SYMMETRIC GENERATING SET OF THE GROUPS A_{kn+1} AND S_{kn+1} USING THE WREATH

PRODUCT A_m wr A_a

BASMAH H. SHAFEE

Department of Mathematics Girls College in Makkah Umm Al-Qura University P. O. Box 1887, Saudi Arabia e-mail: dr.basmah_1391@hotmail.com

Abstract

In this paper, we show how to generate A_{kn+1} and S_{kn+1} using a copy of the wreath product $A_m \operatorname{wr} A_a$ and an element of order k+1 in A_{kn+1} and S_{kn+1} for all odd positive integers $n=am\geq 2$ and all positive integers $k\geq 2$. We also show how to generate A_{kn+1} and S_{kn+1} symmetrically using n elements each of order k+1.

1. Introduction

Al-Amri [1] showed that A_{kn+1} and S_{kn+1} can be generated using a copy of the wreath product S_m wr S_a and an element of order k+1 in A_{kn+1} and S_{kn+1} for all $n=am\geq 2$ and all positive integers $k\geq 2$. Moreover A_{kn+1} and S_{kn+1} can be symmetrically generated by n permutations each of order k+1. Further, Shafee [5] showed that A_{kn+1}

2000 Mathematics Subject Classification: 20B99.

Keywords and phrases: group, group generated by n-cycle, symmetric generating set, wreath product.

Received November 5, 2008

and S_{kn+1} can be generated using a copy of the wreath product S_m wr A_a and an element of order k+1 in A_{kn+1} and S_{kn+1} for all $n=am\geq 2$ and all positive integers $k\geq 2$. Moreover A_{kn+1} and S_{kn+1} can be symmetrically generated by using n elements each of order k+1. In this paper, we give permutations to show that the group $G=\langle X,Y,Z,T|\langle X,Y,Z\rangle=A_m$ wr $A_a,T^{k+1}=[T,A_m]=1\rangle$ is the alternating group A_{kn+1} when k is an even integer and S_{kn+1} when k is odd for all $n=am\geq 2, k\geq 2$. Further, we prove that G can be symmetrically generated by n permutations each of order k+1 of the form $T_0,T_1,...,T_{n-1}$, where $T_i=T^{x^i}$ satisfying the condition that T_0 commutes with the generators of A_m .

2. Preliminary Results

Theorem 2.1 [4]. Let $1 < a \neq 2a < n = am$ and G be the group generated by the n-cycle (1, 2, ..., n), the 3-cycle (n, a, 2a) and the permutation $(1, 2, 3)(a + 1, a + 2, a + 3)(2a + 1, 2a + 2, 2a + 3)\cdots((m - 1)a + 1, (m - 1)a + 2, (m - 1)a + 3)$. If n is an odd integer, then $G = A_m$ wr A_a .

Theorem 2.2 [4]. Let G be the group generated by the n-cycle (1, 2, ..., n) and k-cycle (1, 2, ..., k). If 1 < k < n is an even integer, then $G = S_n$.

Theorem 2.3 [4]. Let n be an odd integer and G be the group generated by the n-cycle (1, 2, ..., n) and k-cycle (1, 2, ..., k). If 1 < k < n is an odd integer, then $G = A_n$.

Definition 2.1. Let A be a group of permutations of a finite set Ω_1 and B be a group of permutations of a finite set Ω_2 . Assume that neither of Ω_1 nor Ω_2 is empty and they are disjoint. The wreath product (sometimes called the *complete* or the unrestricted wreath product) of A

and B defined by A wr $B = A^{\Omega_2} \times_{\theta} B$ which is the direct product of $|\Omega_2|$ copies of A and the mapping θ , where $\theta: B \to Aut(A^{\Omega_2})$ is defined by: $\theta_{\gamma}(x) = x^{\gamma}$, for all $x \in A^{\Omega_2}$. It follows that |A| wr $|B| = (|A|)^{|\Omega_2|} |B|$.

Definition 2.2. Let G be a group and $\Gamma = \{T_0, T_1, ..., T_{n-1}\}$ be a subset of G, where each $T_i = T^{x^i}$ for all i = 0, 1, ..., n-1. Let S_n be the normalizer in G of the set Γ . We define Γ to be a symmetric generating set of G if and only if $G = \langle \Gamma \rangle$ and S_n permutes Γ doubly transitive by conjugation, i.e., Γ is realizable as an inner automorphism.

3. Permutational Generating Set of A_{kn+1} and S_{kn+1}

Theorem 3.1. A_{kn+1} and S_{kn+1} can be generated using a copy of the wreath product A_m wr A_a and an element of order k+1 in A_{kn+1} and S_{kn+1} for all $n=am \geq 2$, n is odd and all $k \geq 2$.

Proof. Let

$$X = (1, 2, ..., n)(n + 1, n + 2, ..., 2n) \cdots ((k - 1)n + 1, (k - 1)n + 2, ..., kn),$$

$$Y = (a \cdot 2a, n)(n + a, n + 2a, 2n) \cdots ((k - 1)n + a, (k - 1)n + 2a, kn),$$

$$Z = (1, 2, 3)(a + 1, a + 2, a + 3)$$

$$\cdots ((m - 1)a + 1, (m - 1)a + 2, (m - 1)a + 3)$$

$$(n + 1, n + 2, n + 3)(n + a + 1, n + a + 2, n + a + 3)$$

$$\cdots (n + (m - 1)a + 1, n + (m - 1)a + 2, n + (m - 1)a + 3)$$

$$\cdots ((k - 1)n + 1, (k - 1)n + 2, (k - 1)n + 3)$$

$$\cdots ((k - 1)n + a + 1, (k - 1)n + a + 2, (k - 1)n + a + 3)$$

$$\cdots ((k - 1)n + (m - 1)a + 1, (k - 1)n + (m - 1)a + 2,$$

$$(k - 1)n + (m - 1)a + 3)$$

and $T=(n,\,2n,\,3n,\,...,\,kn,\,kn+1)$ be four permutations; the first is of order n, the second of order 3, the third of order 3 and the fourth of order k+1. Let the H be the group generated by X, Y and Z. By Theorem 2.1, (see Al-Amri [4]) the group H is the wreath product A_m wr A_a . Let \overline{G} be the group generated by X, Y, Z and T. We claim that \overline{G} is either A_{kn+1} or S_{kn+1} . To show this, let $\beta=TX$. It is clear that $\beta=(1,2,...,kn+1)$, which is a cycle of length kn+1. Let $\alpha=T^{\beta}$. Since $\alpha=(n+1,2n+1,...,(k-1)n+1,kn+1,1)$, conjugating α . By β , we get the cycle $\eta=(n+2,2n+2,...,(k-1)n+2,1,2)$. Hence the commutator $[\alpha,\eta]=(1,2,n+1)$. Let $G=\langle\beta,[\alpha,\eta]\rangle$. It clear that $G\cong S_{kn+1}$ or A_{kn+1} depending on k either odd or even respectively, but if k is on odd in tiger, then X is on odd permutation and there for $G=\overline{G}=S_{kn+1}$. While if k is on even permutation, then \overline{G} is generated by even elements. Hence $G=\overline{G}=A_{kn+1}$.

4. Symmetric Permutational Generating Set of A_{kn+1} and S_{kn+1}

Theorem 4.1. The groups A_{kn+1} and S_{kn+1} can be generated symmetrically using n elements each of order k+1.

Proof. Let X, Y and T be the elements considered in Theorem 3.1 above. Let $\Gamma = \{T_1, T_2, ..., T_n\}$ for all $n = am \ge 2$, where $T_i = T^{x^i}$. Since $T_1 = (1, n+1, 2n+1, ..., (k-1)n+1, kn+1),$ $T_2 = (2, n+2, ..., (k-1)n+2, kn+1), ...,$ $T_n = T^{x^n} = T = (n, 2n, 3n, ..., kn, kn+1).$

Let $H = \langle \Gamma \rangle$. We claim that $H \cong A_{kn+1}$ or S_{kn+1} . To show this, consider the element

$$\alpha = \prod_{i=1}^n T^{x^i}.$$

It is not difficult to show that

$$\alpha = (1, n + 1, 2n + 1, ..., (k - 1)n + 1, 2, n + 2, 2n + 2, ...,$$

$$(k - 1)n + 2, ..., n, 2n, ..., kn, kn + 1),$$

which is an element of order kn + 1.

Let $H_1=\langle \alpha,\, T_1\rangle$. We claim that $H_1\cong A_{kn+1}$ or S_{kn+1} . To prove this θ is the mapping which takes the element in the position i of the cycle α into the element i of the cycle $(1,\,2,\,...,\,kn+1)$. Under this mapping the group H_1 will be mapped into the group $\theta(H_1)=\langle (1,\,2,\,...,\,kn+1),\,(1,\,2,\,3,\,...,\,k,\,kn+1)\rangle$.

Therefore by Theorems 2.2 and 2.3, $\theta(H_1) \cong H_1$ is A_{kn+1} or S_{kn+1} depending on whether k is an even or odd integer respectively. Since $H_1 \leq H$, if k is an odd integer $H_1 \cong H \cong S_{kn+1}$. While if K is an even integer, then Γ contains an even permutation. Hence $H = \langle \Gamma \rangle$ is generated by even permutations. Hence $H_1 \cong H \cong A_{kn+1}$.

In order to generate A_{kn+1} or S_{kn+1} , the set $\Gamma = \{T_1, T_2, ..., T_n\}$ has to have at least n elements each of order k+1.

If we remove m elements from the set Γ , then above results can be modified by according to the following remarks.

Remarks 4.2. Let T and X be the permutations which have been described above, where $T^{k+1} = 1$. Let $\Gamma = \{T_1, T_2, ..., T_n\}$ for all n > 2, where $T_i = T^{x^i}$.

- **4.2.1.** Let k be an even integer. If we remove m-elements from the set Γ for all $1 \le m \le n-2$, then the resulting set generates $A_{k(n-m)+1}$.
- **4.2.2.** Let k be an odd integer. If we remove m-elements from the set Γ for all $1 \le m \le n-2$, then the resulting set generates $S_{k(n-m)+1}$.
- **4.2.3.** If we remove (n-1)-elements from the set Γ , then the resulting set generates C_{k+1} .

The proofs of above remarks are similar to those of the proof of Theorem 4.2 in [5]. \Box

References

- [1] Ibrahim R. Al-Amri, Symmetric generating set of the groups A_{km+1} and S_{kn+1} using the wreath product S_m wr S_a , J. Faculty of Education, Ain Shams University 29 (2004), 79-83.
- [2] Ibrahim R. Al-Amri, Symmetric generating set of the groups A_{km+1} and S_{kn+1} using the wreath product S_m wr C_2 , J. Faculty of Education, Ain Shams University, No. 26 (2001).
- [3] Ibrahim R. Al-Amri, Symmetric generating set of the groups A_{2n+1} and S_{2n+1} using S_n and element of order two, Internat. J. Math. Math. Sci. 21(3) (1998), 489-492.
- [4] Ibrahim R. Al-Amri, Computational methods in permutation group theory, Ph.D. Thesis, University of St. Andrews, 1992.
- [5] Basmah H. Shafee, Symmetric generating set of the groups A_{km+1} and S_{kn+1} using the wreath product S_m wr A_a , J. Faculty of Education, Ain Shams University, (to appear).
- [6] Basmah H. Shafee, On the structure of some finite groups, Ph.D. Thesis, Faculty of Education for Girls in Makkah, 2005.