G. S. JEONG

Department of Mathematics Education Sunchon National University Suncheon 540-742, South Korea e-mail: gsjeong@sunchon.ac.kr

Abstract

In this paper, we obtain fixed point theorems without the continuity condition, and completeness of X is weakened.

Let (X, d) be a metric space. Two maps S and T are said to be compatible if, $\lim_{n\to\infty}d(STx_n,\,TSx_n)=0$ whenever $\{x_n\}\subseteq X$ is such that $\lim_{n\to\infty}Tx_n=\lim_{n\to\infty}Sx_n=t\in X$. Two maps S and T are said to be weakly compatible if they commute at coincidence points.

Let A, B, S and T be selfmaps of a metric space (X,d) such that $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$. Define $\{x_n\}$ by $x_0 \in X$, x_1 such that $Tx_1 = Ax_0$, x_2 such that $Sx_2 = Bx_1$, and, in general, define $\{x_n\}$ so that $Tx_{2n+1} = Ax_{2n}$, $Sx_{2n+2} = Bx_{2n+1}$. Define $\{y_n\}$ by $y_{2n} = Sx_{2n}$, $y_{2n+1} = Tx_{2n+1}$.

2000 Mathematics Subject Classification: 54H25, 47H10.

Key words and phrases: common fixed point, weakly compatible.

This paper was supported (in part) by NON DIRECTED RESEARCH FUND, Sunchon National University.

Received March 2, 2005; Revised March 5, 2005

© 2005 Pushpa Publishing House

Theorem 1. Let A, B, S and T be selfmaps of a metric space (X, d) satisfying $A(X) \subseteq T(X)$, $B(X) \subseteq S(X)$, and for each $x, y \in X$, either

$$d(Ax, By) \le \alpha \left\{ \frac{d(Ax, Sx)^2 + d(By, Ty)^2}{d(Ax, Sx) + d(By, Ty)} \right\} + \beta d(Sx, Ty)$$
 (1)

if $d(Ax, Sx) + d(By, Ty) \neq 0$, $\alpha, \beta > 0$, $\alpha + \beta < 1$, or

$$d(Ax, By) = 0 \text{ if } d(Ax, Sx) + d(By, Ty) = 0.$$
 (2)

If one of A(X), B(X), S(X) or T(X) is complete subspace of X, and $\{A, S\}$, $\{B, T\}$ are weakly compatible, then A, B, S and T have a unique common fixed point.

Proof. In (1) set $x = x_{2n}$, $y = x_{2n+1}$ to get

$$d(Ax_{2n}, Bx_{2n+1}) \le \alpha \left\{ \frac{d(Ax_{2n}, Sx_{2n})^2 + d(Bx_{2n+1}, Tx_{2n+1})^2}{d(Ax_{2n}, Sx_{2n}) + d(Bx_{2n+1}, Tx_{2n+1})} \right\} + \beta d(Sx_n, Tx_{2n+1})$$

or

$$d(y_{2n+1}, y_{2n+2}) \le \alpha \left\{ \frac{d(y_{2n+1}, y_{2n})^2 + d(y_{2n+2}, y_{2n+1})^2}{d(y_{2n+1}, y_{2n}) + d(y_{2n+2}, y_{2n+1})} \right\} + \beta d(y_{2n}, y_{2n+1}).$$

Setting $x = x_{2n}$, $y = x_{2n+1}$ in (1) gives

$$d(y_{2n+1}, y_{2n}) \le \alpha \left\{ \frac{d(y_{2n+1}, y_{2n})^2 + d(y_{2n}, y_{2n-1})^2}{d(y_{2n+1}, y_{2n}) + d(y_{2n}, y_{2n-1})} \right\} + \beta d(y_{2n}, y_{2n-1}).$$

Therefore, for all n,

$$d(y_n, y_{n+1}) \le \alpha \left\{ \frac{d(y_{n-1}, y_n)^2 + d(y_n, y_{n+1})^2}{d(y_{n-1}, y_n) + d(y_n, y_{n+1})} \right\} + \beta d(y_{n-1}, y_n).$$
(3)

From the argument of Theorem 4 of [6], if $y_n = y_{n+1}$ for some n, then A, B, S and T have a common fixed point.

Suppose now that $y_n \neq y_{n+1}$ for all n. With $d_n := d(y_n, y_{n+1})$, it follows from (3) that

$$(1-\alpha)d_n^2 + (1-\beta)d_n d_{n-1} - (\alpha+\beta)d_{n-1}^2 \le 0.$$

The corresponding quadratic equation has one positive solution k with 0 < k < 1. Therefore the above inequality implies that $d_n \le kd_{n-1}$. Then $d(y_n, y_{n+1}) = d_n \le k^n d_0 = k^n d(y_0, y_1)$ and hence $\{y_n\}$ is Cauchy.

Now suppose that S(X) is complete. Then the subsequence $\{y_{2n}\}$ has a limit in S(X) since $\{y_{2n}\}$ is contained in S(X). Let $u=\lim_{n\to\infty}y_{2n}$. Since $\lim_{n\to\infty}d_n=0$, the subsequence $\{y_{2n-1}\}$ also converges to u. There exists a $v\in X$ such that Sv=u since $u\in S(X)$. To prove that Av=u, let $r_1=d(Av,u)$, and suppose that $r_1>0$. Setting $x=v,\ y=x_{2n-1}$ in (1) gives, since $y_n\neq y_{n+1}$ for each n,

$$d(Av, y_{2n}) = d(Av, Bx_{2n-1})$$

$$\leq \alpha \left\{ \frac{d(Av, Sv)^2 + d(Bx_{2n-1}, Tx_{2n-1})^2}{d(Av, Sv) + d(Bx_{2n-1}, Tx_{2n-1})} \right\} + \beta d(Sv, Tx_{2n-1})$$

$$\leq \alpha [d(Av, Sv) + d(y_{2n}, y_{2n-1})] + \beta d(u, y_{2n-1}).$$

Taking the limit as $n \to \infty$ yields $r_1 = d(Av, u) \le \alpha d(Av, Sv) = \alpha d(Av, u)$, a contradiction. Therefore $r_1 = 0$; i.e., Av = u = Sv.

Since $A(X) \subseteq T(X)$ and Av = u, $u \in T(X)$, there exists a $w \in X$ such that Tw = u. To prove that Bw = u, let $r_2 = d(Bw, u)$, and assume that $r_2 > 0$. Setting $x = x_{2n-2}$ and y = w in (1) gives

$$d(y_{2n-1}, Bw) = d(Ax_{2n-2}, Bw)$$

$$\leq \alpha \left\{ \frac{d(Ax_{2n-2}, Sx_{2n-2})^2 + d(Bw, Tw)^2}{d(Ax_{2n-2}, Sx_{2n-2}) + d(Bw, Tw)} \right\} + \beta d(Sx_{2n-2}, Tw)$$

$$\leq \alpha [d(y_{2n-1}, y_{2n-2}) + d(Bw, u)] + \beta d(y_{2n-2}, u).$$

Taking the limit as $n \to \infty$ yields $r_2 = d(u, Bw) \le \alpha d(Bw, u)$, a contradiction. Therefore $r_2 = 0$; i.e., Bw = u = Tw.

If we assume that T(X) is complete, then, by the same argument, A and S have a coincidence point, and B and T also have a coincidence point.

If B(X) is complete, then $u \in B(X) \subseteq S(X)$. Similarly if A(X) is complete, then $u \in A(X) \subseteq T(X)$. Thus, by the previous cases, A and S have a coincidence point, and B and T also have a coincidence point.

Therefore u = Sv = Av = Tw = Bw.

Since A and S are weakly compatible, they commute at a coincidence point v. Thus Au = ASv = SAv = Su. Since B and T are weakly compatible, we get Bu = BTw = TBw = Tu. Since d(Av, Sv) + d(Bu, Tu) = d(u, u) + d(Bu, Tu) = 0, we obtain, from (2), that d(Av, Bu) = d(u, Bu) = 0. Hence Bu = u. Since d(Au, Su) + d(Bu, Tu) = 0, from (2), d(Au, Bu) = d(Au, u) = 0. Hence Au = u.

Therefore u is a common fixed point of A, B, S and T.

The uniqueness of u follows from (2).

Theorem 1 of Ahmad and Imdad [1] is a special case of Theorem 1, since weakly commuting implies compatibility. We have improved Theorem 4 of Jeong and Rhoades [6] by removing any assumption of continuity and by not assuming that X is complete.

Theorem 2. Let A, B, S and T be selfmaps of a metric space (X, d) satisfying $A(X) \subseteq T(X)$, $B(X) \subseteq S(X)$, and, for each $x, y \in X$, either

$$d(Ax, By) \le \alpha \left\{ \frac{d(Ax, Sx)d(Sx, By) + d(By, Ty)d(Ty, Ax)}{d(Sx, By) + d(Ty, Ax)} \right\}$$

$$+ \beta d(Sx, Ty)$$

$$(4)$$

if $d(Sx, By) + d(Ty, Ax) \neq 0$, $\alpha, \beta > 0$, $\alpha + \beta < 1$, or

$$d(Ax, By) = 0 \text{ if } d(Sx, By) + d(Ty, Ax) = 0.$$
 (5)

If one of A(X), B(X), S(X) or T(X) is complete subspace of X, and $\{A, S\}$, $\{B, T\}$ are weakly compatible, then A, B, S and T have a unique common fixed point.

Proof. From (4) we get, for all n,

$$d(y_n, y_{n+1}) \le \alpha \left\{ \frac{d(y_{n-1}, y_n)d(y_{n-1}, y_{n+1})}{d(y_{n-1}, y_{n+1})} \right\} + \beta d(y_{n-1}, y_n).$$
 (6)

If, as in the proof of Theorem 5 of [6], $y_n = y_{n+1}$ for some n, then A, B, S and T have a common fixed point.

If $y_n = y_{n+2}$ for some n, then $d(y_n, y_{n+2}) + d(y_{n+1}, y_{n+1}) = 0$, and, from (5), $d(y_{n+1}, y_{n+2}) = 0$; i.e., $y_{n+1} = y_{n+2}$, which we have already taken care of. Therefore, we may assume that $y_n \neq y_{n+2}$ for all n. From (6), one obtains $d(y_n, y_{n+1}) \leq (\alpha + \beta) d(y_{n-1}, y_n)$, $\alpha + \beta < 1$. Then $d(y_n, y_{n+1}) \leq (\alpha + \beta)^n d(y_0, y_1)$ and hence $\{y_n\}$ is a Cauchy sequence.

Now suppose that S(X) is complete. Then the subsequence $\{y_{2n}\}$ has a limit in S(X) since $\{y_{2n}\}$ is contained in S(X). Let $u=\lim_{n\to\infty}y_{2n}$. The subsequence $\{y_{2n-1}\}$ also converges to u. There exists a $v\in X$ such that Sv=u since $u\in S(X)$. To prove that Av=u, let $r_1=d(Av,u)$, and suppose that $r_1>0$. Setting x=v, $y=x_{2n-1}$ in (4) gives,

$$\begin{split} d(Av,\ y_{2n}) &= d(Av,\ Bx_{2n-1}) \\ &\leq \alpha \bigg\{ \frac{d(Av,Sv)d(Sv,Bx_{2n-1}) + d(Bx_{2n-1},Tx_{2n-1})d(Tx_{2n-1},Av)}{d(Sv,Bx_{2n-1}) + d(Tx_{2n-1},Av)} \bigg\} \\ &+ \beta d(Sv,\ Tx_{2n-1}) \\ &= \alpha \bigg\{ \frac{d(Av,\ u)d(u,\ y_{2n}) + d(y_{2n},\ y_{2n-1})d(y_{2n-1},\ Av)}{d(u,\ y_{2n}) + d(y_{2n-1},\ Av)} \bigg\} \\ &+ \beta d(Sv,\ y_{2n-1}). \end{split}$$

Since $r_1 > 0$, there exists an N_1 such that, for all $n > N_1$, and $r_3 := d(u, y_{2n}) + d(y_{2n-1}, Av) \neq 0$. Therefore, for all $n > N_1$,

$$d(Av, y_{2n}) \le \alpha [d(Av, u) + d(y_{2n}, y_{2n-1})] + \beta d(Sv, y_{2n-1}).$$

Taking the limit as $n \to \infty$ yields $r_1 = d(Av, u) \le \alpha d(Av, u)$, a contradiction. Therefore $r_1 = 0$; i.e., Av = u = Sv.

Since $A(X) \subseteq T(X)$ and Av = u, $u \in T(X)$, there exists a $w \in X$ such that Tw = u. To prove that Bw = u, let $r_2 = d(Bw, u) > 0$. Setting $x = x_{2n-2}$ and y = w in (4) gives

$$d(y_{2n-1}, Bw)$$

$$=d(Ax_{2n-2}, Bw)$$

$$\leq \alpha \left\{ \frac{d(Ax_{2n-2},\,Sx_{2n-2})d(Sx_{2n-2},\,Bw) + d(Bw,\,Tw)d(Tw,\,Ax_{2n-2})}{d(Sx_{2n-2},\,Bw) + d(Tw,\,Ax_{2n-2})} \right\}$$

+
$$\beta d(Sx_{2n-2}, Tw)$$

$$=\alpha\left\{\frac{d(y_{2n-1},\ y_{2n-2})d(y_{2n-2},\ Bw)+d(Bw,\ u)d(u,\ y_{2n-1})}{d(y_{2n-2},\ Bw)+d(u,\ y_{2n-1})}\right\}+\beta d(y_{2n-2},\ u).$$

Since $r_2 > 0$, there exists an N_2 such that $r_5 := d(y_{2n-2}, Bw) + d(u, y_{2n-1})$ > 0 for all $n > N_2$. Thus, for all $n > N_2$,

$$d(y_{2n-1}, Bw) \le \alpha [d(y_{2n-1}, y_{2n-2}) + d(Bw, u)] + \beta d(y_{2n-2}, u).$$

Taking the limit as $n \to \infty$ yields $0 < r_2 = d(u, Bw) \le \alpha d(Bw, u)$, a contradiction. Therefore $r_2 = 0$; i.e., Bw = u = Tw.

If we assume that T(X) is complete, then, by a similar argument, A and S have a coincidence point, and B and T also have a coincidence point.

If B(X) is complete, then $u \in B(X) \subseteq S(X)$. Similarly if A(X) is complete, then $u \in A(X) \subseteq T(X)$. Thus, by the previous cases, A and S have a coincidence point, and B and T also have a coincidence point.

Therefore u = Sv = Av = Tw = Bw.

Since A and S are weakly compatible, they commute at a coincidence

point v. Thus Au = ASv = SAv = Su. Since B and T are weakly compatible, we get Bu = BTw = TBw = Tu.

Let $Bu \neq u$. Then $d(Sv, Bu) + d(Tu, Av) = 2d(u, Bu) \neq 0$. Setting x = v and y = u in (4) gives

$$d(u, Bu) = d(Av, Bu)$$

$$\leq \alpha \left\{ \frac{d(Av, Sv)d(Sv, Bu) + d(Bu, Tu)d(Tu, Av)}{d(Sv, Bu) + d(Tu, Av)} \right\} + \beta d(Sv, Tu)$$

$$= \beta d(u, Bu),$$

a contradiction. Thus Bu = u.

Let $Au \neq u$. Then $d(Su, Bw) + d(Tw, Au) = 2d(u, Au) \neq 0$. Setting x = u and y = w in (4) gives

$$\begin{split} d(Au, \, u) &= d(Au, \, Bw) \\ &\leq \alpha \bigg\{ \frac{d(Au, \, Su)d(Su, \, Bw) + d(Bw, \, Tw)d(Tw, \, Au)}{d(Su, \, Bw) + d(Tw, \, Au)} \bigg\} + \beta d(Su, \, Tw) \\ &= \beta d(Au, \, u), \end{split}$$

a contradiction. Thus Au = u.

Therefore u is a common fixed point of A, B, S and T.

The uniqueness of u follows from (4).

Theorem 2 of Imdad and Ahmad [4] is a special case of Theorem 2, since weakly commuting implies compatibility. We have improved Theorem 5 of Jeong and Rhoades [6] by removing the conditions of continuity and the completeness of X.

Theorem 3. Let A, B, S and T be selfmaps of a metric space (X, d) satisfying $A(X) \subseteq T(X)$, $B(X) \subseteq S(X)$, and, for each $x, y \in X$, either

$$d(Ax, By) \le \frac{ad(Sx, Ax)d(Ty, By) + bd(Sx, By)d(Ty, Ax)}{d(Sx, Ax) + d(By, Ty)} + cd(Sx, Ty) \quad (7)$$

if
$$d(Sx, Ax) + d(By, Ty) \neq 0$$
, $a \geq 0$, $0 \leq c < 1$, $a + 2c < 2$, or

$$d(Ax, By) = 0$$
 if $d(Sx, Ax) + d(By, Ty) = 0$.

If one of A(X), B(X), S(X) or T(X) is complete subspace of X, and $\{A, S\}$, $\{B, T\}$ are weakly compatible, then A, B, S and T have a unique common fixed point.

Proof. If $y_n = y_{n+1}$ for some n, then, using the same argument as in Theorem 6 of [6], A, B, S and T have a common fixed point.

From (7) we get, for all n,

$$d(y_{n+1}, y_{n+2}) \le \frac{ad(y_n, y_{n+1})d(y_{n+1}, y_{n+2})}{d(y_n, y_{n+1}) + d(y_{n+1}, y_{n+2})} + cd(y_n, y_{n+1}).$$
(8)

Suppose that $y_n \neq y_{n+1}$ for each n. Then with $d_n := d(y_n, y_{n+1})$, it follows from (8) that

$$d_{n+1}^2 + (1 - a - c)d_n d_{n+1} - c d_n^2 \le 0.$$

The corresponding quadratic equation has one positive solution

$$k := \frac{-(1-a-c)+\sqrt{(1-a-c)^2+4c}}{2}$$
 with $0 < k < 1$.

Thus the above inequality implies that $d_{n+1} \leq kd_n$. Therefore $\{y_n\}$ is Cauchy.

The remainder of the proof is similar to that of Theorem 1 and Theorem 2, and will therefore be omitted.

Theorem 1 of Ahmad et al. [2] is a special case of Theorem 3, and Theorem 3 is an improvement of Theorem 6 of Jeong and Rhoades [6].

There are two contractive forms for three maps. One is obtained by setting T = S and the other is obtained by setting B = A. Also for three maps we can prove more general results.

For the situation in which T = S, set $x_0 \in X$ and define $\{x_n\}$ by

$$Ax_{2n} = Sx_{2n+1}, Bx_{2n+1} = Sx_{2n+2},$$

$$y_{2n} := Sx_{2n}, \quad y_{2n+1} := Sx_{2n+1}.$$

Theorem 4. Let A, B and S be three selfmaps of a metric space (X, d) such that, for each $x, y \in X$, either

$$d(Ax, By) \le \frac{ad(Sx, Ax)d(Sy, By) + bd(Sx, By)d(Sy, Ax)}{d(Sx, Ax) + d(Sy, By)} + c \left\{ \frac{d(Sx, Ax)d(Sy, Ax) + d(Sy, By)d(Sx, By)}{d(Sx, By) + d(Sy, Ax)} \right\}$$
(9)

if $d(Sx, Ax) + d(Sy, By) \neq 0$ and $d(Sx, By) + d(Sy, Ax) \neq 0$, where $a, b, c \geq 0$ with a + 2c < 2, or

$$d(Ax, By) = 0$$
 if $d(Sx, Ax) + d(Sy, By) = 0$ or
$$d(Sx, By) + d(Sy, Ax) = 0.$$
 (10)

If $A(X) \cup B(X) \subseteq S(X)$ and one of A(X), B(X) or S(X) is complete subspace of X, and if $\{A, S\}$, $\{B, S\}$ are weakly compatible, then A, B and S have a unique common fixed point.

Proof. If $y_n = y_{n+1}$ for some n, then, as in the proof of Theorem 7 of [6], A, B and S have a common fixed point.

Suppose that $y_n \neq y_{n+1}$ for each n. From (9) we get, for all n,

$$d(y_n, y_{n+1}) \le \frac{ad(y_{n-1}, y_n)d(y_n, y_{n+1})}{d(y_{n-1}, y_n) + d(y_n, y_{n+1})} + cd(y_n, y_{n+1}). \tag{11}$$

With $d_n := d(y_n, y_{n+1})$, it follows from (11) that

$$(1-c)d_n^2 + (1-a-c)d_{n-1}d_n \le 0$$

or

$$d_n((1-c)d_n + (1-a-c)d_{n-1}) \le 0.$$

Thus the above inequality implies that $d_n \le kd_{n-1}$, where $k = \frac{a+c-1}{1-c}$ and 0 < k < 1. Therefore $\{y_n\}$ is Cauchy.

Now suppose that S(X) is complete. Then $\{y_n\}$ has a limit in S(X). And $\{y_{2n}\}$, $\{y_{2n+1}\}$ have the same limit in S(X). Let $u = \lim_{n \to \infty} \{y_n\} = 1$ $\lim_{n\to\infty}\{y_{2n}\}=\lim_{n\to\infty}\{y_{2n+1}\}.$ Then there exists a $v\in X$ such that Sv=u since $u\in S(X)$.

To prove that Av = u, let $r_1 = d(Av, u)$, and assume that $r_1 > 0$. Setting x = v, $y = x_{2n-1}$ in (9) gives

$$\begin{split} &d(Av,\ y_{2n})\\ &=d(Av,\ Bx_{2n-1})\\ &\leq \frac{ad(Sv,\ Av)d(Sx_{2n-1},\ Bx_{2n-1})+bd(Sv,\ Bx_{2n-1})d(Sx_{2n-1},\ Av)}{d(Sv,\ Av)+d(Sx_{2n-1},\ Bx_{2n-1})}\\ &+c\bigg\{\frac{d(Sv,\ Av)d(Sx_{2n-1},\ Av)+d(Sx_{2n-1},\ Bx_{2n-1})d(Sv,\ Bx_{2n-1})}{d(Sv,\ Bx_{2n-1})+d(Sx_{2n-1},\ Av)}\bigg\}\\ &=\frac{ad(u,\ Av)d(y_{2n-1},\ y_{2n})+bd(u,\ y_{2n})d(y_{2n-1},\ Av)}{d(u,\ Av)+d(y_{2n-1},\ y_{2n})}\\ &+c\bigg\{\frac{d(u,\ Av)d(y_{2n-1},\ Av)+d(y_{2n-1},\ y_{2n})d(u,\ y_{2n})}{d(u,\ y_{2n})+d(y_{2n-1},\ Av)}\bigg\}. \end{split}$$

Taking the limit as $n \to \infty$ gives, $d(Av, u) \le cd(u, Av)$, a contradiction. Hence Av = u, and A and S have a coincidence point v.

To prove that Bv = u, let $r_2 = d(Bv, u)$, and assume that $r_2 > 0$. Setting $x = x_{2n}$, y = v in (9) gives

$$d(y_{2n+1}, Bv) = d(Ax_{2n}, Bv)$$

$$\leq \frac{ad(Sx_{2n}, Ax_{2n})d(Sv, Bv) + bd(Sx_{2n}, Bv)d(Sv, Ax_{2n})}{d(Sx_{2n}, Ax_{2n}) + d(Sv, Bv)}$$

$$+ c \left\{ \frac{d(Sx_{2n}, Ax_{2n})d(Sv, Ax_{2n}) + d(Sv, Bv)d(Sx_{2n}, Bv)}{d(Sx_{2n}, Bv) + d(Sv, Ax_{2n})} \right\}$$

$$= \frac{ad(y_{2n}, y_{2n+1})d(u, Bv) + bd(y_{2n}, Bv)d(u, y_{2n+1})}{d(y_{2n}, y_{2n+1}) + d(u, Bv)}$$

$$+ c \left\{ \frac{d(y_{2n}, y_{2n+1})d(u, y_{2n+1}) + d(u, Bv)d(y_{2n}, Bv)}{d(y_{2n}, Bv) + d(u, y_{2n+1})} \right\}.$$

Taking the limit as $n \to \infty$ yields, $d(u, Bv) \le cd(u, Bv)$, a contradiction. Hence Bv = u. Thus B and S have a coincidence point v. Therefore u = Sv = Av = Bv.

If A(X) is complete, then $u \in A(X) \subseteq S(X)$. Similarly if B(X) is complete, then $u \in B(X) \subseteq S(X)$. Thus, by the previous cases, A and S and B have a coincidence point; i.e., u = Sv = Av = Bv.

Since A and S are weakly compatible, Au = ASv = SAv = Su. Since B and S are weakly compatible, Bu = BSv = SBv = Su. Thus Au = Bu = Su.

Since d(Su, Au) + d(Sv, Bv) = 0, it follows from (10) that d(Au, Bv) = 0; i.e., Au = Bv. But Bv = u. Thus Au = u. Therefore u is a common fixed point of A, B and S.

The uniqueness of u follows from (10).

Theorem 1 of Divicarro et al. [3] is a special case of Theorem 4. And Theorem 4 is an improvement of Theorem 7 of Jeong and Rhoades [6].

Theorem 5. Let A, B and S be three selfmaps of a metric space (X, d) such that, for each $x, y \in X$, either

$$d(Ax, By) \le \alpha_1 \left\{ \frac{d(Sx, By)d(Sx, Sy)}{d(Sx, Sy) + d(Sy, By)} \right\} + \alpha_2(d(Sx, Ax) + d(Sy, By))$$

$$+ \alpha_3(d(Sx, By) + d(Sy, Ax)) + \alpha_4d(Sx, Sy)$$
(12)

if $d(Sx, Sy) + d(Sy, By) \neq 0$, where $\alpha_i \geq 0$ with $\alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4 < 1$, or

$$d(Ax, By) = 0 \text{ if } d(Sx, Sy) + d(Sy, By) = 0.$$
 (13)

If $A(X) \cup B(X) \subseteq S(X)$ and one of A(X), B(X) or S(X) is complete subspace of X, and if $\{A, S\}$, $\{B, S\}$ are weakly compatible, then A, B and S have a unique common fixed point.

Proof. If $y_n = y_{n+1}$ for some n, then, as in the proof of Theorem 9 of Jeong and Rhoades [6], it follows that A, B and S have a common fixed point.

Now we assume that $y_n \neq y_{n+1}$ for each n. From (12) we obtain, for all n.

$$d(y_{n}, y_{n+1}) \leq \alpha_{1} \left\{ \frac{d(y_{n-1}, y_{n+1})d(y_{n-1}, y_{n})}{d(y_{n-1}, y_{n}) + d(y_{n}, y_{n+1})} \right\}$$

$$+ \alpha_{2} (d(y_{n-1}, y_{n}) + d(y_{n}, y_{n+1}))$$

$$+ \alpha_{3} d(y_{n-1}, y_{n+1}) + \alpha_{4} d(y_{n-1}, y_{n})$$

$$\leq \alpha_{1} d(y_{n-1}, y_{n}) + (\alpha_{2} + \alpha_{3}) (d(y_{n-1}, y_{n}) + d(y_{n}, y_{n+1}))$$

$$+ \alpha_{4} d(y_{n-1}, y_{n}).$$

$$(14)$$

With $d_n \coloneqq d(y_n, y_{n+1})$, it follows from (14) that $d_n \le k d_{n-1}$, where $k = \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4}{1 - \alpha_2 - \alpha_3}$, and 0 < k < 1. Therefore $\{y_n\}$ is Cauchy.

Suppose that S(X) is complete. Then $\{y_n\}$ has a limit in S(X). And $\{y_{2n}\}$, $\{y_{2n+1}\}$ have the same limit in S(X). Let $u=\lim_{n\to\infty}\{y_n\}=\lim_{n\to\infty}\{y_{2n}\}$ = $\lim_{n\to\infty}\{y_{2n+1}\}$. Then there exists a $v\in X$ such that Sv=u since $u\in S(X)$.

To prove that Bv = u, let r = d(Bv, u), and assume that r > 0. Setting $x = x_{2n}$, y = v in (12) gives

$$\begin{split} d(y_{2n+1}, \, Bv) &= d(Ax_{2n}, \, Bv) \\ &\leq \alpha_1 \bigg\{ \frac{d(Sx_{2n}, \, Bv)d(Sx_{2n}, \, Sv)}{d(Sx_{2n}, \, Sv) + d(Sv, \, Bv)} \bigg\} \\ &\quad + \alpha_2(d(Sx_{2n}, \, Ax_{2n}) + d(Sv, \, Bv)) \\ &\quad + \alpha_3(d(Sx_{2n}, \, Bv) + d(Sv, \, Ax_{2n})) + \alpha_4 d(Sx_{2n}, \, Sv) \\ &= \alpha_1 \bigg\{ \frac{d(y_{2n}, \, Bv)d(y_{2n}, \, u)}{d(y_{2n}, \, u) + d(u, \, Bv)} \bigg\} + \alpha_2(d(y_{2n}, \, y_{2n+1}) + d(u, \, Bv)) \\ &\quad + \alpha_3(d(y_{2n}, \, Bv) + d(u, \, y_{2n+1})) + \alpha_4 d(y_{2n}, \, u). \end{split}$$

Taking the limit as $n \to \infty$ gives $r \le (\alpha_2 + \alpha_3)r$, a contradiction. Hence

Bv = u. Thus B and S have a coincidence point v. Since d(Sv, Sv) + d(Sv, Bv) = 0, by (13), d(Av, Bv) = 0. Hence Av = Bv. Thus Av = Bv = Sv = u. So A and S also have a coincidence point v. If A(X) is complete, then $u \in A(X) \subseteq S(X)$. Similarly if B(X) is complete, then $u \in B(X) \subseteq S(X)$. Thus, by the previous cases, A and B have a coincidence point v; i.e., Av = Bv = Sv = u. Since A and B are weakly compatible, Au = ASv = SAv = Su. Since B and B are weakly compatible, Bu = BSv = SBv = Su. Thus Au = Bu = Su.

Suppose that $Su \neq u$. Then, by (12),

$$\begin{split} d(Su, \, u) &= d(Au, \, Bv) \\ &\leq \alpha_1 \bigg\{ \frac{d(Su, \, Bv)d(Su, \, Sv)}{d(Su, \, Sv) + d(Sv, \, Bv)} \bigg\} + \alpha_2 (d(Su, \, Au) + d(Sv, \, Bv)) \\ &+ \alpha_3 (d(Su, \, Bv) + d(Sv, \, Au)) + \alpha_4 d(Su, \, Sv) \\ &= (\alpha_1 + 2\alpha_3 + \alpha_4)d(Su, \, u), \end{split}$$

a contradiction. Hence Su = u.

Therefore u is a common fixed point of A, B and S.

The uniqueness of u follows from (13).

The Theorem of Pande and Dubey [7] is a special case of Theorem 5. And Theorem 5 is an improvement of Theorem 9 of Jeong and Rhoades [6].

Acknowledgement

The author would like to thank Prof. B. E. Rhoades for his help in the preparation of this paper.

References

- [1] A. Ahmad and M. Imdad, A common fixed point theorem for four mappings satisfying a rational inequality, Publ. Math. Debrecen 41 (1992), 181-187.
- [2] A. Ahmad, M. Imdad and A. R. Khan, Four mappings satisfying a rational inequality, Bull. Calcutta Math. Soc. 87 (1995), 323-328.

- [3] M. L. Divicarro, S. Sessa and B. Fisher, Common fixed point theorems with a rational inequality, Bull. Inst. Math. Acad. Sinica 14 (1986), 277-285.
- [4] M. Imdad and A. Ahmad, Four mappings with a common fixed point, Rev. Research, Novi Sad 24 (1994), 23-30.
- [5] Jack Jachymski, Common fixed point theorems for some families of maps, Indian J. Pure Appl. Math. 25 (1994), 925-937.
- [6] G. S. Jeong and B. E. Rhoades, Some remarks for improving fixed point theorems for more than two maps, Indian J. Pure Appl. Math. 28(9) (1997), 1177-1196.
- [7] R. K. Pande and P. K. Dubey, On common fixed point theorem of three mappings, Math. Student 61 (1992), 97-100.
- [8] S. L. Singh and S. N. Mishra, Remarks on Jachymski's fixed point theorems for compatible maps, Indian J. Pure Appl. Math. 28(5) (1997), 611-615.