SOME FIXED POINT THEOREMS UNDER WEAK CONDITIONS

G. S. JEONG
Department of Mathematics Education
Sunchon National University
Suncheon 540-742, South Korea
e-mail: gsjeong@sunchon.ac.kr

Abstract

In this paper, we obtain fixed point theorems without the continuity condition, and completeness of X is weakened.

Let (X, d) be a metric space. Two maps S and T are said to be compatible if, $\lim _{n \rightarrow \infty} d\left(S T x_{n}, T S x_{n}\right)=0$ whenever $\left\{x_{n}\right\} \subseteq X$ is such that $\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t \in X$. Two maps S and T are said to be weakly compatible if they commute at coincidence points.

Let A, B, S and T be selfmaps of a metric space (X, d) such that $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$. Define $\left\{x_{n}\right\}$ by $x_{0} \in X, x_{1}$ such that $T x_{1}=A x_{0}, x_{2}$ such that $S x_{2}=B x_{1}$, and, in general, define $\left\{x_{n}\right\}$ so that $T x_{2 n+1}=A x_{2 n}, S x_{2 n+2}=B x_{2 n+1}$. Define $\left\{y_{n}\right\}$ by $y_{2 n}=S x_{2 n}, \quad y_{2 n+1}=$ $T x_{2 n+1}$.

2000 Mathematics Subject Classification: 54H25, 47H10.
Key words and phrases: common fixed point, weakly compatible.
This paper was supported (in part) by NON DIRECTED RESEARCH FUND, Sunchon National University.

Received March 2, 2005; Revised March 5, 2005

Theorem 1. Let A, B, S and T be selfmaps of a metric space (X, d) satisfying $A(X) \subseteq T(X), B(X) \subseteq S(X)$, and for each $x, y \in X$, either

$$
\begin{equation*}
d(A x, B y) \leq \alpha\left\{\frac{d(A x, S x)^{2}+d(B y, T y)^{2}}{d(A x, S x)+d(B y, T y)}\right\}+\beta d(S x, T y) \tag{1}
\end{equation*}
$$

if $d(A x, S x)+d(B y, T y) \neq 0, \alpha, \beta>0, \alpha+\beta<1$, or

$$
\begin{equation*}
d(A x, B y)=0 \text { if } d(A x, S x)+d(B y, T y)=0 . \tag{2}
\end{equation*}
$$

If one of $A(X), B(X), S(X)$ or $T(X)$ is complete subspace of X, and $\{A, S\},\{B, T\}$ are weakly compatible, then A, B, S and T have a unique common fixed point.

Proof. In (1) set $x=x_{2 n}, y=x_{2 n+1}$ to get

$$
\left.\begin{array}{rl}
d\left(A x_{2 n}, B x_{2 n+1}\right) \leq & \alpha\left\{\frac{d\left(A x_{2 n}, S x_{2 n}\right)^{2}+d\left(B x_{2 n+1}, T x_{2 n+1}\right)^{2}}{d\left(A x_{2 n}, S x_{2 n}\right)+d\left(B x_{2 n+1}, T x_{2 n+1}\right.}\right)
\end{array}\right\}
$$

or

$$
\begin{aligned}
d\left(y_{2 n+1}, y_{2 n+2}\right) \leq & \alpha\left\{\frac{d\left(y_{2 n+1}, y_{2 n}\right)^{2}+d\left(y_{2 n+2}, y_{2 n+1}\right)^{2}}{d\left(y_{2 n+1}, y_{2 n}\right)+d\left(y_{2 n+2}, y_{2 n+1}\right)}\right\} \\
& +\beta d\left(y_{2 n}, y_{2 n+1}\right) .
\end{aligned}
$$

Setting $x=x_{2 n}, y=x_{2 n+1}$ in (1) gives

$$
d\left(y_{2 n+1}, y_{2 n}\right) \leq \alpha\left\{\frac{d\left(y_{2 n+1}, y_{2 n}\right)^{2}+d\left(y_{2 n}, y_{2 n-1}\right)^{2}}{d\left(y_{2 n+1}, y_{2 n}\right)+d\left(y_{2 n}, y_{2 n-1}\right)}\right\}+\beta d\left(y_{2 n}, y_{2 n-1}\right) .
$$

Therefore, for all n,

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}\right) \leq \alpha\left\{\frac{d\left(y_{n-1}, y_{n}\right)^{2}+d\left(y_{n}, y_{n+1}\right)^{2}}{d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right)}\right\}+\beta d\left(y_{n-1}, y_{n}\right) . \tag{3}
\end{equation*}
$$

From the argument of Theorem 4 of [6], if $y_{n}=y_{n+1}$ for some n, then A, B, S and T have a common fixed point.

Suppose now that $y_{n} \neq y_{n+1}$ for all n. With $d_{n}:=d\left(y_{n}, y_{n+1}\right)$, it follows from (3) that

$$
(1-\alpha) d_{n}^{2}+(1-\beta) d_{n} d_{n-1}-(\alpha+\beta) d_{n-1}^{2} \leq 0 .
$$

The corresponding quadratic equation has one positive solution k with $0<k<1$. Therefore the above inequality implies that $d_{n} \leq k d_{n-1}$. Then $d\left(y_{n}, y_{n+1}\right)=d_{n} \leq k^{n} d_{0}=k^{n} d\left(y_{0}, y_{1}\right)$ and hence $\left\{y_{n}\right\}$ is Cauchy.

Now suppose that $S(X)$ is complete. Then the subsequence $\left\{y_{2 n}\right\}$ has a limit in $S(X)$ since $\left\{y_{2 n}\right\}$ is contained in $S(X)$. Let $u=\lim _{n \rightarrow \infty} y_{2 n}$. Since $\lim _{n \rightarrow \infty} d_{n}=0$, the subsequence $\left\{y_{2 n-1}\right\}$ also converges to u. There exists a $v \in X$ such that $S v=u$ since $u \in S(X)$. To prove that $A v=u$, let $r_{1}=d(A v, u)$, and suppose that $r_{1}>0$. Setting $x=v, y=x_{2 n-1}$ in (1) gives, since $y_{n} \neq y_{n+1}$ for each n,

$$
\begin{aligned}
d\left(A v, y_{2 n}\right) & =d\left(A v, B x_{2 n-1}\right) \\
& \leq \alpha\left\{\frac{d(A v, S v)^{2}+d\left(B x_{2 n-1}, T x_{2 n-1}\right)^{2}}{d(A v, S v)+d\left(B x_{2 n-1}, T x_{2 n-1}\right)}\right\}+\beta d\left(S v, T x_{2 n-1}\right) \\
& \leq \alpha\left[d(A v, S v)+d\left(y_{2 n}, y_{2 n-1}\right)\right]+\beta d\left(u, y_{2 n-1}\right) .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ yields $r_{1}=d(A v, u) \leq \alpha d(A v, S v)=$ $\alpha d(A v, u)$, a contradiction. Therefore $r_{1}=0$; i.e., $A v=u=S v$.

Since $A(X) \subseteq T(X)$ and $A v=u, u \in T(X)$, there exists a $w \in X$ such that $T w=u$. To prove that $B w=u$, let $r_{2}=d(B w, u)$, and assume that $r_{2}>0$. Setting $x=x_{2 n-2}$ and $y=w$ in (1) gives

$$
\begin{aligned}
d\left(y_{2 n-1}, B w\right) & =d\left(A x_{2 n-2}, B w\right) \\
& \leq \alpha\left\{\frac{d\left(A x_{2 n-2}, S x_{2 n-2}\right)^{2}+d(B w, T w)^{2}}{d\left(A x_{2 n-2}, S x_{2 n-2}\right)+d(B w, T w)}\right\}+\beta d\left(S x_{2 n-2}, T w\right) \\
& \leq \alpha\left[d\left(y_{2 n-1}, y_{2 n-2}\right)+d(B w, u)\right]+\beta d\left(y_{2 n-2}, u\right) .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ yields $r_{2}=d(u, B w) \leq \alpha d(B w, u)$, a contradiction. Therefore $r_{2}=0$; i.e., $B w=u=T w$.

If we assume that $T(X)$ is complete, then, by the same argument, A and S have a coincidence point, and B and T also have a coincidence point.

If $B(X)$ is complete, then $u \in B(X) \subseteq S(X)$. Similarly if $A(X)$ is complete, then $u \in A(X) \subseteq T(X)$. Thus, by the previous cases, A and S have a coincidence point, and B and T also have a coincidence point.

Therefore $u=S v=A v=T w=B w$.
Since A and S are weakly compatible, they commute at a coincidence point v. Thus $A u=A S v=S A v=S u$. Since B and T are weakly compatible, we get $B u=B T w=T B w=T u$. Since $d(A v, S v)+d(B u, T u)$ $=d(u, u)+d(B u, T u)=0$, we obtain, from (2), that $d(A v, B u)=d(u, B u)$
$=0$. Hence $\quad B u=u$. Since $\quad d(A u, S u)+d(B u, T u)=0$, from (2), $d(A u, B u)=d(A u, u)=0$. Hence $A u=u$.

Therefore u is a common fixed point of A, B, S and T.
The uniqueness of u follows from (2).
Theorem 1 of Ahmad and Imdad [1] is a special case of Theorem 1, since weakly commuting implies compatibility. We have improved Theorem 4 of Jeong and Rhoades [6] by removing any assumption of continuity and by not assuming that X is complete.

Theorem 2. Let A, B, S and T be selfmaps of a metric space (X, d) satisfying $A(X) \subseteq T(X), B(X) \subseteq S(X)$, and, for each $x, y \in X$, either

$$
\begin{align*}
d(A x, B y) \leq & \alpha\left\{\frac{d(A x, S x) d(S x, B y)+d(B y, T y) d(T y, A x)}{d(S x, B y)+d(T y, A x)}\right\} \\
& +\beta d(S x, T y) \tag{4}
\end{align*}
$$

if $d(S x, B y)+d(T y, A x) \neq 0, \alpha, \beta>0, \alpha+\beta<1$, or

$$
\begin{equation*}
d(A x, B y)=0 \text { if } d(S x, B y)+d(T y, A x)=0 . \tag{5}
\end{equation*}
$$

SOME FIXED POINT THEOREMS UNDER WEAK CONDITIONS 87
If one of $A(X), B(X), S(X)$ or $T(X)$ is complete subspace of X, and $\{A, S\},\{B, T\}$ are weakly compatible, then A, B, S and T have a unique common fixed point.

Proof. From (4) we get, for all n,

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}\right) \leq \alpha\left\{\frac{d\left(y_{n-1}, y_{n}\right) d\left(y_{n-1}, y_{n+1}\right)}{d\left(y_{n-1}, y_{n+1}\right)}\right\}+\beta d\left(y_{n-1}, y_{n}\right) . \tag{6}
\end{equation*}
$$

If, as in the proof of Theorem 5 of [6], $y_{n}=y_{n+1}$ for some n, then A, B, S and T have a common fixed point.

If $y_{n}=y_{n+2}$ for some n, then $d\left(y_{n}, y_{n+2}\right)+d\left(y_{n+1}, y_{n+1}\right)=0$, and, from (5), $d\left(y_{n+1}, y_{n+2}\right)=0$; i.e., $y_{n+1}=y_{n+2}$, which we have already taken care of. Therefore, we may assume that $y_{n} \neq y_{n+2}$ for all n. From (6), one obtains $d\left(y_{n}, y_{n+1}\right) \leq(\alpha+\beta) d\left(y_{n-1}, y_{n}\right), \alpha+\beta<1$. Then $d\left(y_{n}, y_{n+1}\right) \leq(\alpha+\beta)^{n} d\left(y_{0}, y_{1}\right)$ and hence $\left\{y_{n}\right\}$ is a Cauchy sequence.

Now suppose that $S(X)$ is complete. Then the subsequence $\left\{y_{2 n}\right\}$ has a limit in $S(X)$ since $\left\{y_{2 n}\right\}$ is contained in $S(X)$. Let $u=\lim _{n \rightarrow \infty} y_{2 n}$. The subsequence $\left\{y_{2 n-1}\right\}$ also converges to u. There exists a $v \in X$ such that $S v=u$ since $u \in S(X)$. To prove that $A v=u$, let $r_{1}=d(A v, u)$, and suppose that $r_{1}>0$. Setting $x=v, y=x_{2 n-1}$ in (4) gives,

$$
\begin{aligned}
d\left(A v, y_{2 n}\right)= & d\left(A v, B x_{2 n-1}\right) \\
\leq & \alpha\left\{\frac{d(A v, S v) d\left(S v, B x_{2 n-1}\right)+d\left(B x_{2 n-1}, T x_{2 n-1}\right) d\left(T x_{2 n-1}, A v\right)}{d\left(S v, B x_{2 n-1}\right)+d\left(T x_{2 n-1}, A v\right)}\right\} \\
& +\beta d\left(S v, T x_{2 n-1}\right) \\
= & \alpha\left\{\frac{d(A v, u) d\left(u, y_{2 n}\right)+d\left(y_{2 n}, y_{2 n-1}\right) d\left(y_{2 n-1}, A v\right)}{d\left(u, y_{2 n}\right)+d\left(y_{2 n-1}, A v\right)}\right\} \\
& +\beta d\left(S v, y_{2 n-1}\right) .
\end{aligned}
$$

Since $r_{1}>0$, there exists an N_{1} such that, for all $n>N_{1}$, and $r_{3}:=$ $d\left(u, y_{2 n}\right)+d\left(y_{2 n-1}, A v\right) \neq 0$. Therefore, for all $n>N_{1}$,

$$
d\left(A v, y_{2 n}\right) \leq \alpha\left[d(A v, u)+d\left(y_{2 n}, y_{2 n-1}\right)\right]+\beta d\left(S v, y_{2 n-1}\right) .
$$

Taking the limit as $n \rightarrow \infty$ yields $\quad r_{1}=d(A v, u) \leq \alpha d(A v, u)$, a contradiction. Therefore $r_{1}=0$; i.e., $A v=u=S v$.

Since $A(X) \subseteq T(X)$ and $A v=u, u \in T(X)$, there exists a $w \in X$ such that $T w=u$. To prove that $B w=u$, let $r_{2}=d(B w, u)>0$. Setting $x=x_{2 n-2}$ and $y=w$ in (4) gives

$$
\begin{aligned}
& d\left(y_{2 n-1}, B w\right) \\
= & d\left(A x_{2 n-2}, B w\right) \\
\leq & \alpha\left\{\frac{d\left(A x_{2 n-2}, S x_{2 n-2}\right) d\left(S x_{2 n-2}, B w\right)+d(B w, T w) d\left(T w, A x_{2 n-2}\right)}{d\left(S x_{2 n-2}, B w\right)+d\left(T w, A x_{2 n-2}\right)}\right\} \\
& +\beta d\left(S x_{2 n-2}, T w\right) \\
= & \alpha\left\{\frac{d\left(y_{2 n-1}, y_{2 n-2}\right) d\left(y_{2 n-2}, B w\right)+d(B w, u) d\left(u, y_{2 n-1}\right)}{d\left(y_{2 n-2}, B w\right)+d\left(u, y_{2 n-1}\right)}\right\}+\beta d\left(y_{2 n-2}, u\right) .
\end{aligned}
$$

Since $r_{2}>0$, there exists an N_{2} such that $r_{5}:=d\left(y_{2 n-2}, B w\right)+d\left(u, y_{2 n-1}\right)$ >0 for all $n>N_{2}$. Thus, for all $n>N_{2}$,

$$
d\left(y_{2 n-1}, B w\right) \leq \alpha\left[d\left(y_{2 n-1}, y_{2 n-2}\right)+d(B w, u)\right]+\beta d\left(y_{2 n-2}, u\right) .
$$

Taking the limit as $n \rightarrow \infty$ yields $0<r_{2}=d(u, B w) \leq \alpha d(B w, u)$, a contradiction. Therefore $r_{2}=0$; i.e., $B w=u=T w$.

If we assume that $T(X)$ is complete, then, by a similar argument, A and S have a coincidence point, and B and T also have a coincidence point.

If $B(X)$ is complete, then $u \in B(X) \subseteq S(X)$. Similarly if $A(X)$ is complete, then $u \in A(X) \subseteq T(X)$. Thus, by the previous cases, A and S have a coincidence point, and B and T also have a coincidence point.

Therefore $u=S v=A v=T w=B w$.
Since A and S are weakly compatible, they commute at a coincidence
point v. Thus $A u=A S v=S A v=S u$. Since B and T are weakly compatible, we get $B u=B T w=T B w=T u$.

Let $B u \neq u$. Then $d(S v, B u)+d(T u, A v)=2 d(u, B u) \neq 0$. Setting $x=v$ and $y=u$ in (4) gives

$$
\begin{aligned}
d(u, B u) & =d(A v, B u) \\
& \leq \alpha\left\{\frac{d(A v, S v) d(S v, B u)+d(B u, T u) d(T u, A v)}{d(S v, B u)+d(T u, A v)}\right\}+\beta d(S v, T u) \\
& =\beta d(u, B u),
\end{aligned}
$$

a contradiction. Thus $B u=u$.
Let $A u \neq u$. Then $d(S u, B w)+d(T w, A u)=2 d(u, A u) \neq 0$. Setting $x=u$ and $y=w$ in (4) gives
$d(A u, u)=d(A u, B w)$

$$
\begin{aligned}
& \leq \alpha\left\{\frac{d(A u, S u) d(S u, B w)+d(B w, T w) d(T w, A u)}{d(S u, B w)+d(T w, A u)}\right\}+\beta d(S u, T w) \\
& =\beta d(A u, u)
\end{aligned}
$$

a contradiction. Thus $A u=u$.
Therefore u is a common fixed point of A, B, S and T.
The uniqueness of u follows from (4).
Theorem 2 of Imdad and Ahmad [4] is a special case of Theorem 2, since weakly commuting implies compatibility. We have improved Theorem 5 of Jeong and Rhoades [6] by removing the conditions of continuity and the completeness of X.

Theorem 3. Let A, B, S and T be selfmaps of a metric space (X, d) satisfying $A(X) \subseteq T(X), B(X) \subseteq S(X)$, and, for each $x, y \in X$, either
$d(A x, B y) \leq \frac{a d(S x, A x) d(T y, B y)+b d(S x, B y) d(T y, A x)}{d(S x, A x)+d(B y, T y)}+c d(S x, T y)$
if $d(S x, A x)+d(B y, T y) \neq 0, a \geq 0,0 \leq c<1, a+2 c<2$, or

$$
d(A x, B y)=0 \text { if } d(S x, A x)+d(B y, T y)=0 .
$$

If one of $A(X), B(X), S(X)$ or $T(X)$ is complete subspace of X, and $\{A, S\},\{B, T\}$ are weakly compatible, then A, B, S and T have a unique common fixed point.

Proof. If $y_{n}=y_{n+1}$ for some n, then, using the same argument as in Theorem 6 of [6], A, B, S and T have a common fixed point.

From (7) we get, for all n,

$$
\begin{equation*}
d\left(y_{n+1}, y_{n+2}\right) \leq \frac{a d\left(y_{n}, y_{n+1}\right) d\left(y_{n+1}, y_{n+2}\right)}{d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)}+c d\left(y_{n}, y_{n+1}\right) . \tag{8}
\end{equation*}
$$

Suppose that $y_{n} \neq y_{n+1}$ for each n. Then with $d_{n}:=d\left(y_{n}, y_{n+1}\right)$, it follows from (8) that

$$
d_{n+1}^{2}+(1-a-c) d_{n} d_{n+1}-c d_{n}^{2} \leq 0 .
$$

The corresponding quadratic equation has one positive solution

$$
k:=\frac{-(1-a-c)+\sqrt{(1-a-c)^{2}+4 c}}{2} \text { with } 0<k<1 .
$$

Thus the above inequality implies that $d_{n+1} \leq k d_{n}$. Therefore $\left\{y_{n}\right\}$ is Cauchy.

The remainder of the proof is similar to that of Theorem 1 and Theorem 2, and will therefore be omitted.

Theorem 1 of Ahmad et al. [2] is a special case of Theorem 3, and Theorem 3 is an improvement of Theorem 6 of Jeong and Rhoades [6].

There are two contractive forms for three maps. One is obtained by setting $T=S$ and the other is obtained by setting $B=A$. Also for three maps we can prove more general results.

For the situation in which $T=S$, set $x_{0} \in X$ and define $\left\{x_{n}\right\}$ by

$$
\begin{aligned}
& A x_{2 n}=S x_{2 n+1}, \quad B x_{2 n+1}=S x_{2 n+2}, \\
& y_{2 n}:=S x_{2 n}, \quad y_{2 n+1}:=S x_{2 n+1} .
\end{aligned}
$$

Theorem 4. Let A, B and S be three selfmaps of a metric space (X, d) such that, for each $x, y \in X$, either

$$
\begin{align*}
d(A x, B y) \leq & \frac{a d(S x, A x) d(S y, B y)+b d(S x, B y) d(S y, A x)}{d(S x, A x)+d(S y, B y)} \\
& +c\left\{\frac{d(S x, A x) d(S y, A x)+d(S y, B y) d(S x, B y)}{d(S x, B y)+d(S y, A x)}\right\} \tag{9}
\end{align*}
$$

if $d(S x, A x)+d(S y, B y) \neq 0$ and $d(S x, B y)+d(S y, A x) \neq 0$, where a, b, c ≥ 0 with $a+2 c<2$, or

$$
\begin{align*}
& d(A x, B y)=0 \text { if } d(S x, A x)+d(S y, B y)=0 \text { or } \\
& d(S x, B y)+d(S y, A x)=0 . \tag{10}
\end{align*}
$$

If $A(X) \cup B(X) \subseteq S(X)$ and one of $A(X), B(X)$ or $S(X)$ is complete subspace of X, and if $\{A, S\},\{B, S\}$ are weakly compatible, then A, B and S have a unique common fixed point.

Proof. If $y_{n}=y_{n+1}$ for some n, then, as in the proof of Theorem 7 of [6], A, B and S have a common fixed point.

Suppose that $y_{n} \neq y_{n+1}$ for each n. From (9) we get, for all n,

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}\right) \leq \frac{a d\left(y_{n-1}, y_{n}\right) d\left(y_{n}, y_{n+1}\right)}{d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right)}+c d\left(y_{n}, y_{n+1}\right) . \tag{11}
\end{equation*}
$$

With $d_{n}:=d\left(y_{n}, y_{n+1}\right)$, it follows from (11) that

$$
(1-c) d_{n}^{2}+(1-a-c) d_{n-1} d_{n} \leq 0
$$

or

$$
d_{n}\left((1-c) d_{n}+(1-a-c) d_{n-1}\right) \leq 0 .
$$

Thus the above inequality implies that $d_{n} \leq k d_{n-1}$, where $k=\frac{a+c-1}{1-c}$ and $0<k<1$. Therefore $\left\{y_{n}\right\}$ is Cauchy.

Now suppose that $S(X)$ is complete. Then $\left\{y_{n}\right\}$ has a limit in $S(X)$. And $\left\{y_{2 n}\right\},\left\{y_{2 n+1}\right\}$ have the same limit in $S(X)$. Let $u=\lim _{n \rightarrow \infty}\left\{y_{n}\right\}=$
$\lim _{n \rightarrow \infty}\left\{y_{2 n}\right\}=\lim _{n \rightarrow \infty}\left\{y_{2 n+1}\right\}$. Then there exists a $v \in X$ such that $S v=u$ since $u \in S(X)$.

To prove that $A v=u$, let $r_{1}=d(A v, u)$, and assume that $r_{1}>0$.
Setting $x=v, y=x_{2 n-1}$ in (9) gives

$$
\begin{aligned}
& d\left(A v, y_{2 n}\right) \\
= & d\left(A v, B x_{2 n-1}\right) \\
\leq & \frac{a d(S v, A v) d\left(S x_{2 n-1}, B x_{2 n-1}\right)+b d\left(S v, B x_{2 n-1}\right) d\left(S x_{2 n-1}, A v\right)}{d(S v, A v)+d\left(S x_{2 n-1}, B x_{2 n-1}\right)} \\
& +c\left\{\frac{d(S v, A v) d\left(S x_{2 n-1}, A v\right)+d\left(S x_{2 n-1}, B x_{2 n-1}\right) d\left(S v, B x_{2 n-1}\right)}{d\left(S v, B x_{2 n-1}\right)+d\left(S x_{2 n-1}, A v\right)}\right\} \\
= & \frac{a d(u, A v) d\left(y_{2 n-1}, y_{2 n}\right)+b d\left(u, y_{2 n}\right) d\left(y_{2 n-1}, A v\right)}{d(u, A v)+d\left(y_{2 n-1}, y_{2 n}\right)} \\
& +c\left\{\frac{d(u, A v) d\left(y_{2 n-1}, A v\right)+d\left(y_{2 n-1}, y_{2 n}\right) d\left(u, y_{2 n}\right)}{d\left(u, y_{2 n}\right)+d\left(y_{2 n-1}, A v\right)}\right\}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ gives, $d(A v, u) \leq c d(u, A v)$, a contradiction. Hence $A v=u$, and A and S have a coincidence point v.

To prove that $B v=u$, let $r_{2}=d(B v, u)$, and assume that $r_{2}>0$. Setting $x=x_{2 n}, y=v$ in (9) gives

$$
\begin{aligned}
d\left(y_{2 n+1}, B v\right)= & d\left(A x_{2 n}, B v\right) \\
\leq & \frac{a d\left(S x_{2 n}, A x_{2 n}\right) d(S v, B v)+b d\left(S x_{2 n}, B v\right) d\left(S v, A x_{2 n}\right)}{d\left(S x_{2 n}, A x_{2 n}\right)+d(S v, B v)} \\
& +c\left\{\frac{d\left(S x_{2 n}, A x_{2 n}\right) d\left(S v, A x_{2 n}\right)+d(S v, B v) d\left(S x_{2 n}, B v\right)}{d\left(S x_{2 n}, B v\right)+d\left(S v, A x_{2 n}\right)}\right\} \\
= & \frac{a d\left(y_{2 n}, y_{2 n+1}\right) d(u, B v)+b d\left(y_{2 n}, B v\right) d\left(u, y_{2 n+1}\right)}{d\left(y_{2 n}, y_{2 n+1}\right)+d(u, B v)} \\
& +c\left\{\frac{d\left(y_{2 n}, y_{2 n+1}\right) d\left(u, y_{2 n+1}\right)+d(u, B v) d\left(y_{2 n}, B v\right)}{d\left(y_{2 n}, B v\right)+d\left(u, y_{2 n+1}\right)}\right\}
\end{aligned}
$$

SOME FIXED POINT THEOREMS UNDER WEAK CONDITIONS 93

Taking the limit as $n \rightarrow \infty$ yields, $d(u, B v) \leq c d(u, B v)$, a contradiction. Hence $B v=u$. Thus B and S have a coincidence point v. Therefore $u=S v=A v=B v$.

If $A(X)$ is complete, then $u \in A(X) \subseteq S(X)$. Similarly if $B(X)$ is complete, then $u \in B(X) \subseteq S(X)$. Thus, by the previous cases, A and S and B have a coincidence point; i.e., $u=S v=A v=B v$.

Since A and S are weakly compatible, $A u=A S v=S A v=S u$. Since B and S are weakly compatible, $B u=B S v=S B v=S u$. Thus $A u=$ $B u=S u$.

Since $d(S u, A u)+d(S v, B v)=0$, it follows from (10) that $d(A u, B v)$ $=0$; i.e., $A u=B v$. But $B v=u$. Thus $A u=u$. Therefore u is a common fixed point of A, B and S.

The uniqueness of u follows from (10).
Theorem 1 of Divicarro et al. [3] is a special case of Theorem 4. And Theorem 4 is an improvement of Theorem 7 of Jeong and Rhoades [6].

Theorem 5. Let A, B and S be three selfmaps of a metric space (X, d) such that, for each $x, y \in X$, either

$$
\begin{align*}
d(A x, B y) \leq & \alpha_{1}\left\{\frac{d(S x, B y) d(S x, S y)}{d(S x, S y)+d(S y, B y)}\right\}+\alpha_{2}(d(S x, A x)+d(S y, B y)) \\
& +\alpha_{3}(d(S x, B y)+d(S y, A x))+\alpha_{4} d(S x, S y) \tag{12}
\end{align*}
$$

if $d(S x, S y)+d(S y, B y) \neq 0$, where $\alpha_{i} \geq 0$ with $\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}<1$, or

$$
\begin{equation*}
d(A x, B y)=0 \text { if } d(S x, S y)+d(S y, B y)=0 \tag{13}
\end{equation*}
$$

If $A(X) \cup B(X) \subseteq S(X)$ and one of $A(X), B(X)$ or $S(X)$ is complete subspace of X, and if $\{A, S\},\{B, S\}$ are weakly compatible, then A, B and S have a unique common fixed point.

Proof. If $y_{n}=y_{n+1}$ for some n, then, as in the proof of Theorem 9 of Jeong and Rhoades [6], it follows that A, B and S have a common fixed point.

Now we assume that $y_{n} \neq y_{n+1}$ for each n. From (12) we obtain, for all n,

$$
\begin{align*}
d\left(y_{n}, y_{n+1}\right) \leq & \alpha_{1}\left\{\frac{d\left(y_{n-1}, y_{n+1}\right) d\left(y_{n-1}, y_{n}\right)}{d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right)}\right\} \\
& +\alpha_{2}\left(d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right)\right) \\
& +\alpha_{3} d\left(y_{n-1}, y_{n+1}\right)+\alpha_{4} d\left(y_{n-1}, y_{n}\right) \\
\leq & \alpha_{1} d\left(y_{n-1}, y_{n}\right)+\left(\alpha_{2}+\alpha_{3}\right)\left(d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right)\right) \\
& +\alpha_{4} d\left(y_{n-1}, y_{n}\right) . \tag{14}
\end{align*}
$$

With $d_{n}:=d\left(y_{n}, y_{n+1}\right)$, it follows from (14) that $d_{n} \leq k d_{n-1}$, where $k=\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}}{1-\alpha_{2}-\alpha_{3}}$, and $0<k<1$. Therefore $\left\{y_{n}\right\}$ is Cauchy.

Suppose that $S(X)$ is complete. Then $\left\{y_{n}\right\}$ has a limit in $S(X)$. And $\left\{y_{2 n}\right\},\left\{y_{2 n+1}\right\}$ have the same limit in $S(X)$. Let $u=\lim _{n \rightarrow \infty}\left\{y_{n}\right\}=\lim _{n \rightarrow \infty}\left\{y_{2 n}\right\}$ $=\lim _{n \rightarrow \infty}\left\{y_{2 n+1}\right\}$. Then there exists a $v \in X$ such that $S v=u$ since $u \in S(X)$.

To prove that $B v=u$, let $r=d(B v, u)$, and assume that $r>0$. Setting $x=x_{2 n}, y=v$ in (12) gives

$$
\begin{aligned}
d\left(y_{2 n+1}, B v\right)= & d\left(A x_{2 n}, B v\right) \\
\leq & \alpha_{1}\left\{\frac{d\left(S x_{2 n}, B v\right) d\left(S x_{2 n}, S v\right)}{d\left(S x_{2 n}, S v\right)+d(S v, B v)}\right\} \\
& +\alpha_{2}\left(d\left(S x_{2 n}, A x_{2 n}\right)+d(S v, B v)\right) \\
& +\alpha_{3}\left(d\left(S x_{2 n}, B v\right)+d\left(S v, A x_{2 n}\right)\right)+\alpha_{4} d\left(S x_{2 n}, S v\right) \\
= & \alpha_{1}\left\{\frac{d\left(y_{2 n}, B v\right) d\left(y_{2 n}, u\right)}{d\left(y_{2 n}, u\right)+d(u, B v)}\right\}+\alpha_{2}\left(d\left(y_{2 n}, y_{2 n+1}\right)+d(u, B v)\right) \\
& +\alpha_{3}\left(d\left(y_{2 n}, B v\right)+d\left(u, y_{2 n+1}\right)\right)+\alpha_{4} d\left(y_{2 n}, u\right) .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ gives $r \leq\left(\alpha_{2}+\alpha_{3}\right) r$, a contradiction. Hence
$B v=u$. Thus B and S have a coincidence point v. Since $d(S v, S v)+$ $d(S v, B v)=0$, by (13), $d(A v, B v)=0$. Hence $A v=B v$. Thus $A v=B v=$ $S v=u$. So A and S also have a coincidence point v. If $A(X)$ is complete, then $u \in A(X) \subseteq S(X)$. Similarly if $B(X)$ is complete, then $u \in B(X)$ $\subseteq S(X)$. Thus, by the previous cases, A and S and B have a coincidence point v; i.e., $A v=B v=S v=u$. Since A and S are weakly compatible, $A u=A S v=S A v=S u$. Since B and S are weakly compatible, $B u=B S v=S B v=S u$. Thus $A u=B u=S u$.

Suppose that $S u \neq u$. Then, by (12),

$$
\begin{aligned}
d(S u, u)= & d(A u, B v) \\
\leq & \alpha_{1}\left\{\frac{d(S u, B v) d(S u, S v)}{d(S u, S v)+d(S v, B v)}\right\}+\alpha_{2}(d(S u, A u)+d(S v, B v)) \\
& +\alpha_{3}(d(S u, B v)+d(S v, A u))+\alpha_{4} d(S u, S v) \\
= & \left(\alpha_{1}+2 \alpha_{3}+\alpha_{4}\right) d(S u, u),
\end{aligned}
$$

a contradiction. Hence $S u=u$.
Therefore u is a common fixed point of A, B and S.
The uniqueness of u follows from (13).
The Theorem of Pande and Dubey [7] is a special case of Theorem 5. And Theorem 5 is an improvement of Theorem 9 of Jeong and Rhoades [6].

Acknowledgement

The author would like to thank Prof. B. E. Rhoades for his help in the preparation of this paper.

References

[1] A. Ahmad and M. Imdad, A common fixed point theorem for four mappings satisfying a rational inequality, Publ. Math. Debrecen 41 (1992), 181-187.
[2] A. Ahmad, M. Imdad and A. R. Khan, Four mappings satisfying a rational inequality, Bull. Calcutta Math. Soc. 87 (1995), 323-328.
[3] M. L. Divicarro, S. Sessa and B. Fisher, Common fixed point theorems with a rational inequality, Bull. Inst. Math. Acad. Sinica 14 (1986), 277-285.
[4] M. Imdad and A. Ahmad, Four mappings with a common fixed point, Rev. Research, Novi Sad 24 (1994), 23-30.
[5] Jack Jachymski, Common fixed point theorems for some families of maps, Indian J. Pure Appl. Math. 25 (1994), 925-937.
[6] G. S. Jeong and B. E. Rhoades, Some remarks for improving fixed point theorems for more than two maps, Indian J. Pure Appl. Math. 28(9) (1997), 1177-1196.
[7] R. K. Pande and P. K. Dubey, On common fixed point theorem of three mappings, Math. Student 61 (1992), 97-100.
[8] S. L. Singh and S. N. Mishra, Remarks on Jachymski's fixed point theorems for compatible maps, Indian J. Pure Appl. Math. 28(5) (1997), 611-615.

