C  if every semi-open cover 

(resp. open cover) ξ admits a sequence of semi-open covers (resp. open 
covers) { }nnξ  such that for each Xx ∈  there is Nnx ∈  such that 

( ) ( ).,, ξ⊂ξ xStxSt xn  The sequence { }nnξ  is called a semi- 2C  ( )2resp. C  

refinement for ξ and without loss of generality we may assume that the 
sequence { }nnξ  is decreasing [8, 11]. A space X is called a q space 

provided each Xx ∈  admits a sequence of its open neighborhoods 
( ){ }nn xq  such that if ( )xqx nn ∈  for each ,Nn ∈  then the sequence 

{ }nnx  clusters in X [20]. The sequence ( ){ }nn xq  is called a q sequence of x 

and may be assumed to be decreasing. A space X is called a β space 
provided each Xx ∈  admits a sequence of its open neighborhoods 

( ){ }nn xβ  such that if ( )nn xx β∈  for each ,Nn ∈  then the sequence 

{ }nnx  clusters in X [14]. The sequence ( ){ }nn xβ  is called a β sequence 

and may be assumed to be a decreasing sequence. A space X is called an 
isocompact space provided the closed countably compact sets in X are 
compact in X [3]. A space X has a δG  diagonal if and only if the space X 

admits a sequence of open covers { }nnξ  such that ( ) { }xxSt
n

n =ξ
∞

=
∩

1
,  for 

each Xx ∈  [5]. In a similar manner, we define the concept of iα  diagonal 

for 2,1=i  in terms of semi-open covers. A space X is said to have an -1α  

( )-resp. 2α  diagonal provided it admits a sequence of semi-open 

covers { }nnξ  such that ( ) { }∩
∞

=

=ξ
1

,
n

n xxSt ( ) { }⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=ξ

∞

=

xxSt
n

n∩
1

,resp.  for each 

Xx ∈  [7]. The sequence { }nnξ  is called an iα  diagonal sequence for X 

and may be assumed to be a decreasing sequence. The 1α -diagonal 
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property generalizes both the 2α -diagonal and the δG  diagonal which 

are different generalizations of ∗
δG  diagonal [14]. A space X is said to 

have a quasi δG  diagonal provided it admits a sequence of open 

collections { }nnξ  in X such that ( ) ( ){ } { },, xxNnxSt n =∈|ξ∩  where 

( ) { },∗ξ∈|= nxnxN  for each Xx ∈  [16]. The sequence { }nnξ  is called a 

quasi δG  diagonal sequence. The quasi δG  diagonal property generalizes 

the δG  diagonal property. A space X is said to have a quasi 1α -diagonal 

provided it admits a sequence of semi-open collections { }nnξ  such that 

{ ( )∩ nxSt n |ξ,  ( )} { },xxN =∈  where ( ) { },∗ξ∈|= nxnxN  for each .Xx ∈  

The quasi 1α -diagonal generalizes the 1α -diagonal property as well as 

the quasi δG  diagonal property, but the quasi δG  diagonal property and 

an 1α -diagonal property are different generalizations of the δG  diagonal 

property. A space X is called a wM space provided it admits a sequence of 

open covers { }nnξ  such that if ( )nn xStx ξ∈ ,2  for each ,Nn ∈  where 

( ) ( )( ),,,,2
nnn xStStxSt ξξ=ξ  then the sequence { }nnx  clusters [17]. The 

definitions of the Nagata spaces and the wN spaces are available in [15]. 
A map YXf →:  is called a pseudo-open map if for each ,Yy ∈  whenever 

G is a nhd of ( ),1 yf −  ( )Gf  is a nhd of y [2]. 

Implication Diagram of Developable Spaces 
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Implication Diagram of Nagata Spaces 

 

Implication Diagram of Diagonal Properties 

 

1. Main Section 

1.1. Semi-wΔ spaces 

Lemma 1.1.1. A space X is a semi-wΔ space if and only if it admits a 
sequence of semi-open covers { }nnξ  such that if ( )nnxStx ξ∈ ,  for each 

,Nn ∈  then the sequence { }nnx  clusters. 

Theorem 1.1.2. A space X is a semi-wΔ space if and only if it is a q 
space as well as a β space. 

Proof. Suppose X is a semi-wΔ space and { }nnξ  is a semi-wΔ 

sequence for X. Define ( ) ( )0, nn xStxg ξ=  for each Xx ∈  and each 

.Nn ∈  Assign the sequence ( ){ }nn xg  to x for each .Xx ∈  From the 
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definition of a semi-wΔ space and Lemma 1.1.1, it follows that if 
( )xgx nn ∈  for each Nn ∈  or if ( )nn xgx ∈  for each ,Nn ∈  then the 

sequence { }nnx  clusters. Therefore X is a q space as well as a β space. 

Conversely, suppose X is a q space as well as a β space. Let ( ){ }nn xq  

be a decreasing q assignment to x and ( ){ }nn xβ  be a decreasing β 

assignment to x for each .Xx ∈  Let ( ) ( ) ( )xxqxh nnn β= ∩  for each Xx ∈  

and each .Nn ∈  Then, if ( )xhx nn ∈  for each Nn ∈  or if ( )nn xhx ∈  for 
each ,Nn ∈  the sequence { }nnx  clusters. Let ( ) =xSn  { } ( ){ }xhyyx n∈|,  

for each Xx ∈  and each .Nn ∈  Let ( ){ }∪ XxxSnn ∈|=ξ  for each 

.Nn ∈  Since ( ) ( ) ( )nnn xStxSxh ξ⊂= ,∪  for each Xx ∈  and each ,Nn ∈  
each nξ  is a semi-open cover. If ( )nn xStx ξ∈ ,  for each ,Nn ∈  then 
either ( )xSx nn ∈  or ( ).nn xSx ∈  It follows that ( )xhx nn ∈  for infinitely 
many Nn ∈  or ( )nn xhx ∈  for infinitely many .Nn ∈  Since ( ){ }xhn  is 
decreasing, it follows that the sequence { }nnx  clusters. Therefore { }nnξ  

is a semi-wΔ sequence for X. 

Corollary 1.1.2.1. A space X is a semi-wΔ space if and only if it 
admits a map g on XN ×  into the topology on X such that if ( )xngxn ,∈  

for each Nn ∈  or if ( )nxngx ,∈  for each ,Nn ∈  then the sequence 

{ }nnx  clusters. 

Lemma 1.1.3 [11]. Let a space X have a semi- 2C  property. Then every 

sequence of semi-open covers { }nnξ  admits a sequence of semi-open covers 

{ }nnη  such that 

(1) nnn ξηη + ≺≺1  for each n and 

(2) for ,Xx ∈  Nn ∈  there is an m such that ( ) ( ).,, nm xStxSt η⊂η  

We call the sequence { }nnη  a semi- 2C  regular refinement of the sequence 

{ } .nnξ  

Proof. This is Lemma 9 in [11]. 
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Theorem 1.1.4. An isocompact semi-wΔ space X with a semi- 2C  

property is θ-refinable. 

Proof. Let ξ be an open cover of X. Let { }nnξ  be a decreasing semi- 

wΔ sequence such that .1 ξξ ≺  By Lemma 1.1.3, there is a semi- 2C  

regular refinement { }nnη  for { } .nnξ  Define ( ) ( )∩
∞

=

η=
1

,
n

nxStxC  for .Xx ∈  

Then ( ) ( ) ( )∩∩
∞

=

∞

=

η=η=
11

,,
n

n
n

n xStxStxC  for .Xx ∈  It follows that ( )xC  

is a closed countably compact set and hence, by the isocompactness of X, 
( )xC  is a compact set in X. Also, ( ){ }NnxSt n ∈|η,  is a nhd base for ( ).xC  

For, let G be an open nhd for ( ).xC  Suppose there is ( ) GxStx nn −η∈ ,  

for each .Nn ∈  Then the sequence { }nnx  clusters in ( )xC  and hence 

Gxn ∈  for some n, a contradiction. Since ( ) ( ) ( )ξ⊂η⊂ ,, xStxStxC n  for 

some Nn ∈  and ( )xC  is a compact set, it follows that there is a finite 

subcollection ( )xξ  of ξ such that ( ) ( )xxC ξ⊂ ∪  and ( ).xx ξ∈ ∩  Therefore 

there is an n such that ( ) ( )., xxSt n ξ⊂η ∪  Thus, for any given open cover 

ξ of X there is a sequence of semi-open covers { }nnη  such that for each 

Xx ∈  there exists xn  such that ( ) ( )∪ xxSt xn ξ⊂η,  for some finite 

( ) ξ⊂ξ x  such that ( ).∩ xx ξ∈  By Theorem 3.2 of Junnila in [18], X is 

θ-refinable. 

Lemma 1.1.5 [13]. A first countable space X is a 1T  space if and only 

if it has an 1α -diagonal. 

Lemma 1.1.6. A space X is first countable if and only if each Xx ∈  
is assigned a sequence of its open neighborhoods ( ){ }nn xG  such that if 

( )xGx nn ∈  for each ,Nn ∈  then the sequence { }nnx  clusters at x. 

Theorem 1.1.7 [13]. A regular space X is a 1T  first countable space if 

and only if it is a q space with a quasi 1α -diagonal. 
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Lemma 1.1.8. Let X be a 1T  semi-wΔ space that satisfies ( ):∗  Each 

countable closed discrete set D admits a locally finite open collection 
{ }., DdGdG dd ∈∈|  Then X admits a semi-wΔ sequence { }nnξ  such that 

(1) if ( )nn xStx ξ∈ ,  for each ,Nn ∈  then the sequence { }nnx  clusters; 

(2) if ( ) ( ),,
1
∩
∞

=

ξ=
n

nxStxC  then ( )xC  is countably compact and 

{ ( ) }NnxSt n ∈|ξ,  is a network at ( ).xC  

Proof. Let { }nnξ  be a decreasing semi-wΔ sequence. To prove (1), 

suppose ( )nn xStx ξ∈ ,  for each Nn ∈  and the sequence { }nnx  does not 

cluster. Then { }Nnxn ∈|  is a closed discrete set. Let { }NnGxG nnn ∈∈| ,  

be a locally finite open collection. Choose ( )nnn xStGy ξ∈ ,∩  for each 

Nn ∈  such that the ny ’s are distinct. Then the sequence { }nny  does not 

cluster, a contradiction. 

To prove (2), let ( ) ( ).,
1
∩
∞

=

ξ=
n

nxStxC  Then from (1) it follows that ( )xC  

is countably compact. Let G be an open neighborhood of ( ).xC  Suppose 

( ) GxStx nn −ξ∈ ,  for each .Nn ∈  Then, since the sequence { }nnξ  is 

assumed to be decreasing, from (1) it follows that the sequence { }nnx  

clusters in ( ),xC  a contradiction. 

Theorem 1.1.9. A Hausdorff isocompact semi-wΔ space X with ( )∗  (as 

defined in Lemma 1.1.8) is a regular space. 

Proof. Let { }nnξ  be a decreasing semi-wΔ sequence and ( ) =xC  

( )∩
∞

=

ξ
1

,
n

nxSt  for .Xx ∈  From Lemma 1.1.8, ( )xC  is countably compact 

and hence it is compact. Let .FFx =∉  If ( ) ,∅=FxC ∩  then ( )nxSt ξ,  

( )FX −⊂  for some n. Hence, ( )0, nxSt ξ  and ( )nxStX ξ− ,  are the disjoint 
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open neighborhoods of x and F, respectively. If ( ) =FxC ∩  ,∅≠L  then 

since X is Hausdorff, there are disjoint open neighborhoods G and H of x 
and L, respectively. Let .HFM −=  Since ( ) ,∅=xCM ∩  by the above 

argument, there are disjoint open neighborhoods U and V of x and M, 
respectively. Then UG ∩  and VH ∪  are the disjoint open neighborhoods 
of x and F, respectively. Therefore X is regular. 

Definitions. A space X is called a strongly semi-wΔ (resp. a point-
star-open semi-wΔ) space if it admits a semi-wΔ sequence { }nnξ  such that 

( )0, nxSty ξ∈  implies ( )0, nyStx ξ∈  for each Nn ∈  and any Xyx ∈,  
( ( )nxSt ξ,resp.  is open for each Nn ∈  and each ).Xx ∈  In case of a 

strongly semi-wΔ space, { }nnξ  is called a strongly semi-wΔ sequence and 

in case of a point-star-open semi-wΔ space, { }nnξ  is called a point-star-

open semi-wΔ sequence. 

Lemma 1.1.10. Let ξ be a strongly semi-open cover of a space X and 
.XA ⊂  Then A admits a subset B such that 

(1) ( ) { }xxStB n =ξ 0,∩  for each ,Bx ∈  

(2) { ( ) },, 0 BxxStA n ∈|ξ⊂ ∪  

(3) { }{ }Bxx ∈|  is a discrete collection in X. 

If X is a 1T  space, then B is a closed set in X. 

Theorem 1.1.11. A ,1T  1ℵ -compact, isocompact strongly semi-wΔ 

space X satisfying ( )∗  is a Lindelöf space. 

Proof. Let ξ be an open cover of X and { }nnξ  be a strongly semi-wΔ 

sequence. For each ,Xx ∈  define ( ) ( )∩
∞

=

ξ=
1

.,
n

nxStxC  From Lemma 1.1.8 

and isocompactness, it follows that for each Xx ∈  there is n such that 

( ) ( ) f
nxStxCx ξ⊂ξ⊂∈ ∪,  for some finite subcollection fξ  of ξ. Let 

{ ( ) f
nn xStXxA ξ⊂ξ|∈= ∪,  for some finite subcollection fξ  of }ξ  for 
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each .Nn ∈  Then .
1
∪
∞

=

=
n

nAX  From Lemma 1.1.10, nA  admits a closed 

discrete subset nB  such that ( )nnn BStA ξ⊂ ,  for each .Nn ∈  Since X 

is 1ℵ -compact, each nB  is countable. Hence, ξ admits a countable 
subcover for X. 

Theorem 1.1.12. Let YXf →:  be a continuous, pseudo-open, finite 
to one map of a semi-wΔ space X onto a space Y. Then Y is a semi-wΔ 
space. 

Proof. Let { }nnξ  be a decreasing semi-wΔ sequence in X and =ηn  

( ) ( ){ }nn GGff ξ∈|=ξ  for each .Nn ∈  Observe the following: 

  (i) For each Yy ∈  and ,Nn ∈  ( ) ( ( ( ) )).,, 1
nn yfStfySt ξ=η −  

 (ii) If a sequence { }nnx  clusters in X, then the sequence ( ){ }nnxf  

clusters in Y. 

We prove the following: 

(iii) For any finite non-empty set A in X, if ( )nn AStx ξ∈ ,  for each 

,Nn ∈  then the sequence { }nnx  clusters: Since A is finite, there is Ax ∈  

such that ( )kk nn xStx ξ∈ ,  for each k for some subsequence { }kkn  of the 

sequence { }....,3,2,1  Since { }nnξ  is decreasing, we can define a sequence 

{ }nnz  such that ( )nn xStz ξ∈ ,  for each ,Nn ∈  where 1nn xz =  for each 

1nn ≤  and 1+= inn xz  for each n such that nni <  1+≤ in  for each 

integer .Ni ∈  Then the sequence { }nnz  clusters and hence the sequence 

{ }nnx  clusters. Now we prove that the sequence { }nnη  is a semi-wΔ 

sequence in Y: Let ( )nn ySty η∈ ,  for each .Nn ∈  From (i), there is a 

sequence { }nnx  in X such that ( ( ) )nn yfStx ξ∈ − ,1  and ( ) nn yxf =  for 

each .Nn ∈  From (iii), the sequence { }nnx  clusters in X. From (ii), the 

sequence ( ){ }nnn xfy =  clusters in Y. Therefore the sequence { }nnη  is a 

semi-wΔ sequence in Y and Y is a semi-wΔ space. 
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1.2. Semi-metrizable spaces 

Since a space is semi-metrizable if and only if it is a 0T  semi-

developable space and quasi ( )1α  diagonality implies ,1T  it follows that 

semi-metrizable spaces are exactly semi-developable spaces with a quasi 
( )1α -diagonal. We generalize this result: 

(1) A space is a Hausdorff semi-metrizable space if and only if it is a 
semi-wΔ space with an ( )2α -diagonal. 

(2) A space is a regular semi-metrizable space if and only if it is a 
semi-wΔ space with a semi- ( )2C  property and a quasi ( )1α -diagonal. 

Lemma 1.2.1. A semi-wΔ space X with an 2α -diagonal is a semi-

metrizable space. 

Proof. By an 2α -diagonal property, X is Hausdorff. Let { }nnξ  be a 

decreasing semi-wΔ sequence and { }nnη  be a decreasing 2α -diagonal 

sequence. Let { }nnnnn HGHG η∈ξ∈|=ηΛξ=ς ,∩  for each .Nn ∈  

We claim that the sequence { }nnς  is a semi-development. Clearly, each 

nς  is a semi-open cover of X and ( ) ( ) { }xxStxSt
n

n
n

n =ξ=ξ
∞

=

∞

=
∩∩

11
,,  for each 

.Xx ∈  Let Xx ∈  and G be an open nhd of x. If ( ) GxStx nn −ς∈ ,  for 

each ,Nn ∈  then the sequence { }nnx  clusters at x, a contradiction 

because G is an open set containing x and no nx  belongs to G. Therefore 

( ) GxSt n ⊂ς,  for some n and { }nnς  is a semi-development for X. Since a 

Hausdorff semi-developable space is semi-metrizable [1], X is semi-
metrizable. 

Theorem 1.2.2. A space X is a Hausdorff semi-metrizable space if 
and only if it is a semi-wΔ space with an 2α -diagonal. 

Proof. Suppose X is a Hausdorff semi-metrizable space. X is a semi- 
wΔ space (by Theorem 1.1.2) and X has an 2α -diagonal [10]. The converse 

part of the theorem follows from Lemma 1.2.1. 
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Corollary 1.2.2.1. If X is a Hausdorff semi-wΔ space with a δG  
diagonal, which is θ-refinable and satisfies ( ),∗  then X is a semi-
metrizable space. 

Proof. By Theorem 1.1.9, X is regular. X is a θ-refinable, 3T  space 

and so, it has ( )2C  [8]. A space with a δG  diagonal and ( )2C  has a ∗
δG  

diagonal [8]. So, X is semi-metrizable (by Theorem 1.2.2). 

Remark 1.2.2.2. We cannot replace an ( )2α -diagonal condition by a 

quasi ( )2α -diagonal condition in Lemma 1.2.1 and Theorem 1.2.2. 

Corollary 1.2.2.3. A regular space X is a Moore space if and only if it 
is a wΔ-space with ( )2α -diagonal. 

Remark 1.2.2.4. We cannot replace an ( )2α -diagonal condition by a 

quasi ( )2α -diagonal condition in Corollary 1.2.2.3. 

Corollary 1.2.2.5. A space X is a metrizable space if and only if it is a 
wM-space with an ( )2α -diagonal. 

Proof. Since a Hausdorff semi-metrizable wM-space is metrizable 
[17], the result is a corollary to Theorem 1.2.2. 

Remark 1.2.2.6. We cannot replace an ( )2α -diagonal condition by a 

quasi ( )2α -diagonal condition in Corollary 1.2.2.5. 

Lemma 1.2.3 [13]. A regular semi-metrizable space X has a semi- 2C  

property. 

Theorem 1.2.4. A space X is a regular-semi-metrizable space if 
and only if it is a semi-wΔ space with a semi- 2C  property and a quasi 

( )1α -diagonal. 

Proof. Suppose X is a semi-wΔ space with a semi- 2C  property and a 

quasi ( )1α -diagonal. By the quasi ( )1α -diagonal property and the semi-

2C  property, X is a 1T  regular space [11]. It follows from Theorem 1.1.7 
that X is a first countable space and hence, by Lemma 1.1.5, it has an 
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( )1α -diagonal. Let { }nnη  be a decreasing ( )1α -diagonal sequence and 

{ }nnς  be a decreasing semi-wΔ sequence. Let { GHGnnn |=ςΛη=ξ ∩  

}nn H ς∈η∈ ,  for each n. Then { }nnξ  is a decreasing semi-wΔ sequence 

such that ( ) { }∩
∞

=

=ξ
1

,
n

n xxSt  for each .Xx ∈  Since X has a semi- 2C  

property, by Lemma 1.1.3 there is a semi- 2C  regular refinement { }nnτ  

for { } .nnξ  Then ( ) ( ) { }xxStxSt
n

n
n

n =τ=τ
∞

=

∞

=
∩∩

11
,,  for each .Xx ∈  We claim 

that ( ){ }1, ≥|τ nxSt n  is a nhd base at x: Let Xx ∈  and G be an open 

nhd of x in X. If ( ) GxStx nn −τ∈ ,  for each n, then the sequence { }nnx  

clusters in ( ) { }∩
∞

=
=τ

1
,

n
n xxSt  and hence the sequence { }nnx  clusters at x. 

Since G is an open nhd of x, Gxn ∈  for some n, a contradiction. 

Therefore ( ) GxSt n ⊂τ,  for some n. Thus, the sequence { }nnτ  is semi-

development for X and since X is a 1T  regular space it follows that X is a 
semi-metrizable space [1]. The converse follows from Theorem 1.1.2 and 
Lemma 1.2.3. 

Corollary 1.2.4.1 [13]. A space X is a Moore space if and only if it is a 
wΔ-space with a semi- 2C  property and a quasi ( )1α -diagonal.  

Proof. Suppose X is a Moore space. Then X is a wΔ-space and a semi-
metrizable space. Therefore X has a semi- 2C  property and a quasi ( )1α -
diagonal. Conversely, suppose X is a wΔ-space with a semi- 2C  property 
and a quasi ( )1α -diagonal. Then X is a 1T  regular semi-metrizable space 
(from Theorem 1.2.4). Therefore X is a Moore space [14]. 

Corollary 1.2.4.2 [13]. A space X is metrizable if and only if it is a 
wM-space with a semi- 2C  property and a quasi ( )1α -diagonal. 

Proof. Suppose X is a wM space with a semi- 2C  property and a quasi 

( )1α -diagonal. X is a Moore space (from Corollary 1.2.4.1). Therefore X is 

a metrizable space [7], [17]. The converse part is clear. 
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Corollary 1.2.4.3 [13]. A countably compact space is metrizable if it 
has a semi- 2C  property and a quasi ( )1α -diagonal. 

Theorem 1.2.5. A Hausdorff space X is a semi-metrizable space if it 
is a θ-refinable, semi-wΔ space satisfying ( )∗  and having a quasi δG  
diagonal. 

Proof. Suppose X is a θ-refinable, semi-wΔ space satisfying ( )∗  and 

has a quasi δG  diagonal. It follows from Theorems 1.1.7 and 1.1.9 that X 

is a first countable, 1T  regular space. By Theorem 3.2 in [16], X is semi-
stratifiable and hence it is semi-metrizable. 

Remark 1.2.6. The converse of Theorem 1.2.5 is not true. The 
Niemytzki plane defined in [6], which is a Moore space, does not satisfy 
( ).∗  

Theorem 1.2.7. Let YXf →:  be a pseudo-open map of a Hausdorff 
semi-metrizable space X onto a space Y. Let Yy ∈0  and K be a compact 

set in X. Let ( )yf 1−  be finite for each { }0yYy −∈  and ( ) .0
1 Kyf =−  Then 

Y has an ( )1α -diagonal. 

Proof. Let { }nnξ  be a decreasing semi-development of X and =ηn  

( ) { ( ) }nn GGff ξ∈|=ξ  for each n. We claim that the sequence { }nnη  is an 

( )1α -diagonal sequence of Y. Suppose the contrary holds. There exist 

distinct points z and y in Y such that ( ).,
1
∩
∞

=
η∈

n
nyStz  Then for each n 

there is a nnG ξ∈  such that ( )., nGfyz ∈  If neither of z and y is ,0y  

then { }( )yzf ,1−  is finite implies there are distinct points knGxx ∈21,  

such that ( )yfx 1
1

−∈  and ( )zfx 1
2

−∈  for each k for some subsequence 
{ } .kkn  Since the sequence { }nnξ  is decreasing, it follows that ∈21, xx  

some nG ξ∈  for each n. But then ,21 xx =  a contradiction. If one of z 
and y is ,0y  say .0yy =  Then there exist sequences { }nnp  and { }nnq  

such that ( ),1 zfpn
−∈  ,Kqn ∈  and ∈nn qp ,  some nnG ξ∈  for each n. 
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Then we can find a constant sequence { }knkp  with ( )zfpp kn
1−∈=  for 

each k and a convergent sequence { }knkq  that converges to some Kq ∈  

for some subsequence { } .kkn  Since ,qp ≠  let ( )pG  and ( )qG  be disjoint 

open nhds of p and q. There is an n such that ( ) ( )pGpSt n ⊂ξ,  and since 
{ }nnξ  is decreasing, ( )nn pStq k ξ∈ ,  for all .nnk ≥  Since the sequence 

{ }knkq  converges to q, ( )qGq kn ∈  for all ≥kn  some m. Therefore 

( ) ( )qGpGq kn ∩∈  for all ≥kn  maximum of n and m, a contradiction. 

Therefore { }nnη  is an ( )1α -diagonal sequence. 

2. Examples 

(1.1) The ordinal space [ ]1,0 ω  has no quasi ( )1α -diagonal; otherwise 
by Theorem 1.1.7 the space becomes a first countable space. 

(1.2) There is a Hausdorff compact space that does not have a semi- 
2C  property. The Alexandroff double circle ( )CA  is a first countable 

space and hence by Lemma 1.1.5 it has an ( )1α -diagonal. This space 
cannot have a semi- 2C  property otherwise by Corollary 1.2.4.3 this space 
becomes a metrizable space. Also, this space has a quasi ( )2α -diagonal. 
Refer to the Example 1.20 in [9]. This example justifies Remarks 1.2.2.2, 
1.2.2.4 and 1.2.2.6. 

(1.3) There is a Hausdorff compact space that has a semi- 2C  
property, but it cannot have a quasi ( )1α -diagonal. Let X be a set such 
that .0ℵ>X  Let Xx ∈0  and { }.or 00 ℵ<−∉|⊂=τ GXGxXG  Then 
τ is a Hausdorff compact topology on X, the Example 1.1.8 in [6]. Let ξ be 
a semi-open cover of X. Let { } { }{ } {{ } { } ⊂|−∈|=η 000 ,, xxxxxXxx ∪  

}.some ξ∈G  Then ( ) { }0,, xxxSt ⊂η  for each { }.0xXx −∈  Therefore 

( ) ( ) ( )ξ⊂η=η ,,, xStxStxSt  for each { }.0xXx −∈  Also, ( ) =η,0xSt  
( ) ( ).,,0 ξ⊂η xStxSt  Therefore X has a semi- 2C  property. Since this 

space is not first countable, by Theorem 1.1.7 the space X cannot have a 
quasi ( )1α -diagonal. However, if ,0ℵ≤X  then X is first countable and 
by Corollary 1.2.4.3, X is metrizable. 
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(1.4) Let X be the set of real numbers with the usual open interval 
topology. Let N be the set of natural numbers. Let NXY =  be the 

quotient space obtained from X by identifying the natural numbers. Refer 
to the Example 1.4.7 in [6]. Then Y is a continuous, closed image of X and 
hence it is a 4T  semi-stratifiable space. The space Y is not first countable, 

but it has a ∗
δG  diagonal. Hence, by Theorem 1.1.7, this space cannot be 

a q-space (and it cannot be a semi-wΔ space). 

(1.5) A semi-wΔ property is not a perfect invariant property. Refer to 
Example 9.11 on page 486 in [19]. Let R be the set of real numbers. Let X 
be the subspace [ ] [ ]1,01,0 ×  of the space RR ×  with the ‘bowtie’ topology. 

Let [ ] { }.01,0 ×=K  Then K is a compact subset of X. Let KXY =  be 

the quotient space obtained by identifying the points of K. Then Y is a 
perfect image of X. By Theorem 1.2.7, Y has an ( )1α -diagonal. Since Y is 

not first countable, by Theorem 1.1.7, Y cannot be a q-space and hence it 
cannot be a semi-wΔ space. This example shows that both q property and 
semi-wΔ are not perfect invariants. 
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