B ™ Far East Journal of Dynamical Systems

L Volume 11, Issue 2, 2009, Pages 227-236
q'p \ Published online: April 2, 2009
2 ,.) This paper is available online at http://www.pphmj.com
mw © 2009 Pushpa Publishing House

ON THE NEGATIVE SOLUTION OF A CLASS OF
p-LAPLACIAN BVP WITH NEUMANN-ROBIN
CONDITIONS

M. KHALEGHY MOGHADDAM and G. A. AFROUZI

Department of Basic Sciences
Faculty of Agriculture Engineering
Sari Agricultural Sciences and Natural Resources University

Sari, Iran

Department of Mathematics
Faculty of Basic Sciences
Mazandaran University
Babolsar, Iran

e-mail: afrouzi@umz.ac.ir

Abstract

In this paper, we consider the following Neumann-Robin boundary value

problem

~(pp@(x)) =|u@)|P -2 xe(01),
u'(0) = 0,
(1) + au(l) =0,

where p>1, A >0 and a > 0 are parameters. We study the negative
solution of this problem with respect to a parameter p (i.e., (0) = p).

By using a quadrature method, the results are obtained.
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1. Introduction

In this paper, we consider the nonlinear two-point boundary value

problem
~(op@'@) =|u@]? -1 xe(01), (1)
u'(0) = 0, @
u'(1) + au(l) = 0, 3)

p

where p>1, A>0 and a >0 are parameters, p' =

1 is the conjugate

exponent of p and ¢,(s) :=|s |p_23 for all s # 0 and ¢,(0) = 0. Here

(o p(u’)), is the one dimensional p-Laplacian operator with p > 1 that

was considered in several recent papers. We investigate the existence
and nonexistence of negative solution of this problem with respect to a

parameter p (that is, the value of the solution at zero, i.e., u(0) = p). Our

approach is based on the quadrature method. In [3] problem (1) with
Dirichlet boundary value conditions has been studied by Ammar-Khodja
for the case Laplacian and in [1] the same problem with the same
boundary value conditions has been extended by Addou to the general
quasilinear case p-Laplacian with p >1. In [4] Anuradha et al.
considered a problem involving the one-dimensional Laplacian with
Neumann-Robin boundary conditions by using a quadrature method. In
[6] for semipositone problems, existence and multiplicity results have
been established for the case p =2 with Neumann boundary value
conditions. In [2, 5] the existence of solutions has been studied with the
p-Laplacian operator together with Robin condition.

The plan of the paper is as follows. In Section 2, we state a definition
and our main result and finally in Section 3, we provide the proof of our
main result that relies on quadrature method.

2. Notation and Main Result

We first define that u is a solution of problem (1)-(3) if

@ |u'|P ~24' is absolutely continuous,
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(i) ~(0,@'(x))) =|u(x)|” =4, a..on (0, 1) and
u'(0) =0 =u'(1) + au(l).

Throughout this paper, we denote by p, the value of the solution at zero
(i.e., u(0) = p). Now, we state the existence and nonexistence of negative

solution to the problem (1)-(3) as described below:
Theorem 2.1. Let oo >0, p >1 and p < 0. Then there exists a real

number p* < 0 such that:

(@) If 1 < p <2, then for any p € (o, p*) there exists a real number
A, € (p|?, ) for which the problem (1)-(3) has a negative solution u at
A=y
(b) The problem (1)-(3) has no negative solution u with u(0) € (p*, 0)
atany A € (|p|P, »).
3. Proof
Let u be a negative solution of problem (1)-(3) at A with u(0) = p.

Now multiplying (1) throughout by u' and integrating over (0, x), we

p
obtain | u'(x)|? = p’{— % + A+ C}, where C is a constant. Applying

conditions u(0) = p and ©'(0) = 0, we have | u'(x)|? = p"{M(p, p, A, u(s))},

where M(p, p, A, s) = oo’ slsl” + Ms — p). Since u has no interior
T p+l p+l '
critical point and u' > 0, hence
Wt = p'{M(p, p, &, u)}, x (0, 1). 4)

Now by integrating (4) on (0, x), where x € [0, 1], we obtain

[ 0o, 0,2, 9 Pas =y, x < f0,1] )
p
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Remark 3.1. Let p >1 and p < 0. Then:
(a) M(p’ py 7\" p) = 0

(b) If » >|p|P, then M(p, p, A, 8) >0 for s > p" and if A <|p|P,
then M(p, p, A, s) <0 for s — p™.

Thus by Remark 3.1, for the existence of a negative solution u to

problem (1)-(3) with «(0) = p at A, we must have L > |p |P.

Now, we provide a necessary condition for the existence of negative
solution to problem (1)-(3) in the following Lemma 3.2:

Lemma 3.2. The necessary condition for the existence of negative
solution u to problem (1)-(3) at L with u(0)=p is the existence

m e Q = (0, —ap) such that satisfies the equations of the system

G(m)={p" /P and H(m) = {p'}/?, ©)

where

G(m) = J‘p_rg {M(p, p, X, s)}—l/pds and H(m)= m{M(p, P, A, —%)}_l/p. )

Proof of Lemma 3.2. By substituting x = 1 in (4) and (5), we have

u(1

W) (3, p, 2, @) VP = (5P = [ 0, o, 3, 5 P

P

By setting u'(1) = m, where m > 0, from (3), we have u(l)z—ﬁe(p, 0).
o

Then

m{M(p, P, A, _%)}—I/P _ {p'}l/p _ Jp_% (M(p, p, A, s)}—l/pds.

Thus for such a solution to exist, there must exist an m such that

G(m) = (pWVP = H(m). 0

Now, we investigate whether such an m exists or not. For this mean,
we first study the variations of functions G(m) and H(m).
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Claim 38.3. The function G(m) in (7) on Q = (0, —ap) is decreasing
and G(-ap) =0 and G(0) < « if and only if p > 1. Also there exists a

real number p” e (-, 0) such that G(m) < {p'}l/p on Q for any

pe(p’,0)and A e (|p|?, »).

-1/p
Proof of Claim 3.3. It is clear that G'(m) = —l{M(p, P, A, —Ej}
o o

<0 on m € (0, —ap) and G(-ap) = 0. For showing, G(0) < « if and only

if p > 1, since {M(p, p, A, s)}_l/p ~ {k—|p|p}_1/p(s—p)_1/p near p* and
0

J (s - p)_l/ Pds < o if and only if p > 1. Thus one can conclude that
P

G(0) < o if and only if p > 1. Easy computations show that

M(p, p, 1, ) VP < {f(s) VP, on (p, 0), )

where f(s)=(r—|p|’)(s-p). Now, by integrating (8) on (p, 0), one can

conclude that

0 < G(0) = I: {M(p, p, M, s)}_l/pds

1 O s oy VD
e Al e

l l/p'
:—p|p| —->0asp—>0. C)
o= p 7PV

Thus for any fixed p > 1, there exists a real number p* € (-, 0) such

that G(m) < G(0) < {p’}l/p on Q for any p e (p*, 0) and L e (| p|?, »).

Hence the proof of Claim 3.3 is complete. 0
Now, we investigate the variations of H(m).

Claim 3.4 H is strictly increasing on (0, —ap) and H(0) = 0 and
H(-ap) = .
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Proof of Claim 3.4. Compute H'(m) = h(m) {M(p, P, A, —%)} b

’

_Ael” 1 (_m) m|P_am _
where h(m) = PR + D a o ' Ap, on (0, —ap).
, 1 m |P .

Also, h'(m)=-—||-—| +Mp-1)| <0 on (0, —ap). Then min A(m)
ap o
= h(-ap) = %q p|? =2) > 0, and then H'(m) > 0 on (0, —ap). 0

By Claims 3.3 and 3.4, it follows that there exists a unique
m* = m*(p, a, p, 1) € (0, —ap) such that satisfies H(m") = G(m"). Now,

it remains to find the values p < 0 and the values of A € (| p|?, ») such
that one can obtain an m" =m”(p, a, p, 1) that satisfies H(m") = {p’}l/p

= G(m"). At first we consider the equation H (m*):{p'}l/ P in the

following Lemma 3.5:

Lemma 3.5. Consider the equation in m € Q = (0, —ap)
H(m) = {p}'”, (10)
where a. > 0,p <0, p>1 and A € (| p|?, ©) are real parameters. Then:

(a) For any fixed a. > 0,p <0, p >1 and A € (| p|?, »), the equation

(10) admits a unique positive zero m* = m*(p, a, p, 1).
(b) The function » — m*(p, o, p, 1) is C! on (p|?, ) and

_m*{m* n p}
om” o

o - plhmy

forall o >0,p<0,p>1and L e (p|?, »).

Proof of Lemma 3.5. (a) By similar argument in [1, Lemma 6], for

any fixed a > 0, p <0, p >1 and A € (| p|?, »), consider the function



ON THE NEGATIVE SOLUTION OF A CLASS ... 233

m i+ F(p, a, p, A, m) = H(m) - {p'}l/p,

defined in Q. By Claims 3.3 and 3.4 and the intermediate value theorem,
one can conclude that the function (10) admits a unique positive zero

*

m* = m*(p, a, p, L) € Q.

(b) For any a >0, p >1 and p < 0 given, consider the real-valued

function
(b m) > F (A, m) = H(m) - {p'}/?,

defined on Q, = (| p|?, ) x Q. Itis clear that F, e C}(Q,) and

oF _ptl
m
a_n: = h(m) {M(p’ P }", _E)} P , On Q+’

p+1
agj = %(p +%) {M(p, P, A, —%)}77 >0, on Q.
Hence by Claim 3.4, %F’;: (A, m)>0 on Q,, also m"(p, a, p, ) € Q
satisfies from its definition,
F,(», m"(p, a, p, 1)) = 0. (11)

So, one can make use of the implicit function theorem to show that the

function A m"(p, a, p, A) is Cl((|p|p,oo), R) and to obtain the

. om*  (0OF, oF, .
expression for - ( an )/(am*] given by (b). N

Now, for finding a solution to system (6), we solve the equation
G(m*(p, o, p, 1)) = {p’}l/p in pe(-0,0) and re(pl’, ©) in the
following Lemma 3.6.

Lemma 3.6. Consider the equation G(m*(p, a, p, 1)) = {p'}l/p, where

pe(-»0) and A e (p|P, »), then there exists a real number p* < 0

such that:
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(a) For any p € (p*, 0) there exists no real number %.p e (| p |p, ©) for

which G(m”(p, a, p, %)) = VP

(b) If 1 < p < 2, then there exists a unique real number L., € (p|?, )
for which for any p € (—w, p*) there exists a unique real number
Ay € (p|7., ) for which G(m" (p, . p. 1)) = p'}'/7.

Proof of Lemma 3.6. (a) It is clearly follows from Claim 3.3.

(b) We first prove the following Claim 3.7:

Claim 3.7. 1. lim, ,, G(m*(p, a, p, 1)) = 0.

2. aG(m (p’ a, P, ;\‘)) < 0.
O\

3. lim}\_>(‘p‘p)+ G(m*(p, o, p, L) =0ifl < p< 2.

Proof of Claim 3.7. By (9), it is clear that G(m™(p, a, p, 1)) = 0 as

A — . Also easy computations show that for any p <0 and

he(pl?, @),
. m* om”
aG(m ) — J‘_? (p — S)dS _ O\ (12)
oL P p+l 1
piM(p, p, %, )} p { ( m*]}p
ays M D, p; }"a - o
Hence, by Lemma 3.5, one can conclude that 0G(m’) < 0. By the

monotone convergence theorem and the definition of G(m*(p, a, p, 1)) on

Q = (0, —ap), one can conclude that

*
m

lim  G(m*(p, o, p, 1)) = J‘7 * {M(p,p,|p|", s)}_l/pds, (13)
(e P)* p
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9 1/p
7} (s-p)¥P near p* and

since {M(p, p, |p|P, s VP = {
ple

0
I (s—p)_z/pds:oo if 1 < p <2 Thus lim o[Py* G(m*(p,a,p, 1)) =00 if
p

>(|

l<p<2 0

Now from the Claim 3.7 and the continuity of G(m*(p, o, p, 1)), one
can conclude that for the case 1< p <2, there exists a unique real
number A, € (| p|?, ©) for which G(m"(p, a, p, 1,)) = {p'}l/p. Here the

proof of Lemma 3.6 is complete. 0

On the other hand by Lemma 3.5, H(m"(p, o, p, %,)) = {p'}/?,

therefore in the case 1 < p <2 and p < p*, by Lemma 3.6(b), we can
conclude that the equations of the system (6) are simultaneously solvable
in m" =m*(p, a, p, Ap). Also by Lemmas 3.5 and 3.6(a), one can
conclude that for any p* e (p*, 0) the equations of the system (6) are not

simultaneously solvable in m* = m*(p, a, p, Ap)-

Hence from Lemma 3.2, one can prove Theorem 2.1.

Open problem. The study of the existence of negative solution to the

problem (1)-(3) in the case p >2 and p < p", is an open problem.
Because one must compare the value of G(m*(p, a, p, | p|”)) to the value

of {p"}VP.
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