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Abstract

In this paper, we show how to generate Ap,,; and S, 1 using a copy
of the wreath product A,,wr A, and an element of order £ +1 in
Apn+1 and Sp,q for all odd positive integers n = am > 2 and all
positive integers k > 2. We also show how to generate Ap,,; and

Skn+1 symmetrically using n elements each of order % + 1.

1. Introduction

Al-Amri [1] showed that Aj,,; and Sp,,; can be generated using a
copy of the wreath product S,, wr S, and an element of order £ +1 in
Appe1 and Sy, for all n = am > 2 and all positive integers k > 2.
Moreover Ap,,; and Sp,,; can be symmetrically generated by n

permutations each of order % + 1. Further, Shafee [5] showed that A, .,
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and Sj,,; can be generated using a copy of the wreath product
S, wr A, and an element of order £+1 in Ap, ; and Sj,,; for all
n =am 2 2 and all positive integers & > 2. Moreover Ay,,; and Sp,.1
can be symmetrically generated by using n elements each of order & + 1.
In this paper, we give permutations to show that the group G = (X , Y, Z,
TX,Y, Z) = A, wr Ay, T*"L = [T, A,,] =1) is the alternating group
Apn when k is an even integer and Sp,,; when k is odd for all
n=am>2, k>2. Further, we prove that G can be symmetrically

generated by n permutations each of order 2+1 of the form T,

i, ... T,_1, where T; = T satisfying the condition that 7, commutes

with the generators of 4,,.

2. Preliminary Results

Theorem 2.1 [4]. Let 1 <a #2a <n=am and G be the group
generated by the n-cycle (1,2, ..., n), the 3-cycle (n,a,2a) and the
permutation (1, 2, 3)(a+1, a+2,a+3)(2a +1, 2a + 2, 2a + 3)---((m — 1)
a+l,(m-1)a+2, (m-1)a+3). If n is an odd integer, then G =
A, wr A,.

Theorem 2.2 [4]. Let G be the group generated by the n-cycle
1, 2, ..., n) and k-cycle (1, 2, ..., k). If 1 < k < n is an even integer, then

G=35,.

Theorem 2.3 [4]. Let n be an odd integer and G be the group
generated by the n-cycle (1, 2, ..., n) and k-cycle (1,2, .., k). If 1<k <n
is an odd integer, then G = A,,.

Definition 2.1. Let A be a group of permutations of a finite set
and B be a group of permutations of a finite set Qy. Assume that neither
of Q; nor Qg is empty and they are disjoint. The wreath product

(sometimes called the complete or the unrestricted wreath product) of A
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and B defined by A wr B = A2 x4 B which is the direct product of | Q, |
copies of A and the mapping 0, where 6 : B —» Aut(AQ2) is defined by:

0,(x) = x”, forall x e A2 Tt follows that | A wr B|=(| A |)‘ Oz | | B
Definition 2.2. Let G be a group and T = {T,, T3, ..., T,,_1} be a

subset of G, where each T} = sz forall i =0,1, .., n—1. Let S,, be the

normalizer in G of the set T. We define T" to be a symmetric generating

set of G if and only if G = (I') and S,, permutes I' doubly transitive by

conjugation, i.e., I' is realizable as an inner automorphism.

3. Permutational Generating Set of A;,,; and S;,, 1

Theorem 3.1. Ay, .1 and Sp,,1 can be generated using a copy of the
wreath product A,, wr A, and an element of order k+1 in Ay,.; and

Spne1 forall n =am > 2, n isodd and all k > 2.
Proof. Let

X=0,2.,n)n+L,n+2 ..,2n)-(k-1)n+1,(k-1)n+2, .., kn),

Y =(a-2a,n)(n+a,n+2a,2n)--(k-1)n+a, (k-1)n + 2a, kn),

Z=010,238)a+1,a+2 a+3)
((m-Da+1,(m-Da+2, (m-1)a+3)
n+lL,n+2,n+3)(n+a+1l,n+a+2,n+a+3)
m+(m-Da+L,n+(m-1)a+2,n+(m-1)a+3)
w(k-n+1,(k-1)n+2,(k-1)n+3)
((k-)n+a+1,(k-1)n+a+2,(k-1)n+a+3)
((k-1)n+(m-1a+1,(k-1)n+(m-1)a + 2,

(k-1Dn+(m-1)a+3)
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and T = (n, 2n, 3n, ..., kn, kn +1) be four permutations; the first is of

order n, the second of order 3, the third of order 3 and the fourth of order
k +1. Let the H be the group generated by X, Y and Z. By Theorem 2.1,

(see Al-Amri [4]) the group H is the wreath product A,, wr A,. Let G

be the group generated by X, Y, Z and 7. We claim that G is either
Appi1 or Sp,ii. To show this, let B =7X. It is clear that B =
1,2, ..., kn +1), which is a cycle of length kn +1. Let a = TP, Since
a=(m+1,2n+1, .., (k-1)n+1, kn +1,1), conjugating a. By B, we get
the cycle n=(n+2,2n+2, ..., (k—1)n + 2,1, 2). Hence the commutator
[, n] =@, 2, n+1). Let G = (B, [, n]). It clear that G = Sj,,1 or Apyiq
depending on k either odd or even respectively, but if & is on odd in tiger,

then X is on odd permutation and there for G = G = Sj,,,;. While if % is

on even permutation, then G 1is generated by even elements. Hence

G = 5 = Akn+l' 0
4. Symmetric Permutational Generating Set of A;,.; and S, ,;

Theorem 4.1. The groups Ap,.1 and Sp,.1 can be generated

symmetrically using n elements each of order k + 1.
Proof. Let X, Y and 7T be the elements considered in Theorem 3.1

above. Let I' = {1}, Ty, ..., T,,} for all n = am > 2, where T, = T . Since
Ti=0n+1,2n+1,...,(k-1)n+1, kn +1),

Ty =2,n+2, ..., (k-1)n+2 kn+1), ...,

T, = 7"~ = (n, 2n, 3n, ..., kn, kn +1).

Let H = (I'). We claim that H = Ap,,; or Sj,,;. To show this, consider

the element

n i
(le ITx.
=1
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It is not difficult to show that

a=0Ln+1,2n+1,.,(k-1)n+1,2,n+2 2n+2, ..,
(k-Dn+2, .., n,2n, .., kn, kn +1),

which is an element of order kn + 1.

Let H; = (a, T7). We claim that H; = Ay, or Sy,,;. To prove this

0 is the mapping which takes the element in the position i of the cycle a

into the element i of the cycle (1, 2, ..., kn +1). Under this mapping
the group H; will be mapped into the group 6(H;) = ((1, 2, ..., kn + 1),
(1,2, 8, .., k kn +1)).

Therefore by Theorems 2.2 and 2.3, 0(H;) = H; is Ap,.; or Sy,
depending on whether %k is an even or odd integer respectively. Since
H, <H, if k is an odd integer H; = H = Sj, ;. While if K is an
even integer, then I' contains an even permutation. Hence H = (I) is

generated by even permutations. Hence Hy = H = Ay, 1. 0
In order to generate Ay,,; or Sy, .1, theset I = {1, Ty, ..., T),} has
to have at least n elements each of order % + 1.

If we remove m elements from the set I', then above results can be
modified by according to the following remarks.

Remarks 4.2. Let T and X be the permutations which have been
described above, where T**' =1. Let T = {T}, Ty, ..., T,} for all n > 2,

where T} = T .

4.2.1. Let k be an even integer. If we remove m-elements from the set

['forall 1 < m < n -2, then the resulting set generates Ay, _p).1-

4.2.2. Let k be an odd integer. If we remove m-elements from the set

['forall 1 < m < n -2, then the resulting set generates Sp(;,_p).1-

4.2.3. If we remove (n — 1) -elements from the set T, then the resulting

set generates Cp, 1.
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The proofs of above remarks are similar to those of the proof of
Theorem 4.2 in [5]. 0
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