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Abstract 

In this paper, we solve strict mixed-integer linear programming not 
including integer linear programming by isometric cylinder method 
under the MATLAB environment. The algorithm considers the 
optimization problems for both whole and real variables of the strict 
mixed-integer linear programming, and can quickly obtain the optimal 
mixed-integer point simultaneously using isometric planes and cutting 
planes derived from polyhedral-cones and rounded-minimal-cylinders at 
the highest vertex. Only a few linear programming problems need to be 
solved. Numerical tests show the conclusions. 
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1. Introduction 

We consider the following mixed-integer linear programming (MILP): 

,max 0cxcz T +=  

such that ( ) ,vectorinteger-mixed:...,,,, 21
T

nxxxxbAx =≥  (1.1) 

where ( ),ijaA =  ( ) ,...,,, 21
T

ncccc =  ( )Tmbbbb ...,,, 21=  are given 

nm ×  matrix and vectors in nR  and mR  respectively, 0c  is a parameter 

independent of x, and ( ) iniri xxnnnnn ...,,,1 1>>+=  are integer 

variables, nn xx i ...,,1+  real variables. The MILP (1.1) becomes an integer 

linear programming (ILP) when ,0=rn  which has been solved by the 

isometric surface method, see [6] and [10]. We suppose 0>rn  here. The 

point where the first in  components are integers is referred to as 

mixed-integer point. The relaxation linear programming (LP) of (1.1) is 

,max xcz T=  

.thatsuch bAx ≥  (1.2) 

There is no equality in the constraint conditions of problems (1.1) and 
(1.2). Otherwise, for instance, an equality 

ininii bxaxaxa =+++ 2211  (1.3) 

can be replaced by two inequalities 

,02211 ε−≥+++ ininii bxaxaxa  

,02211 ε−−≥−−−− ininii bxaxaxa  (1.4) 

where 0ε  is a positive number near to zero, for example, 12
0 10−=ε  ( 1

0
−ε  

is understood as ).infinite  Clearly, the replacement (1.4) does not 

decrease mixed-integer points of the hyperplane (1.3) in ;nR  however, it 
is possible to increase mixed-integer points. When the distance 2(L  norm) 

from some mixed-integer point to the hyperplane (1.3) is not bigger than 



ISOMETRIC CYLINDER METHOD … 39 

a multiplier of ,0ε  the mixed-integer point is included in the thin space 

defined by (1.4). If this phenomenon happens to the replacement (1.4), 
then we approximately think of the mixed-integer point is located on the 
hyperplane (1.3). 

Generally, the following hypothesis is adopted in this paper: 

Thick-whole-point hypothesis: Assume nRyx ∈,  and y is a rounded 

mixed-integer point of x, where each one of the first in  components of x is 
rounded off to the nearest whole number. If 

( ) ,0

21

1

2
2 ε≤⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=− ∑

=

n

i
ii yxyx  

then the point x is considered a mixed-integer point. 

If there are sm  equalities which can eliminate sm  real variables 
( ),rs nm ≤  then the dimension of problems (1.1) and (1.2), and the 
number of constraint is reduced to smn −  and smm −  respectively. 

The algorithms for ILP and MILP have been studied for many years. 
Most algorithms are LP-based branch-and-cut, branch-and-bound and 
their improvements, e.g., [1-4, 8]. However, branch-and-cut and branch-
and-bound are essentially ill-implied enumeration [5]. Therefore, they 
are essentially NP-hard method for general ILP and MILP. For ILP, 
isometric surface method is a well-implied enumeration [5, 6], which has 
been successfully applied to travelling salesman problem [9]. The 
isometric surface method with some additional techniques is also well for 
the MILP (1.1), [10]. In this paper, we present an isometric cylinder 
method for the strict MILP (1.1) not including ILP. In order to get a 
solution of the problem (1.1), the proposed method needs not any 
additional technique of chance, and needs to solve relaxation problem 
only one time in most cases. Using the isometric plane method [7] or 
using the MATLAB function ( ),linprog  a simplex algorithm, we can 
quickly get the solution of relaxation LP (1.2). Numerical tests show that 
the isometric cylinder method, if it gives a solution, is more accurate than 
the isometric surface method for strict MILP. 
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2. Polyhedral-Cone and Rounded-Minimal-Cylinder 

Assume now, we have obtained, using the isometric plane method or 

simplex algorithm, the highest vertex ∗x  for relaxation LP (1.2) whatever 

the nonempty constraint polyhedron mΩ  is bounded or unbounded. ∗x  is 
usually an intersection point of n hyperplanes. If there are more than n 

hyperplanes intersecting at ,∗x  then test n hyperplanes by ,∗x  which are 
linearly independent of each other as intersection hyperplanes. These n 

hyperplanes with vertex ∗x  and normal vectors ( )Tnll
T
l kkk

aaA ,1, ...,,=  

( )nk ...,,2,1=  form a polyhedral-cone n
x

C ∗  in ,nR  that is, 

{ ( ) }....,,2,1,0 nkxxARxC kl
nn

x
=≥−|∈= ∗

∗  (2.1) 

There are n one-dimensional edges on the cone .n
x

C ∗  Each 1D-edge is 

a ray passing through ∗x  and satisfying 

( ) ( ) .1,0;...,,1,1...,,1,0 nkxxAnkkixxA ki ll ≤≤>−+−==− ∗∗  

Let ∗−= xxy kl  be a 1D-edge vector such that kly  can be found by 

( ).1,0;...,,1,1...,,1,0 nkyAnkkiyA k
k

k
i

l
l

l
l ≤≤>+−==  (2.2) 

We have known that 

∑
≠

−=−=
ki

T
lik

l cApdy
i

k ,  

( )∑
≠

+−==
ki

l
T
lli nkkjcAAAp jij ,...,,1,1...,,1  (2.3) 

satisfies (2.2) [7]. Thus, the 1D-edge is the ray 

{ } ( ).1,0, nkttyxxRxL kkl lny
x

≤≤≥=−|∈= ∗
∗  (2.4) 
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In order to find n 1D-edge vectors ( ),1...,,nky kl =  we notice the 

symmetric positive matrix ( )T
ll ji AAA =  and its inverse matrix 

( ) .1−= T
ll ji AAB  Let knE  be the matrix commuting k-n row/column. Then 

( ) ,1
knknknkn EBEEAE =−  namely 

,
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

kk
T
k

kk
T
ll

T
k

kk

bb
bB

AAa
aA

kk
 

where ka  and kb  are known column vectors. We have 

.11 T
kk

kk
kk bb

b
BA −=−  

The coefficients ip  of equation (2.3) can be got by .1−
kA  

The highest vertex ∗x  of (1.2) is not a mixed-integer point usually; 
otherwise the mixed integer programming (1.1) has been solved. We can 

round each one of the first in  components of ∗x  off to the nearest whole 

number, thus obtain the rounded-mixed-integer point Nx  nearest to .∗x  

Since ( ),...,,1 nnixx ii
N
i +== ∗  

( ) .
21

1

2
2 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=−= ∑

=

∗∗
∗

in

i
i

N
i

N
x xxxxr  

If ,0ε≤∗xr  then ∗x  is considered a mixed-integer point in thick-

whole-point hypothesis, so that suppose .0ε>∗xr  The cylinder 

( )
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
≤⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−|∈= ∗∗ ∑

=

∗
x

n

i
ii

n
x rxxRxO

i
21

1

2  (2.5) 

is referred to as rounded-minimal-cylinder. Clearly, there is no mixed-
integer point inside the cylinder ,∗xO  and there is one mixed-integer 
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manifoldDnr -  

{ }iN
ii

n
x nixxRxM N ...,,1, ==|∈=  

at least on the surface of ,∗xO  and the radius 2ix nr ≤∗  [6]. 

It is possible that there are k2  mixed-integer manifolds on the 

surface of ,∗xO  where fractional part of k components of ∗x  is near to 0.5, 

namely 

1: 0.5 , , ..., ,1 ,k j j k iE x x eps j j j k n∗ ∗− = ± = ≤ ≤  (2.6) 

jx∗  denotes the least integer larger than or equal to 522, −∗ =epsx j  

6.1510−<  is a MATLAB constant near to zero. 

However, the probability of event (2.6) is very small. Let fractional 
part of independent components, which drops equally likely into an 
interval with length 2eps in [0, 1], be a sample. Then the sample space 

consists of ( )( ) ineps21  samples. And the probability for the event (2.6) to 
happen is 

( ) ( ) ( ) ,0,212
1 i

knkk
nk nkepsepsCEp i ≤≤−= −  

which belongs to binomial distribution. Specially, 

( ) ( ) ,21210 epsnepsEp i
ni −≥−=  

( ) ( ) ,2212 1
1 epsnepsepsnEp i

n
i i ≤−= −  

namely on the surface of rounded-minimal-cylinder ∗xO  there is only one 

mixed-integer manifold with probability larger than or equal to 
,21 epsni−  and there are two manifolds with probability less than or 

equal to .2 epsni  

We have shown 

Theorem 1. Let ∗x  be the highest vertex of relaxation linear 

programming (1.2), n
x

C ∗  the polyhedral-cone defined by (2.1) and ∗xO  the 
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rounded-minimal-cylinder with radius 0ε>∗xr  defined by (2.5). Then 

there is no mixed-integer point inside the ∗xO  and ,2ix nr ≤∗  there is 

only one mixed-integer manifoldDnr -  with probability larger than or 

equal to epsni21 −  on the surface of ,∗xO  here, 522−=eps  is a MATLAB 

constant near to zero. 

The n 1D-edges of n
x

C ∗  with formula (2.4) intersect to the surface of 

rounded-minimal-cylinder ∗xO  or the boundary of constraint polyhedron 

mΩ  at n points. These n intersection points define an ( )Dn 1−  

hyperplane ∗πx  which makes the inside of close cone n
x

C ∗  a non-whole 

point set because of Theorem 1. Let klx1  be the intersection point, then 
via (2.5) 

,...,,2,1,1
1 nkytxx kkk lll =+= ∗  (2.7) 

where 

{ } ( ) ,,,min
21

1

2
1 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
== ∑

=
∗

i
kkkkk

n

i

l
ix

l
c

l
b

l
c

l yrtttt  

{( ) }....,,,...,,;0min 111 nkk
l

iii
l
b lllliyAxAbt kk

+−
∗ ≠>−=  

It is possible 1
01
−ε=klt  for unbounded .mΩ  Suppose that the bottom 

plane ∗πx  of n
x

C ∗  is defined by 

( ) ( ) .1...,,,,1...,,, 11
2

1
1

11
2

1
1 ±<±= ∗xaaaxaaa nn  

We have clearly 

( ) ( ) .1...,,,,...,,2,1,1...,,, 11
2

1
1

111
2

1
1 ±<=±= ∗xaaankxaaa n

l
n k  (2.8) 

The linear equations (2.8) can uniquely determine the normal vector 

( )Tnaaa 11
2

1
1 ...,,,  of .∗πx  Cutting-plane ∗πx  cuts out a non-whole mixed 

part near .∗x  Therefore, ( ) 1...,, 11
1 ±≥xaa n  may be appended to the 
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constraint set of (1.1). Via (2.7), the n 1D-edges ( ,0≥+∗ ttyx kl  
)nk ...,,2,1=  intersect to the plane ∗πx  of new constraint polyhedron 

m
1Ω  at n points ....,, 11 1 nll xx  Let 

{ }....,,2,1,max 11 nixcxc ilTlT ==∗  (2.9) 

Theorem 2. Suppose the highest vertex ∗x  for relaxation LP (1.2) is 

the intersection point of n linearly independent hyperplanes of .mΩ  Let 

( ) 1...,,: 11
1 ±=π ∗ xaa nx  be the bottom plane of n

x
C ∗  defined by (2.7) and 

(2.8). Append ∗πx  to the constraints (1.1) and form a new constraint 

polyhedron .1
mΩ  Then m

1Ω  has the same MILP solution with .mΩ  

Moreover, ∗lx1  is the highest vertex of .1
mΩ  

Proof. Since via Theorem 1, ∗πx  cuts out a non-whole mixed part 

near ∗x  of ,mΩ  evidently, m
1Ω  has the same MILP solution with .mΩ  

Let ∗y  be another vertex of the convex polyhedron ,mΩ  and 

( ) .1...,, 11
1 ±≥∗yaa n  According to the suppositions, we know that 

,∗∗ ≤ xcyc TT  and that the connected line between ∗y  and ∗x  is located 

on some boundary surface of mΩ  and intersects with ∗πx  at the point .∗z  

Evidently, ∗∗∗ ≤≤ xczcyc TTT  and via (2.9), .1 ∗≤∗ lTT xczc  Therefore, 

.1 ∗≤∗ lTT xcyc  

Notice that for some particular cases, ∗lx1  is the intersection point of 

a 1D-edge with both ∗πx  and a boundary plane of ,mΩ  and therefore the 

polyhedral-cone n
x lC

∗1  is not unique. In these cases, the highest vertex 

next to ∗lx1  should be found by relaxation LP after the cutting plane 

∗π lx1  is appended to the constraints (1.1). 

We need not to solve a new relaxation linear programming problem 
via Theorem 2. The additional cutting plane ∗πx  may form the highest 
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vertex of .1
mΩ  This will improve not only efficiency but also accuracy of 

computation. 

To determine whether the rounded-mixed-integer point Nx  belongs 

to ,mΩ  we consider the constraint set of (1.2). If ,0ebAx N ε−≥  where 

( ) ,1...,,1,1 Te =  and 0ε  is the same as right-hand side of (1.4), then Nx  

belongs to .mΩ  Now, suppose that a mixed-integer point Nx  of rounded-

minimal-cylinder surface belongs to .mΩ  Then we need only to consider 

the mixed-integer points x which satisfy ,NTT xcxc ≥  namely, we may 

append the inequality NTT xcxc ≥  to the constraint set of (1.1). 

The rounded-mixed-integer point Nx  is usually an external point of 

.1
mΩ  However; there are many mixed-integer points in the mixed-integer 

,manifold- Nxr MDn  where some of them belong to m
1Ω  possibly. In 

order to determine whether some mixed-integer points of NxM  belong to 

,1
mΩ  we should verify whether the mixed-integer points of NxM  satisfy 

the constraint conditions of .1
mΩ  If some satisfy, we should look for the 

highest one as well. Let ( )Tnn
N
n

N xxxxx ii
...,,,...,, 11 +=  be a mixed-

integer point of .NxM  Substituting the mixed-integer point x into (1.1) 

and ( ) ,1...,, 11
1 ±≥xaa n  we obtain that 

( ) ( ) ,...,,...,,max 11
T

nnnn xxccz ii ++=  

such that ,

1
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i
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N
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11
1

1
1 .1  (2.10) 



L. Y. YANG, J. D. HAN and Y. Y. NIE 46 

This is an LP-Dnr  problem. Using the isometric plane method or the 

MATLAB function ( ),linprog  we can quickly get the solution of (2.10) 

or conclude that there is no solution for (2.10). If ( )Tnn xx
i

11
1 ...,,+  is the 

solution of (2.10), then ( )11
11

1 ...,,,...,, nn
N
n

NN xxxxx
ii +=  is a higher 

interior mixed-integer point of ,1
mΩ  and we may append the inequality 

1NTT xcxc ≥  to the constraint set of (1.1). 

It is important to find quickly an interior rounded-mixed-integer 

point Nx  of m
1Ω  in practical computation. Therefore, the algorithm gives 

the following 4 selections of Nx  for (2.10): to round ∗x  off to the nearest 

mixed-integer point, to round ∗x  off to the most distant mixed-integer 

point, and to round ∗x  off to the two mixed-integer points of alternative 
distant and near components. 

If there is still no solution of (2.10) after many cutting-planes have 

been appended to ,mΩ  then the computation will fail possibly. 

3. Description of the Algorithm 

Step 1. Record the solution ( ( ))ccx H
201 ε−=  of MILP (1.1). Let 

.0== nc kk  Assign ., inc nknk ≤≤  

Step 2. Check whether the constraint polyhedron mΩ  of relaxation 
linear programming (1.2) is empty. If it is, then go to exit. 

Step 3. Find the highest vertex ∗x  of (1.2) using isometric plane 

method or simplex algorithm. If ( ) ,022 ε≤−∗ cxxc HT  then go to 

exit. 

Step 4. Make the rounded-minimal-cylinder ∗xO  with rounded-

mixed-integer points Nx  and radius .∗xr  If ,0ε≤∗xr  then ∗x  is the 

solution of (1.1) in thick-whole-point hypothesis, record ,1, == ∗
n

H kxx  
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and go to exit; If ,02 ε−≤∗ cxcT  then there is no solution for the 

problem (1.1), go to exit. 

Step 5. Find the polyhedral-cone n
x

C ∗  and its 1D-edges kly
x

L ∗  using 

(2.1)-(2.4). 

Step 6. Look for higher mixed-integer point 1Nx  of m
1Ω  according to 

(2.10) or mΩ  according to similar to (2.10). If there is no solution for 
(2.10) or similar to (2.10), then go to Step 8. 

Step 7. If there exists 1Nx  of mΩ  or m
1Ω  and ,0=nk  then append 

the inequality 1NTT xcxc ≥  to the constraint set of (1.1), else if there 

exist 1Nx  and ,0>nk  then append new inequality instead of old one. 

Record 1NH xx =  and print .Hx  

Step 8. Construct the cutting-plane ∗πx  using (2.2), (2.7) and (2.8). 

Append the inequality ( ) 1...,,, 11
2

1
1 ±≥xaaa n  to the constraint set of (1.1) 

and let .1+= cc kk  Find ∗lx1  using (2.9). 

Step 9. If cc kk ≤  or ,nn kk ≤  then go to Step 4 or 2 else go to exit. 

The conclusion on the algorithm is 

Theorem 3. The algorithm will be terminated at finite steps. And the 
solutions of MILP (1.1) are under the thick-whole-point hypothesis or 
nearly located in the highest plane of polyhedron cut out. 

Proof. We consider the constraint polyhedron mΩ  of the relaxation 

linear programming (1.2). If original mΩ  is empty, then the algorithm is 

stopped at Step 2, and the record ( ( ))ccx H
201 ε−=  means that (1.1) 

has no solution. So, assume original mΩ  is nonempty. 

Each time to perform Step 4-Step 8, we append a cutting-plane ∗πx  to 

mΩ  which cuts out a part of mΩ  containing mixed-fractions near to ,∗x  
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and if there exists ,1 mNx Ω∈  we also record 1NH xx =  and append an 

isometric plane { ( ) }01
1 =−|∈= NTn

x xxcRxP N  to .mΩ  The algorithm 

thus can get vertex series ...,...,,, 21 ixxx ∗∗∗  and mixed-whole-point 

series ...,...,,, 21 HjHH xxx  such that 

,21 ≥≥≥≥ ∗∗∗ iTTT xcxcxc  

.21 ≤≤≤≤ HjTHTHT xcxcxc  

And the equality signs cannot always hold on the first sequence of 
inequalities. Therefore, the algorithm will be terminated at finite steps 

when the constraint polyhedron mΩ  of (1.2) become empty or 

( ) .022 ε≤−∗ cxxc HjiT  

If the algorithm stops with 02 ε≤−∗ Hji xx  and the solution ix∗  of 

the last relaxation programming is unique, then the problem (1.1) has a 
unique solution. 

Generally, if the same isometric plane HTT xcxc =  is recorded 

continually over nk  times or cutting-planes are made over ck  times, then 

the mixed-integer points are the solutions of (1.1). In fact, if once the 
same isometric plane is recorded continually a few times, the cutting-
plane ∗πx  is hard to construct because of rounded-error accumulation. 

The arithmetical-operation quantity making cutting-planes and 
isometric planes is dependent on mainly Steps 5-8. In order to find 
inverse of symmetric positive matrix and to solve n linear equations (2.3), 

we need ( )3nO  arithmetical-operations which is the same estimation 

with solving linear equations (2.8). To solve the LP-Dnr  problem (2.10) 

usually needs ( )3
rmnO  operations on Step 6. So that to perform Steps 5-8 

need ( )3mnO  arithmetical-operations, which do not exceed the flops to 

perform Steps 2 and 3. 
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The algorithm need not solve LP (2.10) many times except original 

constraint polyhedron mΩ  of (1.2) is unbounded and the MILP (1.1) has 
no solution. 

4. Numerical Examples 

In order to investigate efficiency of the algorithm, we have done some 
numerical experiments. The program is run using MATLAB7.0 under 

.Windowsxp  The CPU time required on a PC is given in seconds. 

Example 1. Consider the following MILP: 

∑ =
=

n

i ixz
1

,max  

( ( ) ) ,0,15.015.1thatsuch ≥−+≤ xex i  

⎡ ⎤( ),53vectorinteger-mixedais nnx i =  (4.1) 

where ( ) .1...,,1 Te =  The solution of (4.1) is clearly 

( ( ) ( ) ) .15.015.1...,,15.015.1,1...,,1 1 TnnH ix −+−+= +  

And the optimal objective function value ( ) i
H nnxz 5.05.1 −=  for even 

numbers n and in  or for odd numbers n and .in  

The numerical experiments have been done for ,300,100,75,50=n  

.500  Table 1 lists comparison between the isometric cylinder method 
(ICM) and the isometric surface method with additional techniques (ISM) 
for (4.1). For LP problems, the isometric plane method (Ipm) is used in 
both ICM and ISM. In the table, “maximum”, “ncp” and “nip” mean the 
optimal objective function value of (4.1), the number of cutting-planes 
and the number of isometric planes, respectively. The two algorithms are 
comparative for (4.1). Here, ICM makes one cutting-plane more than ISM 
and gives an approximate optimal solution for .75=n  
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Table 1. Comparison between ICM and ISM for (4.1) 
 ICM(Ipm) ISM(Ipm) 

n 50 75 100 300 500 50 75 100 300 500 

ni 30 45 60 180 300 30 45 60 180 300 

CPU time 0.33 0.83 1.64 48.67 201.53 0.28 0.67 1.19 33.97 138.70 

maximum 60 88.614421 120 360 600 60 90 120 360 600 

ncp 2 2 2 2 2 1 1 1 1 1 

nip 1 1 1 1 1 1 1 1 1 1 

Example 2. Consider the following MILP: 

∑ =
=

n

i ixz
1

,min  

( ) ,625.02,75.1thatsuch exIwwex T ≥−≤  

⎡ ⎤( ),53vectorinteger-mixedais nnx i =  (4.2) 

where I is unit matrix, ( ) .1...,,1 Tnnw =  The solution and the 

optimal objective function value of the first relaxation LP of (4.2) are 

ex 625.0=  and ,625.0 nzr =  respectively. However, since the integer 

component of Hx  may equal to zero or negative number, the 
computational solution of (4.2) is dependent on n and difference between 
the two algorithms. The numerical experiments have been done for 

.50,40,30,20,10=n  

Table 2 lists comparison between ICM and ISM for (4.2). For LP 
problems, the simplex method is used in ICM, while the isometric plane 
method (Ipm) is used in ISM. 

Table 2. Comparison between ICM and ISM for (4.2) 

 ICM(Simplex) ISM(Ipm) 

n 10 20 30 40 50 10 20 30 40 50 

ni 6 12 18 24 30 6 12 18 24 30 

CPU time 0.14 0.17 0.23 0.36 0.52 0.09 0.11 0.17 0.30 0.44 

minimum 8.125 16.25 24.375 32.5 40.625 8.3163 17 24.5 33 41.5 

ncp 2 2 2 2 2 4 3 3 4 3 

nip 1 1 1 1 1 1 1 1 1 1 
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Both ICM and ISM obtain the solution of (4.2) for .50...,,10=n  But 

the solutions obtained by them are a little different, so that the optimal 
objective function values are different. The result of isometric cylinder 
algorithm is better than that of isometric surface algorithm. Table 3 lists 
the solutions of (4.2) obtained by ICM and ISM for .10=n  It is easy to 
see, via Table 3, that there are optimization problems for both whole and 
real variables of the strict MILP. 

Table 3. Solutions of (4.2) obtained by ICM and ISM for 10=n  

ICM 
(Simplex) 

1 1 1 1 1 1 1.0 1.0 0.125 0.0 

ISM(Ipm) 1 1 1 1 1 1 0.808712 0.808712 -0.109847 0.808712 

Example 3. Consider the following MILP: 

∑ =
=

n

i ixz
1

,max  

( ) ( ( ) ) ,0,15.015.12thatsuch ≥−+≤− xexIww iT  

⎡ ⎤( ).53vectorinteger-mixedais nnx i ≥  (4.3) 

The computational solution of (4.3) is dependent on n and difference 
between the two algorithms. The numerical experiments have been done 
for .50,40,30,20,10=n  Table 4 lists comparison between ICM and 

ISM for (4.3). 

Table 4. Comparison between ICM and ISM for (4.3) 

 ICM(Simplex) ISM(Ipm) 

n 10 20 30 40 50 10 20 30 40 50 

ni 7 13 19 27 33 7 13 19 27 33 

CPU time 0.20 0.38 0.44 0.61 1.63 0.02 0.06 0.33 0.44 0.47 

maximum 11.75 23.50 35.25 47.00 58.75 11.35 23.47 35.23 46.35 58.35 

ncp 2 2 2 2 2 4 4 9 5 4 

nip 2 1 1 2 2 1 1 1 1 1 
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The result of isometric cylinder algorithm is clearly better than that 
of isometric surface algorithm, although a little more CUP time is spent 
with the isometric cylinder algorithm. Table 5 lists the solutions of (4.3) 
obtained by ICM and ISM for .10=n  It is easy to see, via Table 5, that 
ICM and ISM give respectively different solutions for both whole and real 
variables of the strict MILP. 

Table 5. Solutions of (4.3) obtained by ICM and ISM for 10=n  
ICM(Simplex) 1 1 1 1 1 1 2 0.70 1.00 2.05 

ISM(Ipm) 1 1 1 1 1 1 1 1.35 1.65 1.35 
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