SYMMETRIC GENERATING SET OF THE GROUPS $A_{k n+1}$ AND $S_{k n+1}$ USING THE WREATH PRODUCT A_{m} wr A_{a}

BASMAH H. SHAFEE

Department of Mathematics
Girls College in Makkah
Umm Al-Qura University
P. O. Box 1887, Saudi Arabia
e-mail: dr.basmah_1391@hotmail.com

Abstract

In this paper, we show how to generate $A_{k n+1}$ and $S_{k n+1}$ using a copy of the wreath product $A_{m} \mathrm{wr} A_{a}$ and an element of order $k+1$ in $A_{k n+1}$ and $S_{k n+1}$ for all odd positive integers $n=a m \geq 2$ and all positive integers $k \geq 2$. We also show how to generate $A_{k n+1}$ and $S_{k n+1}$ symmetrically using n elements each of order $k+1$.

1. Introduction

Al-Amri [1] showed that $A_{k n+1}$ and $S_{k n+1}$ can be generated using a copy of the wreath product S_{m} wr S_{a} and an element of order $k+1$ in $A_{k n+1}$ and $S_{k n+1}$ for all $n=a m \geq 2$ and all positive integers $k \geq 2$. Moreover $A_{k n+1}$ and $S_{k n+1}$ can be symmetrically generated by n permutations each of order $k+1$. Further, Shafee [5] showed that $A_{k n+1}$

[^0]Keywords and phrases: group, group generated by n-cycle, symmetric generating set, wreath product.

Received November 5, 2008
and $S_{k n+1}$ can be generated using a copy of the wreath product S_{m} wr A_{a} and an element of order $k+1$ in $A_{k n+1}$ and $S_{k n+1}$ for all $n=a m \geq 2$ and all positive integers $k \geq 2$. Moreover $A_{k n+1}$ and $S_{k n+1}$ can be symmetrically generated by using n elements each of order $k+1$. In this paper, we give permutations to show that the group $G=\langle X, Y, Z$, $T \mid\langle X, Y, Z\rangle=A_{m}$ wr $\left.A_{a}, T^{k+1}=\left[T, A_{m}\right]=1\right\rangle$ is the alternating group $A_{k n+1}$ when k is an even integer and $S_{k n+1}$ when k is odd for all $n=a m \geq 2, k \geq 2$. Further, we prove that G can be symmetrically generated by n permutations each of order $k+1$ of the form T_{0}, T_{1}, \ldots, T_{n-1}, where $T_{i}=T^{x^{i}}$ satisfying the condition that T_{0} commutes with the generators of A_{m}.

2. Preliminary Results

Theorem 2.1 [4]. Let $1<a \neq 2 a<n=a m$ and G be the group generated by the n-cycle $(1,2, \ldots, n)$, the 3 -cycle $(n, a, 2 a)$ and the permutation $(1,2,3)(a+1, a+2, a+3)(2 a+1,2 a+2,2 a+3) \cdots((m-1)$ $a+1,(m-1) a+2,(m-1) a+3)$. If n is an odd integer, then $G=$ A_{m} wr A_{a}.

Theorem 2.2 [4]. Let G be the group generated by the n-cycle $(1,2, \ldots, n)$ and k-cycle $(1,2, \ldots, k)$. If $1<k<n$ is an even integer, then $G=S_{n}$.

Theorem 2.3 [4]. Let n be an odd integer and G be the group generated by the n-cycle $(1,2, \ldots, n)$ and k-cycle $(1,2, \ldots, k)$. If $1<k<n$ is an odd integer, then $G=A_{n}$.

Definition 2.1. Let A be a group of permutations of a finite set Ω_{1} and B be a group of permutations of a finite set Ω_{2}. Assume that neither of Ω_{1} nor Ω_{2} is empty and they are disjoint. The wreath product (sometimes called the complete or the unrestricted wreath product) of A
and B defined by A wr $B=A^{\Omega_{2}} \times_{\theta} B$ which is the direct product of $\left|\Omega_{2}\right|$ copies of A and the mapping θ, where $\theta: B \rightarrow \operatorname{Aut}\left(A^{\Omega_{2}}\right)$ is defined by: $\theta_{y}(x)=x^{y}$, for all $x \in A^{\Omega_{2}}$. It follows that $\mid A$ wr $B\left|=(|A|)^{\left|\Omega_{2}\right|}\right| B \mid$.

Definition 2.2. Let G be a group and $\Gamma=\left\{T_{0}, T_{1}, \ldots, T_{n-1}\right\}$ be a subset of G, where each $T_{i}=T^{x^{i}}$ for all $i=0,1, \ldots, n-1$. Let S_{n} be the normalizer in G of the set Γ. We define Γ to be a symmetric generating set of G if and only if $G=\langle\Gamma\rangle$ and S_{n} permutes Γ doubly transitive by conjugation, i.e., Γ is realizable as an inner automorphism.

3. Permutational Generating Set of $A_{k n+1}$ and $S_{k n+1}$

Theorem 3.1. $A_{k n+1}$ and $S_{k n+1}$ can be generated using a copy of the wreath product A_{m} wr A_{a} and an element of order $k+1$ in $A_{k n+1}$ and $S_{k n+1}$ for all $n=a m \geq 2, n$ is odd and all $k \geq 2$.

Proof. Let

$$
\begin{aligned}
X= & (1,2, \ldots, n)(n+1, n+2, \ldots, 2 n) \cdots((k-1) n+1,(k-1) n+2, \ldots, k n), \\
Y= & (a \cdot 2 a, n)(n+a, n+2 a, 2 n) \cdots((k-1) n+a,(k-1) n+2 a, k n), \\
& \cdots(1,2,3)(a+1, a+2, a+3) \\
& (n+1, n+2, n+3)(n+a+1, n+a+2, n+a+3) \\
& \cdots(n+(m-1) a+1, n+(m-1) a+2, n+(m-1) a+3) \\
& \cdots((k-1) n+1,(k-1) n+2,(k-1) n+3) \\
& \cdots((k-1) n+a+1,(k-1) n+a+2,(k-1) n+a+3) \\
& \cdots((k-1) n+(m-1) a+1,(k-1) n+(m-1) a+2, \\
& (k-1) n+(m-1) a+3)
\end{aligned}
$$

and $T=(n, 2 n, 3 n, \ldots, k n, k n+1)$ be four permutations; the first is of order n, the second of order 3 , the third of order 3 and the fourth of order $k+1$. Let the H be the group generated by X, Y and Z. By Theorem 2.1, (see Al-Amri [4]) the group H is the wreath product A_{m} wr A_{a}. Let \bar{G} be the group generated by X, Y, Z and T. We claim that \bar{G} is either $A_{k n+1}$ or $S_{k n+1}$. To show this, let $\beta=T X$. It is clear that $\beta=$ $(1,2, \ldots, k n+1)$, which is a cycle of length $k n+1$. Let $\alpha=T^{\beta}$. Since $\alpha=(n+1,2 n+1, \ldots,(k-1) n+1, k n+1,1)$, conjugating α. By β, we get the cycle $\eta=(n+2,2 n+2, \ldots,(k-1) n+2,1,2)$. Hence the commutator $[\alpha, \eta]=(1,2, n+1)$. Let $G=\langle\beta,[\alpha, \eta]\rangle$. It clear that $G \cong S_{k n+1}$ or $A_{k n+1}$ depending on k either odd or even respectively, but if k is on odd in tiger, then X is on odd permutation and there for $G=\bar{G}=S_{k n+1}$. While if k is on even permutation, then \bar{G} is generated by even elements. Hence $G=\bar{G}=A_{k n+1}$.

4. Symmetric Permutational Generating Set of $A_{k n+1}$ and $S_{k n+1}$

Theorem 4.1. The groups $A_{k n+1}$ and $S_{k n+1}$ can be generated symmetrically using n elements each of order $k+1$.

Proof. Let X, Y and T be the elements considered in Theorem 3.1 above. Let $\Gamma=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ for all $n=a m \geq 2$, where $T_{i}=T^{x^{i}}$. Since

$$
\begin{aligned}
& T_{1}=(1, n+1,2 n+1, \ldots,(k-1) n+1, k n+1), \\
& T_{2}=(2, n+2, \ldots,(k-1) n+2, k n+1), \ldots, \\
& T_{n}=T^{x^{n}}=T=(n, 2 n, 3 n, \ldots, k n, k n+1) .
\end{aligned}
$$

Let $H=\langle\Gamma\rangle$. We claim that $H \cong A_{k n+1}$ or $S_{k n+1}$. To show this, consider the element

$$
\alpha=\prod_{i=1}^{n} T^{x^{i}}
$$

It is not difficult to show that

$$
\begin{aligned}
\alpha= & (1, n+1,2 n+1, \ldots,(k-1) n+1,2, n+2,2 n+2, \ldots, \\
& (k-1) n+2, \ldots, n, 2 n, \ldots, k n, k n+1),
\end{aligned}
$$

which is an element of order $k n+1$.
Let $H_{1}=\left\langle\alpha, T_{1}\right\rangle$. We claim that $H_{1} \cong A_{k n+1}$ or $S_{k n+1}$. To prove this θ is the mapping which takes the element in the position i of the cycle α into the element i of the cycle ($1,2, \ldots, k n+1$). Under this mapping the group H_{1} will be mapped into the group $\theta\left(H_{1}\right)=\langle(1,2, \ldots, k n+1)$, $(1,2,3, \ldots, k, k n+1)\rangle$.

Therefore by Theorems 2.2 and $2.3, \theta\left(H_{1}\right) \cong H_{1}$ is $A_{k n+1}$ or $S_{k n+1}$ depending on whether k is an even or odd integer respectively. Since $H_{1} \leq H$, if k is an odd integer $H_{1} \cong H \cong S_{k n+1}$. While if K is an even integer, then Γ contains an even permutation. Hence $H=\langle\Gamma\rangle$ is generated by even permutations. Hence $H_{1} \cong H \cong A_{k n+1}$.

In order to generate $A_{k n+1}$ or $S_{k n+1}$, the set $\Gamma=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ has to have at least n elements each of order $k+1$.

If we remove m elements from the set Γ, then above results can be modified by according to the following remarks.

Remarks 4.2. Let T and X be the permutations which have been described above, where $T^{k+1}=1$. Let $\Gamma=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ for all $n>2$, where $T_{i}=T^{x^{i}}$.
4.2.1. Let k be an even integer. If we remove m-elements from the set Γ for all $1 \leq m \leq n-2$, then the resulting set generates $A_{k(n-m)+1}$.
4.2.2. Let k be an odd integer. If we remove m-elements from the set Γ for all $1 \leq m \leq n-2$, then the resulting set generates $S_{k(n-m)+1}$.
4.2.3. If we remove $(n-1)$-elements from the set Γ, then the resulting set generates C_{k+1}.

The proofs of above remarks are similar to those of the proof of Theorem 4.2 in [5].

References

[1] Ibrahim R. Al-Amri, Symmetric generating set of the groups $A_{k m+1}$ and $S_{k n+1}$ using the wreath product S_{m} wr S_{a}, J. Faculty of Education, Ain Shams University 29 (2004), 79-83.
[2] Ibrahim R. Al-Amri, Symmetric generating set of the groups $A_{k m+1}$ and $S_{k n+1}$ using the wreath product S_{m} wr C_{2}, J. Faculty of Education, Ain Shams University, No. 26 (2001).
[3] Ibrahim R. Al-Amri, Symmetric generating set of the groups $A_{2 n+1}$ and $S_{2 n+1}$ using S_{n} and element of order two, Internat. J. Math. Math. Sci. 21(3) (1998), 489-492.
[4] Ibrahim R. Al-Amri, Computational methods in permutation group theory, Ph.D. Thesis, University of St. Andrews, 1992.
[5] Basmah H. Shafee, Symmetric generating set of the groups $A_{k m+1}$ and $S_{k n+1}$ using the wreath product S_{m} wr A_{a}, J. Faculty of Education, Ain Shams University, (to appear).
[6] Basmah H. Shafee, On the structure of some finite groups, Ph.D. Thesis, Faculty of Education for Girls in Makkah, 2005.

[^0]: 2000 Mathematics Subject Classification: 20B99.

