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Abstract

The article is devoted to stochastic processes with values in finite-
dimensional vector spaces over infinite locally compact fields of zero and
positive characteristics with non-trivial non-Archimedean norms.
Infinitely divisible distributions are investigated. Theorems about their
characteristic functionals are proved. Particular cases are demonstrated
as applications to non-Archimedean analogs of Gaussian and Poisson
processes and their generalizations.

1. Introduction

It is well-known that infinitely divisible distributions play very
important role in the theory of stochastic processes over fields of real and
complex numbers [4, 9, 10, 11, 24, 28]. The main advantage of the results
of Khinchin and Levy and their followers in this area was that they have
taken into account the linear and bilinear functionals on linear spaces,
that is, terms of the first and the second order, and have obtained
characteristic functionals of infinitely divisible distributions and
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homogeneous stochastic processes with independent increments. That
had permitted them to get interpretations of obtained results in
particular cases of Gaussian and Poisson processes and their

generalizations.

On the other hand, generalizations on locally compact Abelian groups
were also considered [11, 22, 23]. Though in latter cases results were too
general in comparison with those on linear spaces. For example, classes
of measures corresponding to Gaussian processes on groups are much
wider than those on linear spaces, that is, they do not take into account
the field structure, because they operate with the additive group
structure only (see [22] and Definition 6.1 and Theorem 6.1 [23]).
Moreover, their approach on totally disconnected groups takes into
account terms of the first order only and their terms of the second order
copied from the real case vanish (see [22] and Section 3 particularly
Example 3.4 [23]). But the terms of the second order are crucial for the

Gaussian and Poisson processes.

Recently non-Archimedean analysis is being fast developed [26, 27,
30]. Below in this article to overcome difficulties met in previous works of

other authors later results of non-Archimedean analysis were used.

Limit distributions on non-Archimedean local fields (of zero
characteristic certainly) were studied in [13, 32] and in these articles
results about representations of functionals of infinitely divisible

distributions on locally compact Abelian groups from [22, 23] were used.

Nevertheless, infinitely divisible distributions over infinite fields
with non-Archimedean non-trivial norms were not yet studied especially
for fields of positive characteristics. This article is devoted to infinitely
divisible distributions of stochastic processes in vector spaces over locally
compact fields K. In this paper the new approach taking into account the
field structure and terms of the first and the second order is developed
(see Theorems 5, 7, 8, 10, 12 and 15). This permits to get non-
Archimedean analogs of the Gaussian and Poisson processes, that is done

below (see, for example, 16 and 17 in Section 2).

The locally compact non-Archimedean fields have non-Archimedean
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norms and their characteristics may be either zero such as for Q, or for
its finite algebraic extension, or positive characteristics char(K) = p > 0
such as F,(0) of Laurent series over a finite field F, with p elements and

an indeterminate 0, where p > 1 is a prime number [31]. Multiplicative

norms in such fields K satisfy stronger inequality, than the triangle

inequality, | x + y | < max(| x|, | ¥ |) for each x, y € K. Non-Archimedean

fields are totally disconnected and balls in them are either non-

intersecting or one of them is contained in another.

In works [2, 5]-[8, 12, 14] stochastic processes on spaces of functions
with domains of definition in a non-Archimedean linear space and with
ranges in the field of real R or complex numbers C were considered.
Different variants of non-Archimedean stochastic processes are possible
depending on a domain of definition, a range of values of functions, values
of measures in either the real field or a non-Archimedean field [19, 21], a
time parameter may be real or non-Archimedean and so on. That is,
depending on considered problems different non-Archimedean variants

arise.

Stochastic processes with values in non-Archimedean spaces appear
while their studies for non-Archimedean Banach spaces, totally
disconnected topological groups and manifolds [15-18, 20]. Also branching
processes in graphs have very great importance [1, 10, 11]. For finite or
infinite graphs with finite degrees of vertices it is possible to consider
their embeddings into p-adic graphs, which can be embedded into locally
compact fields. That is, a consideration of such processes reduces to

processes with values in either the field Q,, of p-adic numbers or F,(6).

In this article theorems about representations of characteristic
functionals of infinitely divisible distributions with values in vector
spaces over locally compact infinite fields with zero and positive
characteristics with non-trivial non-Archimedean norms are formulated
and proved. In these theorems characteristic functionals are obtained in
the new form that was not got earlier. For this specific non-Archimedean

classes of mappings are introduced. They are not linear or bilinear, but of
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the specific non-Archimedean form, because there is not any non-constant
linear mapping from the field of real numbers into the field Q, or F 0)

or vice versa. They have permitted to overcome difficulties which were
met earlier by another authors. For example, the cases of fields with
positive characteristics are considered; not only the terms of the first, but

also terms of the second order are taken into account below.

Special features of the non-Archimedean case are elucidated.
Therefore, a part of definitions, formulations of theorems and their proofs
are changed in comparison with the classical case. Some necessary facts
from probability theory or non-Archimedean analysis are recalled (see, for
example, 1-3 in Section 2), that to make reading easier. The results of this
paper are complementary to those of preceding papers and develop them
further (see also above). The main results of this paper, for example,

Theorems 5, 7, 8 and 10, are obtained for the first time.

There is also an interesting interpretation of stochastic processes with

values in Qg, for which a time parameter may be either real or p-adic. A
random trajectory in Qg may be continuous relative to the non-

Archimedean norm in Qp, but its trajectory in Q" relative to the usual

metric induced by the real metric may be discontinuous. This gives new

approach to spasmodic or jump or discontinuous stochastic processes with
values in Q™, when the latter is considered as embedded into R™. On
the other hand, stochastic processes with values in Fj (0)" can naturally

take into account cyclic stochastic processes in definite problems.
2. Infinitely Divisible Distributions

To avoid misunderstandings we first present our notations and

definitions and recall the basic facts.

1. Notations and definitions. Let (Q, A, P)-be a probability space,

where Q is a space of elementary events, A is a c-algebra of events in Q,
P : A — [0, 1] is a probability.
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Denote by & a random vector (a random variable for n =1) with
values in K" such that it has the probability distribution Pé(A) =
Pllwe Q:E&w)e A}) for each A € B(K™), where &:Q — K", ¢ is

(A, B(K™))-measurable. That is, £ 5(B(K™)) = A, where K is a locally
compact infinite field with a non-trivial non-Archimedean norm, n € N,

Q,, is the field of p-adic numbers, 1 < p is a prime number.

Here K is either a finite algebraic extension of the field Q, or the
field Q, itself for char(K) = 0, or K = F,(0) for char(K) = p > 1, B(K")
is the c-algebra of all Borel subsets in K™. Random vectors & and n
with values in K" are called independent, if P({£ € A, ne B}) =

P({g € A})P({n € B}) for each A, B € B(K™).

A random vector (a random variable)  is called infinitely divisible, if

(1) for each m € N there exist random vectors (random variables)
€1y - &, such that & = & +--- + §,,, and the probability distributions of

€1y - &, are the same.

If & =¢&(¢) = &, ®) is a stochastic process with the real time, ¢ € T,
T < R, then it is called infinitely divisible, if Condition (1) is satisfied for
each t e T.

Introduce the notation B(X, x, R) := {y € X : p(x, y) < R} for the ball
in a metric space (X, p) with a metric p, 0 < R < o, §;(t) are stochastic

processes, j =1, ..., m.

2. Lemma. If & and n are two independent random vectors with

values in K™ with probability distributions P: and P, then §+n has

the probability distribution P, (A) = .[K“ P:(A — dy)P,(dy) for each A e

B(KD).
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Proof. Since £ and n are independent, P({w € Q : £(w) € C, n(w) € B})

=P(lo e Q: E(w) e C})P({o € Q : n(w) € B}) for each C, B € B(K™).

Therefore, P({E+ne A})=P({t e A-y,n=y,yec K"}) for each
A e B(K"), consequently, P;,,(A) = IKn P:(A - dy)P,(dy).

This means that P; , = P * P, is the convolution of measures P:

and P,.

3. Corollary. If & is an infinitely divisible random vector, then P =
Pg*lm for each m € N, where P;m denotes the m-fold convolution P, with
itself.

Proof. In view of Lemma 2 and Definition 1 P; = P. * Py ...z =

"':P§1 *Péz *”'*Pim'

On the other hand, &;, ..., §,, have the same probability distributions,

hence PE.sl *P§2 **P&m =P§lm.

4. Notes and definitions. Corollary 3 means that the equality

P; = Pglm implies the relation:
P:(A) = IKn J.K“ P; (A - dyy) Py, (dy; — dyg)-

Pgm_l (dymfl - dym)Pim (dym)7
where A € B(K™). In the case of char(K)= p >1 Corollary 3 means,
that for m = kp, where k € N, if P;({0}) = 0, then P; ({y}) = 0 for each

singleton y € K", since P(§ = 0) > P(§; =&y = - = &,) 2 P ()™ Tt

is the restriction on the atomic property of Pg and P§1'
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For p-adic numbers x = z::kapk, where x, € {0,1, ..., p—1},
NeZ N=N(x), xy #0, x; =0 for each j <N, put as usually

ordq (x) = N for the order of x, thus its norm is | x |Q = pV. Define
P P
. -1
the function [x]Qp = Zk:N x,p" for N <0, [x]Qp =0 for N >0 on
Q- Therefore, the function [x]Qp on Qp is considered with values in the
segment [0, 1] c R.
For the field F,(6) put | x |Fp(e) = p~Y, where N = orde(e)(x) eZ,

x = Z:ZijGj, xj e F, for each j, xjy # O, xj =0 for each j < N. Then
we define the mapping [x]Fp(e) = x_1/p, where we consider elements of
F, = 1{0,1, ..., p—1} embedded into R, hence [x]Fp(e) takes values in R,

where 1/p € R, x_; = 0 when N = N(x) > 0.

Consider a local field K as the vector space over the field Qp, then it

is isomorphic with QB for some b € N, since K is a finite algebraic

extension of the field Q. In the case of K = F,,(6) we take b = 1. Put
() F := Q, for char(K) = 0 with K > Q,, while

(i) F := F,(6) for char(K) = p > 1 with K = F,(6).

Let (x, y) = (x, y)p = Z?:lxjyj for x, y e F?, x = (%1, .o %p), xj € F;
(x, Y)g = Z;.L:lxjyj for x, y e K™, x = (%, ..., x,), xj € K.

Define the mapping (q)p := 27 (e, ¢)lp for each ¢ € K, which is
considered in (e, g) as the element from FP, (@)p : K > R, where e :=

@..,1)e F?, particularly e = 1 for b = 1, that is, either in (i) K = Q,

or in the case (ii) for K = F,(0). For the additive group K™ then there
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exists the character y,(z) := exp(i((s, 2)g)p) Wwith values in the field of
complex numbers C for each value of the parameter s € K™, since
sj(zj +vj) = sjzj + sjv; for each sj, zj, v; e K and (s, z + V)i = (s, 2)g
+ (s, v)g, [x + ylp - [x]p - [v]p € B(F, 0, 1) for every x, y € F, while [x]p
= 0 for each x € B(F, 0, 1), where i = (—1)1/2 e C. In particular, yo(z) = 1
for each z € K™ for s = 0. The character is non-trivial for s # 0. At the

same time y4(z) = H?zl Ls; (z;), where Lsj (z;) are characters of K as the

additive group.

For a c-additive measure p : B(K™) — C of a bounded variation the

characteristic functional i is given by the formula: {i(s) := IK“ 1s(2)n(dz),

where s € K™ is the corresponding continuous K-linear functional on K™

denoted by the same s.

In general the characteristic functional of the measure p is defined in

the space C°(K®, K) of continuous functions f : K®* — K,

()= [ 1 (FEDHEz), where 1< K.

Let p be a c-additive finite non-negative measure on B(K™), u(K™)

< . Consider the class C; = C;(K) of continuous functions A = A, :

K™ — R, satisfying Conditions (F1-F4).
(F1) A(y +2) = A(y)+ A(z) + 27thn fi(y, z; x)u(dx) for each y, z € K™,
(F2) A(By) = BlpA() + 2] o (B, (e, (3, )k ) Ju(dx) for each y e K™,
B € F, where either

(F3) if F = Q,, for char(K) = 0, then f; : (K™ > Z and f; : Q% —- R
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are locally constant continuous bounded functions, fi(y, z; x) € Z and

fo (o, B)p_N(“’B) e Z for N(a, B) < 0 take only integer values, N(a, B) :=
min(orde(a), orde(B)); or

(F4) if F = F,,(0) for char(K)=p >0, then f; : (Kn)3 — R and f, : F?
— R are locally constant continuous bounded functions, pf(y, z; x) € Z

and p2fy(a, B) € Z for N(a, p) < O take only integer values, N(a, B) =
min(ordpp(e)(oc), orde(e)(B)). While £i(y, z; x) = 0 for max(| yx g, | 2% |g)
<1, and fy(a, B) = 0 for max(| o |g, |B|p) <1 in (F3, F4).

Denote by Cy = C5(K) the class of continuous functions B = By, :
(Kn)2 — R, satisfying Conditions (B1-B3):

(B1) B(y, z) = B(z, y) for each y, z € K", where B(y, y) is non-
negative,

(B2) B(q + v, z)= B(q, z) + B(y, z) + QRIKH fiq, y; x){(z, x)g)puldx)

for each ¢, y, z € K",

(BS) B(By7 2) = [B]FB(y7 2) + 2ann fZ(B’ (67 (y’ x)K)F)<(27 x)K)F“(dx)

where f; and f; satisfy Condition either (F'3) or (F4) depending on the

characteristic char(K).

For y = z we shall also write for short B(y) := B(y, y).

4.1. Lemma. If y4(x) : F* — C is a character of the additive group of
F™ as in 4 of Section 2, p : B(F™) — [0, ] is the Haar measure such that

wB(F"™, 0,1)) =1. Then I )xs(x)u(dx) = J(s, k), where J(s, k)

B(F®,0, p*

= p"" for |s|< p*, while J(s, k) =0 for |s| = p k.
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Proof. The Haar measure p on B(F") is the product of the

Haar measures p; on B(F), u(dx) = ®;-‘:1uj(dxj), uj = py. Therefore,

n
IB(Fn,O,pk)xs(x)u(dx) =11, J.B(F’O’pk)Xs]-(xj)“j(dxj), where x; = %1,

Xs; (x;) is the character of F.

Consider n = 1. Then

K = dx) = _ d
Jpgem o ey e @@ = [ e 3)n)

for each y e B(F, 0, p*). Thus K = xs(—y)j xs(x)u(dx), since

B(F.0,p")
B(F, 0, p*) = B(F, y, p*) for each y e B(F, 0, p*), while p(A -y)=
n(A) for each A e B(F). Take | s |p > p 1 and |y|p = p” such that [sylp

# 0 is nonzero. Hence K(1 - y4(-y)) = 0, but y4(-y) # 1, consequently,
K =0.

On the other hand, if |sx|p <1, then y4(x)=1 and inevitably

k k .
IB(FYprk)xs(x)u(dx) = p”, when |s|p < p” (see for comparison the

case F = Q, in [30, Example 6, p. 62]).

5. Theorem. Let {y(v, y):v eV} be a family of characteristic

functionals of c-additive non-negative bounded measures on B(K™), where
V is a monotonically decreasing sequence of positive numbers converging
to zero. Suppose that there exists a limit g(y) = lim, , (v(v, ¥) - 1)/v
uniformly in each ball B(K™, 0, R) for each given 0 < R < w. Then in

{K™, B(K™)} there exists a c-additive non-negative bounded measure v,
functions A(y) and B(y), belonging to classes C; and Cq, respectively,
such that
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(@) g(y) = iA(y) = B2 + [ (expli{(y, x)g)p) - 1 = i{(y, x)g)p) (L +

o )7 (0 ) ) (@ + [ )7 /2) [+ )] 2 [PTv(dz), v 2 0, v({0)) = 0.

Proof. Let p, be a measure corresponding to the characteristic

functional y(v, y). Put 1,(4) = v_l_[A| z |2/[1 +|z |2]pv(dz) for each A e

B(K"), where |z|:= maxi<j<,|2j |g, 2 = (21, .., 2,) € K", zj e K for
every j = 1, ..., n. We prove a weak compactness of the family of measures

{\L, : v € V}. That is, we need to prove that
(1) there exists L = const > 0 such that sup,.y 1,(K*) < L;
(i) limpg_,., limplod, (K®\B(K™, 0, R)) = 0.

The topologically dual space K™ of all continuous K-linear functionals
on K" is K-linearly and topologically isomorphic with K™, since n € N.
Since K is the locally compact field, it is spherically complete (see [26,
Theorems 3.15, 5.36 and 5.39]). Since K™ as the linear space over F is
isomorphic with an, it is sufficient to verify a weak compactness over
the field F, where either F = Q, for char(K)=0 with K > Q, and
beN, or F=F,®) for char(K) = p >0 with K = F,(6) and b =1.
Indeed, apply the non-Archimedean variant of the Minlos-Sazonov
theorem, due to which there exists the bijective correspondence between
characteristic functionals and measures [20], where characteristic

functionals are weakly continuous (see also Section IV.1.2 and Theorem

IV.2.2 about the Minlos-Sazonov theorem on Hausdorff completely
regular (Tychonoff) spaces [29]). They are positive definite on (K™) or
C°(K™, K), when p is non-negative; (0)=1 for p(K®)=1. In the

considered case K™ is a finite dimensional Banach space over K. Since

the multiplication in K is continuous, over F this gives the continuous
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mapping fy : (F]O )2 S TP The composition of f; with all possible K-linear

continuous functionals s : K® — K separates points in K™.

Let | x| < Ry, where 0 < R < « is an arbitrarily given number. Due
to conditions of this theorem for each & > 0 there exists vy = vo(R;, )

> 0 such that for each ¢ > 0 there is satisfied the inequality:

(1) —Reg(y)+8 > J [1 - cos((y, *)p)pl| * %, (dx) for each

B(FP™ 0,¢)
0 < v < vy, since e’* = cos(a) + i sin(a), —Re(e’® —1) = 1 — cos(a) for each

aecR, while 1+|x*>1 and [L+|x[*]]x[? > |x[2

If e>1 and x € an\B(an, 0, &), then from |x|p > ¢ it follows

L+ |2]| x |72 =1+|x |72 >1 and then for each & > 0 there exists
vp > 0 such that for each ¢ >1 and each 0 < v < vy there is satisfied

the inequality:

(2) ~Reg(y) +5 > | (1 = cos((y, 2))p)hy(dx).

FPPAB(FP?,0,¢)

Integrate these inequalities by y e B(an, 0, r) and divide on the
volume (measure) M(B(an, 0, r)), where p is the non-negative Haar
measure on FP? such that p(B(FP?, 0, 1)) = 1, w(B(F®™?, 0, r)) = r®" for
each r = pk with & e Z [3, 31]. Then from (1) it follows:

-bn -2
@) =1 [ o o REEOI@N 482 [ ([ -

cos((y, x))F)}»U(dx)) w(dy)r~". From (2) we get:

-bn
@) - IB(Fb“,o,r)Reg(y)”(dy) *92 IB(Fb“,O,r)(Ian\B(an,O,g) (-
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cos((y, x))F)XU(dx))p(dy)fbn. On the other hand, cos({(y, x))g) =

b . b
COS(Zjnl (xjyj)F], since (y, x) = ijl yjxj, also (a +b)y = (@) + (O)p

+ 2wn for each a, b € F, where w is an integer number, w = w(a, b)

€ Z. For the characters integrals are known due to Lemma 4.1:

bn
J‘B(an’o’pk)Xs(x)M(dx) = H]:1 B(F’O’pk)ij (x])}’t](dx_]) = J(S’ k); Where

J(s, k) = p*®" for |s|p < p*, J(s, k) =0 for |s|p = p~**1. Since (y, x)

= (x, y) and cos(a) = Re(e'*) for each a € R, jB(anp’pk)COS((y, x))pu(dy)

= J(x, k), since J(x, k) € R. Take in (3, 4) r = p”, then

®) =p™" [ bn o v Reg()nldy) + 8
-2 —kbn
2 ([ im0 570 = T ) (d)),
© -p" [ (pn o k) Reg)u(dy) +3

—kbn
> ponbn ,5) (1~ T B)P )y ().

Since o/ (x, k)p_kbn =1 for |x|p < p*, while J(x, k)p_kb" =0 for

1

|x|p 2 p 1 then for ¢ > p**! with k e Z, where p > 2, we get

(1-d(x, k)p ") =1 for p** <|x |p < &, then

-prr p Rea(r)u(dy) + 3

J‘B(F"myO,p

- oy (d j
['[B(an,O,s)\B(an,O,p—k)| x [ hy(dx)
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> ¢ 2L, (B(FP™, 0, £)) - A, (B(EP™, 0, p™)],
hence

() Do (BEP™, 0, 8)) = 1, (BF™™, 0, p™*)]

< 82|:6 3 p_kanB(an,o,pk)Reg(y)“(dy)}

—-k+2

In particular, for ¢, = p with ¢, < ¢ and k — o, inequality (7) is

satisfied. The summation of both parts of inequality (7) by such k& gives:

(8) 2y (B(F®™, 0, ©))
© —kbn-2k
< LB = 3 PR n ey Reg()n(dy),

where L; = p4zoko:h0 p 2= p* P )1-p2), ky € Z is fixed. At the

same time from (6) it follows:

(9) —p*kb”j k)Reg(y)u(dy) +8 2 1, (FP™\B(F", 0, 2))

B(F®,0,p

for ¢ > p_k+1. Therefore, due to inequalities (8) and (9) there exists L =
const > 0 such that A,(FP?) = &, (B(FP?, 0, ¢)) + A, (FP?\B(FP?, 0, ¢))

< L, for each v € (0, vy], where L = const > 0.

Due to conditions of this theorem the function g(y) is continuous and

g(0) = 0, consequently, for each § > 0 there exists sufficiently small 0 <

R, = p" < o such that R;®"

IB(Fb“, 0. Rl)Reg(y)u(dy) < 8. In view of

inequality (9) for each ¢ > max(p_k1 +1, 1) there is satisfied the inequality

A, (FPPN\B(FP?, 0, ¢)) < 25 for each v < (0, vy], consequently, the family

of measures {A, : v € V} is weakly compact.

Choose a sequence h, 40 such that Ay, 1s weakly convergent to
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some measure v on B(K™). Due to conditions of this theorem and using

the decomposition of exp into the series, we get:

(10) [w(v, ) = 1o = [ o Oy @) =D+ | x [ 1] 2 [y (d)

i4,) = By)/2+ [ o 1, (),
where

Au9) = [ o (0 )l 0 (a),

Bu() = [ o {0 2Rl [,

(1Ol) f(y’ x) = (exp(i((y, x)K)F) -1- l((y’ x)K)F[l + | x |%{]_1
+{( R+ [T /201 + ] 2 ] 2 [

The multiplier [1 +|x |%(]| x |f(2 is continuous and bounded for | x| > R,
where 0 < R < oo, ((y, x)g)p = 0 for | y|g|x |g <1, hence the function

f(y, x) is continuous, it is bounded, when y varies in a bounded subset in

K™, while x € K™. Therefore, there exists

timy i [ PO ), (d0) = [ £ 2)v(d),

The functions ((y, %) )p| * |I_{2 and ((y, x)g)p((z ©)g)pl x |I_{2 are locally

constant by x for each given value of the parameters y and z. These

functions are zero, when | y || x | <1, that is, they are defined in the

continuous manner to be zero at the zero point x = 0. Since there exists
the limit in the left hand side of (10), there exist

limy i 44, (0) = A0) = [ (02 2))gl x (@)
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and

lim e By (v) = BO) = [, (00 )l x5 vid)

At the same time B(y) > 0 for each y € K.

Substitute the measure v(U) on v(U\{0}) and denote it by the same

symbol, where U € B(K™). Due to the fact that f(y, 0) =0, (3, O)g)p

= 0, then for such substitution of the measure the values of integrals

[ o), A= [ (0 2l = [ vid)

Kl‘l

and

By, 2) = [ o (0 2wl 2l = i V)

do not change.

It is known that [a + B]p = [a]p + [Blp + v(a, B), where v(a, B) € Z for
F=Q,, pvla,B)eZ for F=Fy0), 0<[a]p <1 for each a,p e F.

Also [oBlp = [alp[Blp + u(a, B), where p_N(a’B)u(oc, B)eZ for F = Qp,

p2ulo, B) € Z for F = F,(6), since

-1 -1 k+l
[a]q, Blq, = ZkzN(G)leN(ﬁ)aszP -,

and
— k+l
[aplq, = ZN(a)gk,N(B)gl,k+lg—1 “Prp”

where o = Z::N(a)ockpk €Qp, o €{0,1,.., p-1} for each ke Z,

o N(q) # 0, while

0]k, 0)[Blr, (0) = a_iB_1p %,
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and

_ ]
[oBle, 0) = ZN(a)sk,N(s)sl,k+l=—1 “bip

where

@ k
o = Zk:N(a)ake e Fy(0), apeF,

for each ke Z, ap(y) # 0[30, 31]. At the same time [a]y = 0, when
|o|p <1, hence v(a, B) =0 and u(a, B) = 0 for max(|a|g, |B|p) <1.
Then

(11) <(y +z, x)K)F = <(y9 x)K)F + <(’Z’ x)K)F + Zchl(y, 25 x)’

where f; € Z for F = Qp, pf € Z for F = F,(8). Since ((y, x)g)p is

locally constant and 0 < [a]p <1 for each o € F, there is the inequality

-2 < fi(y, z; x) <1 for each x, y, z € K" in (11). On the other hand,

(12) (By, ©)g)p = [Blr{(y, )k )g + 212, (e, (3, X)g IF);

where f5(a, B) = u(a, B) for each a, B € F, since F is naturally embedded
into K and (e, (v, x)g )g = (e, (By, x)g Jp- Since [a]g € [0, 1] for each
aeF, -1<fy(a,y)<1foreachoa € Fandy = (e, (y, x)g)y € F in (12).
In view of the continuity and the locally constant behavior of ((y, x)g)p

from this the continuity and local constantness of f; and f, follow. Thus,
fi and fy satisfy Conditions (F3, F4) depending on char(K). Therefore,
from (11) and (12) we get the properties:

(13) A(y) = [ n (0, X))l * [ v(dx) and

(14) B(y, z) = IKH (3, ©)g)p((z )R )pl * |f{2v(dx) with the measure

| x |;{2v(dx) here instead of the measure p in (F1-F4), (B1-B3). By the
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construction given above the measures in the definitions of A and B are

non-negative and the functions in integrals are non-negative, then A(y)

and B(y, z) take non-negative values.

As the metric space K™ is complete separable and hence is the
Radon space (see [4, Theorem 1.2]), that is, the class of compact subsets

approximates from below each c-additive non-negative finite measure on

the Borel c-algebra B(K™). In view of the finiteness and the c-additivity
of the non-negative measure |x |f(2v(dx) on K"\B(K",0,1/|y|g) for
|¥|g >0, (v, x)g)gp =0 for |(x, y)g | <1 and due to continuity and

boundedness of the functions in integrals we have that the mappings

A(y) and B(y, z) are continuous.
6. Corollary. Let the conditions of Theorem 5 be satisfied and there
exists J = IK“ | x |f{2v(dx) < . Then
A(y) = ~i(00 (B, ¥)/0B) 5o
and
B(y) = ~(0*4(B. ¥)/0p*) |p=o.

where
0. ) = [, expli((y. x)ph)| x| v(dw). 1< <1

Proof. In view of Theorem 5 there exist A(y) and B(y). At the same

time the measure v is non-negative as the weak limit of a weakly

converging sequence of non-negative measures, consequently, the
measure p(dx) = |x |I_(2 v(dx) is non-negative. In view of the supposition

of this lemma 0 < W(K™)=dJ <. If J =0, then A(y)=0, B(y)=0
and ¢(B, ¥) = 0, then the statement of this lemma is evident. Therefore,
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there remains the case J > 0. Consider the random variable ( :=
((y, N)g)p with values in R, where 1 is a random vector in K™ with the
probability distribution P(dx):= J!|x |f{2 v(dx), where y € K" is the
given vector.

Then ¢(B, y) = JM exp(iBt), where MX denotes the mean value of the

random variable X with values in C. That is,
M exp(ipc) = [, explip((y: ) )p) Pld).

For ¢ there exists the second moment, since there exists B(y) for each

y e K" In view of Theorem II.12.1 [28] about relations between

moments of the random variable and values of derivatives of their

characteristic functions at zero, we get the statement of this Corollary.

7. Theorem. Let the conditions of Theorem 5 be satisfied and

in addition measures n,(dx) posses finite moments of | x| of the
second order: an | x |%{uv(dx) <o Vv e V. Then for g(y) there is the

representation:

(@) g(y) = iA(y) - B(y)/2 + | (exp(i{(y, %)k )p)

B(K"™,0,¢)
~1-i(y, ©)g)p + (3 %)g )% /2)n(dx)

" IK“\B(K“,O,S) (exp(i{(y, )k )p) - Dn(dx),

where m is a non-negative c-additive measure on B(K™), n({0}) =0,

A(y) e ¢y, B(y, 2) € Cy.

Proof. Let

n(4) = u ),
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where {u, : v} is the family of measures corresponding to the

characteristic functions (v, y). At first we prove the weak compactness
of the family of measures {¥g(x)n,(dx):v e V} for B = B(K", 0, R),
0 < R < o, where Wg(x) =1 for x € B, Yg(x) =0 for x ¢ B, ¥Yg(x) is

the characteristic function of the set B. Using the non-Archimedean

analog of the Minlos-Sazonov theorem as in 5 of Section 2 we reduce the
proof to the case of measures on FP. Take 0 < R; < . In view of the
conditions of this theorem for each § > 0 there exists vy = vg(R;, §) > 0
such that for each ¢ > 0 and each 0 < v < vy there is accomplished the

inequality
—Reg(y)+ 8 > Ian [1 - cos((y, x)p)l| x |71, (dx)

due to the existence of lim, | [y(v, y) - 1])/v = g(y) uniformly in the ball

of the radius 0 < R, < », Vy ¢ FP?

:| ¥| < Ry. Integrate this inequality
by y e B(F°™,0,r) and divide on the volume w(B(FP®, 0, r)) = r®”
for relp ={x|:x#0,x e F} = {p* : k € Z), where p is the Haar

non-negative non-trivial measure on FP™. Then

_—bn
r J.B(anﬂ’r) Reg(y)u(dy) + 5

[\

roon IB 00 Uan [1 - cos((y, x))pl| x |_2nu(dx)j u(dy)

\%

P .[B(an, 0,r) UB(F"“,O,g) [1 - cos((y, x))pl| x |_2ﬂv(dx)j u(dy),

since n, = 0 and p > 0 are non-negative measures. Since

J.B(Fb“’ prk)Xs(x)M(dx) = J(S, k),
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where J(s, k) = p*®" for |s| < p*, J(s, k)= 0 for |s| > p kL,

-p  Reg()u(dy) + 8

I B(F, 0, p

>

[ =PI ]| [Py ().
B(F”"™,0,¢)

+1

For ¢ > p_k we then get

[no(B(FP™, 0, &) — n, (B(FP™, 0, p™*))]

2« —bnk
<e {6 p J‘B(an,Qp,@)Reg(y)u(dy)}-

—kg+2 —k+2 <,

Then for ¢ = p and ¢, = p k — oo the summing of these

inequalities leads to:

BFP™ 0, )< Lis-3" —kb"—2k+4j' Re dy),
n, (B( )< Ly Zkzkop BE 0, g(y)n(dy)

where L; = p* 2% /(1 - p72), ko e Z is fixed.

In view of the fact that the function g(y) is continuous and g(0) = 0,
then for each & > 0 there exists 0 < Ry < « such that

Reg(y)u(dy) | < 8.

IB(an, 0,Ry)

Then for £ = p %2 there is accomplished the inequality: no(B(EPR, 0, ¢))

< 2L48 for each v € (0, vy]. Since f 5 Yp(x)n(dx) = 0, the family of

K™\
measures {¥pgn, : v e V} is weakly compact for each given 0 < R < o,
B = B(K", 0, R).

Let 0 < € < 0. Then

< 0.

(2, %) ) vid)

J. B(K™,0,¢)
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and

(9, ¥)g )p| * |_2v(dx) < o0,

IK“\B(K“,O,S)

Then

Jo = _[Kn (exp(i{(y, ¥)g)p) =1 - {(y, ¥)g)pll +| = |2]_1

{0, ©))E[L + 2 PTH/2) [+ 2 ] 2 |2 v(d)

= [ o (expli( 2ic)p) = 1= il )l + 2 T

+{(3, ) )Rl + | x 2T /2)n(dx),

where n(A) = IA 1+]x |2]| x |72v(dx) for each A € B(K™). The measure

n > 0 is non-negative, since v > 0 is non-negative. From v({0}) = 0 it

follows that n({0}) = 0. The measure n(A) is finite for each A e
B(K"\B(K™, 0, ¢)), when 0 < ¢ < o, since v(K") < o and |x|> ¢ for
x € K"\B(K", 0, ¢). Therefore,

Je = [.[B(K“,o,s) ’ IK“\B(K“,O,S) (expli{(y: ¥)c)e) - 1] n(dx)

# [ o G0 2i)p + (0 OV /2)] [ v,
At the same time

[ o Gl g + (0 D)3 /2)] [P vldx)

o 0. G0 D) + (0 0} 20n(a)
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- .[B(Kn,o,s)(_i<(y’ g )y + (O, x)K>%‘/2)[(1 +]x *) - 1] 2 [ v(dx)

J ememn 0. T PR {00 DR/ ¢ P la),

hence

W 80) = A)- B2+ [ (esplil @) -1

B(K™,0,
~i{(y, 0)g)p + (0, D)) /2)n(dx)

+ _[Kn \B(Kn,O,a) (exp(i«y’ x)K>F) - 1)n(dx),

where

A =400+ [0 (0 2pvia)

B(K™,0,

- -2
J K"\ B(K",0,¢) (0 ) ) [ 2 [ v(d),

BOY=BO* [, 0 (0 @)

B(K",0,

2|, -2
- J.KH\B(Kn,o,S)«y’ ) )wl x| v(dx).

Using the expressions for A(y) and B(y, z) from the proof of Theorem 5,

we get

)

A = [ gm0 (0 D)

B(K"™,0,¢

im0 (0 el 210,
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3)

Bov )= [ o 0 (e 2 i)

B(K",0,

’ J.B(Kn,(),g) (9, ©)g)p((@ ) )l x| v(dx).

Due to identities 5(11, 12) with the measure [1 +|x |_2]‘PBv(dx) here as

the measure u in 4 of Section 2, with B = B(K™, 0, ¢), where ¥g(x) is
the characteristic function of the set B, ¥g(x) =1 for x € B, ¥g(x) =0

for x € K"\B, we get, that A and B satisfy Conditions (F1-F4) and

(B1-B3), respectively. Since the measures in the definition of A and B

are non-negative and the functions in integrals are non-negative, ;l(y)
and B(y, z) take non-negative values.
As the metric space K™ is complete and separable, hence it is the

Radon space (see [4, Theorem 1.2]), that is the class of compact subsets

approximates from below each c-additive non-negative finite measure on

the Borel c-algebra B(K™). In view of the finiteness and c-additivity of
the non-negative measure [l +|x |_2]‘PBv(dx) and the boundedness of

the continuous functions in integrals the mappings A(y) and B(y, z) are

continuous.

8. Theorem. A characteristic function y(y) of an infinitely divisible

distribution in K™ has the form y(y) = exp(g(y)), where g(y) is given by
Formula 5(i). If in addition distributions p,(dx) from Theorem 5 posses

finite moments | x |g of the second order: IKH | x |%{uv (dx) < o, then g(y)
is given by Formula 7().
Proof. Let hj, = 1/k, k € N, hence g(y) = limj,_,., (vz(y)—1)/(1/k) =

limy o, k(ye(y) = 1) = Inw(y), wi(») = w@/E, ¥), w(y) = [vp*. If fix
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arg y(0) = 0 and take such a continuous branch arg y(y), then y(y) =
exp(g(y)), where g(y) is given by Theorem 5 or 7.

9. Definitions. Let there be a random function &(¢) with values in
K", t € T, where (T, p) is a metric space with a metric p. Then &(t) is
called stochastically continuous at a point ¢, if for each ¢ > 0 there exists
lim g 400 P( &) — &(to)| > &) = 0. If &(t) is stochastically continuous
at each point of a subset S in 7, then it is called stochastically continuous
on S.

If limp_,, sup;cg P &()| > R) = 0, then a random function &(t) is

called stochastically bounded on S.

Let T =[0,a] or T =[0, ©), a >0. A random process &(t) with
values in K™ is called a process with independent increments, if Vn,
0<# <--<t,: random vectors E(0), &(t;)— E(0), ..., &(¢,) — E(t,—1) are
mutually independent. At the same time the vector £(0) is called the
initial state (value), and its distribution P(§(0) € B), B e B(K"), is

called the initial distribution. A process with independent increments is
called homogeneous, if the distribution P(¢, s, B) := (&(t + s) — &(t) € B),

B e B(K"), of the vector (¢ +s)—&(t) is independent from ¢, that is,
P(t, s, B)= P(s, B) foreach t <t +seT.

10. Theorem. Let vy(t, y) be a characteristic function of the vector
Eit +s)—&(s), t >0, s>0, where &(t) is the stochastically continuous

random process with independent increments with values in K™. Then
v(t, y) = exp(tg(y)), where g(y) is given by Formula 5@). If in addition
| E(t)|g has the second order finite moments, then the function g(y) is

written by Formula 7(1).

Proof. Let &(¢) be a homogeneous stochastically continuous process

with independent increments with values in K™, where t € T c R. Let
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t > s. Then

[w(t, ¥) = w(s, )| = [ M exp(i{(y, &t)g)g) — M exp(i{(y, &)k )p) |
= | M(exp(i((y, &@) - &)k )p) — 1) exp(i{(y, &)k )p) |
< M| exp(i((, &(t) — &(s)g )p) — 1.

Therefore, from the stochastic continuity of &(¢) it follows continuity of
y(t, y) by t. In view of being homogeneous and independency of

increments the equalities are accomplished

vt +1tg, y) = M exp(i(y, &t +t2) - &g + U(2, &) - 80))g)
= M exp(i(( &(tr) - £(0)))g) M exp(i{(y, &(t2) - &(0))g)

= y(t, y)wlte, ¥),

for each t#,t9 € T. On the other hand, a unique continuous solution
of the equation f(v+u)= f(v)f(u) for each v, u € R has the form
f(v) = exp(av), where a € R. Thus, y(¢, y) = exp(tg(y)), where g(y) =
lim, |, (y(t, y) - 1)/t. Applying Theorems 5 and 7, we get the statement of

this theorem.

11. Remark. Consider auxiliary random process 1 := [£] p With values

in R, where [(q1, .., ¢,)], = (1], - [an],) for ¢ = (a1, -, 4,) € K™
If &(¢) is a homogeneous process with independent increments, then
such is also n. Let a(t):= Mn(¢{) is a mean value, while R(t, s):=
M[(n(t) - a(t))*(n(s) - a(s))] is the correlation matrix, where mn =

(Mg, .-, Np,) is the row-vector, A* denotes the transposed matrix A. For

the process with independent increments and finite moments of the
second order then R(t, s)= B(min(¢, s)), where the matrix B(¢) is

symmetric and non-negative definite. If &(¢) is the homogeneous process
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with independent increments, m has the finite second order moments,
then as it is known a(t) = at, R(t, s) = Bmin(¢, s), where a is the vector,

B is the symmetric non-negative definite matrix [10].

12. Theorem. Let P and Q@ be two non-negative finite c-additive
measures on the Borel c-algebra B(K™), where K is a locally compact
infinite field with a non-trivial non-Archimedean norm, n € N. If their

characteristic functions are equal I3(y) = Q(y) for each y € K™, then

P(A) = Q(A) foreach A € B(K™).

Proof. The metric space K™ is complete and separable, consequently,

it is the Radon space, then P and @ are Radon measures (see [4, Theorem

1.2]). Then for each & > 0 there exists the ball B(K", z, R), 0 < R < o,
z € K", such that P(K"\B(K", z, R)) < & and Q K"\B(K", z, R)) < 4.

For each ball B(K", z, R;), z € K™, 0 < R} < o, due to the Stone-
Weierstrass theorem for each &€ >0 and each continuous bounded
function f : K® — R there exist by, ..., b, € C and sy, ..., s € K™ such
that SUP._pgn. . Rl)l by, (%) + - + by, (¥) = f(x) | < &, where yg(x) is
the character, k£ € N, since the family of all finite C-linear combinations
of characters forms the algebra which is the subalgebra of the algebra of
all continuous functions on B(K", z, R;), the complex conjugation
preserves this subalgebra, this subalgebra contains all complex constants

and separates points in B(K™, z, R;) (see [25, Theorem IV.10]).

The characteristic function ¥, of the set B(K"™, z, R) is

(K™,z,R)
continuous on K™, since K™ 1is totally disconnected and the ball
B(K", z, R) is clopen in K™ (simultaneously open and closed). Take
ze K™ 0<3, <1/k, 0<¢p <1/k, R = R(5;) < R(8;,1) for each k. For

an arbitrary vector z; € K™ with |z - 2, [gn < R(3;) take the function



28 S. V. LUDKOVSKY

P (x) = by, (%) + -+ + byxs, (x) such that

SupxeB(Kn, 21, R1)| v () - \PB(Kn, 21, Rl)(x)l < Ek
Then
j Wk (x) P(dx) = j Wk (x)Q(dx)
K" K"

and

J.Kn Yegn, 2, R1)(x)P(dx) = P(BK", 21, Ry)),

JKn Ypkn, 2, Rl)(x)Q(dx) = QBT 21, By))
On the other hand,

[ oo ¥pn, o ) @PE@) = [ ¥yen . ()Q(d)
<

j o ) Pldx) - I LG

+

[ V@R - [ ¥ypn | @)QA)

+

j WO (x) P(dx) - j W (x)Q(dx)
K K

< ep(P(K") + QK™)).

The right hand side of the latter inequality tends to zero while & — oo,

consequently,

P(B(Kn9 <1 Rl)) = Q(B(Kn9 <1 Rl))
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for each ball B(K", z;, R;) in K", where 0 < R; < ©», z; € K", since

lim,_,, 8, =0 and
P(KP\B(K™, z, R(5,)) < 5, QEP\B(K™, 2, R(5;)) < 5.
Since balls form the base of the topology in K", P(A) = Q(A) for each

A e B(K").

13. Theorem. Random vectors my, ..., n;, in K" are independent if

and only if
(1)
M exp(i{(y1, n)g + - + (ks Mg )F)
= M exp(i{(y1, m)g )p) - M exp(i{(y, M)k )p)
for each yi, .., y, € K™.

Proof. From the independence of mi,..,mn; it follows the

independence of ((y1, n1)g)p> - (V&> Mk)g)g, consequently, there is

satisfied equality (1), since
exp(i{(y1, m)g + -+ Vr, Mg )p)
= exp({(yy, M)k )p) - exp(Ve> ek )p)-

Vice versa let (1) be satisfied. Denote by Pm, the mutual

Mg
probability distribution of random vectors mny, ..., ng, by Pnj denote the

probability distribution of n;. Then

[ o Pl )+ G 2 )p) Py ()

= M exp(i{(y1, m)g + -+ (k> MK)F)



30 S. V. LUDKOVSKY

= M exp(i((y1, m)g)p)- M exp(((ve> N )k )
k
T Jn o 2 ),

where x = (X1, .oy X3 ), ¥1» - Yi» %15 - X € K™. Therefore, by Theorem
12 Py, (A xox Ap) = Py (Ay)-- Py, (Ay) for each Ay, ..., Ay, € BK™),

consequently, ng, ..., 1y, are independent.

14. Definitions. A sequence of random vectors §,, in K" is called
convergent by the distribution to a random vector &, if for each continuous

bounded function f : K® — R there exists lim,,_,., Mf(E,,) = Mf(E).

Let a metric space (X, p) be given with a metric p and a c-algebra of

Borel subsets B(X).

The family of probability measures P := {P3 : B € A} on (X, B(X)),

where A is a set, is called relatively compact, if an arbitrary sequence of
measures from P contains a subsequence weakly converging to some

probability measure.

A family of probability measures P := {Py : § € A} on (X, B(X)) is
called dense, if for each ¢ > 0 there exists a compact subset C in X such

that supgcp P3(X/C) < .

A sequence {P,, : m € N} of probability measures P,, is called weakly
convergent to a measure P when m — oo, if for each continuous bounded

function f : X — R there exists
lim,, ., j F)Ey (dx) = j ) P(dx)

15. Theorem. A random vector & in K™ is a limit by a distribution of

sums &, = ZZZI Em.r Of independent random vectors with the same
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probability distribution &, p, k=1, .., m, if and only if £ is infinitely
divisible.

Proof. If ¢ is infinitely divisible, then for each m > 1 there exists

independent random vectors with the same distribution &, 1, ..., &y 1

such that the probability distributions of & and of the sum

(Em,1 + -+ Em, ) are the same.

Let now Em be a sequence of arbitrary vectors converging by the
distribution to & when m — . Take k£ >1 and group the summands

writing €,,, in the form:

émk = Cm,l +oee+ Cm,k’
where
Cm,l = émk,l +oee+ émk,m7 o ka,k = é;mk,m(k—l)+1 +o émk,mk'

Since the sequence &,,, converges by the distribution to & while m — oo,

the sequence of the probability distributions P~mk of random vectors Emk
is relatively compact, consequently, due to the Prohorov Theorem (see
[11, Section VI.25] or [28, III. 2.1]) it is dense.

On the other hand, if | €, | > R, then due to non-Archimedeanity of
the norm in K™ there exists j such that |(, ;|> R, consequently,
P(C,,1 € K"\B(K", 0, R)) < P(,,, e K°\B(K"™, 0, R)), since Cm, j are

independent and have the same probability distribution. Therefore,

{PCm Lime N} is the dense family of probability distributions. Then

there exists the sequence {m; : j € N} and random vectors my, ..., Ny

such that ij,l converges by the distribution to n; for each [ =1, ..., k&

for j — oo. In view of the definition of convergence by the distribution
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this means in particular, that for each by, ..., b, € K® there exists
hmj—)oo M eXp(i«bl’ ij,l)K +-e+ (bk’ Cm],k)K>F)

= MeXp(i«bl’ Tll)K +oet (bk’ nk)K>F)

In view of independency of random vectors ij,l’ oy ij, , there is

satisfied the equality

M exp(i((by, ij,l)K + o+ (bys ij,k)K>F)
= M exp(i((b;, ij,1)K>)"' M exp(i((by,, ij,k)K>F),

since exp(i(y)p) is the character of the additive group of the field K.

Therefore,

lim_, ., M exp(i{(b;, Cmj, 1)+ + (O ij,k)K>F)

= M exp(i{(by, n1)g)p) - M exp(i{(0g, Mk )k )F):
thus
M eXp(i«bl’ nl)K +-e 4+ (bk> nk)K>F)

= M exp(i{(by, n1)g ) ) M exp(i((br, z)g )F)

for each by, ..., b, € K®. Then from Theorem 13 it follows, that the

random vectors ny, ..., N are independent.

Since Emjk =Cmj,1 + o+ Gy, converges by the distribution to
ny + - +mp and Emjk converges by the distribution to &, & is equal to

My + -+ + Mg by the distribution, since
Mf(E) = limj_,o, Mf(Ep 1)

= hm]—)oo Mf((;m],l +- 4+ CmJ,k)
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= Mf(ny + -+ +np)
for each continuous bounded function f : K® — R.

16. Particular cases of Theorem 10. 1. If A(y) = ¢{(a, Y)k)p>

B =0,v =0, where a € K" is some vector, ¢ = const > 0, then y(¢, y)
= exp(itq({(a, y)g )p)- The random function n(t) = ((&(t), y)g)p has the

form n(¢) = n(0) + tg, where & is the initial random vector with values in

K". That is, n(t) corresponds to the uniform motion of the point in R

with the velocity q.

In the case, when A(y) = q(v, (y)g), B =0, v =0, where v e R? isa
given vector, 0 < v; <1 foreach j=1,..,n, v=_(vy,..v,), q=const
>0, then w(t, y) = exp(itq(v, (y)g))- Therefore, the random variable

n(t) = (&), (¥)p)r has the form n(t) = n(0) + tq.

2. It is possible to consider in formulas for A(y) and B(y, z) in 5 and

7 of Section 2 in particular atomic measures, denoting A by A and B by

B here for the uniformity, then there are the expressions of the form
quj<(xj7 Y)k )y and qu]'«xj, y)K>F<(xj, 2)g )y, Where q; = V({xj})
>0orqj = v(ixj})]|x; |2 > 0 depending on the considered case, x; # 0.

In particular, there may be x; =e; = (0, ..., 0,1,0,..) ¢ K* with the

unity on the j-th place. These expressions may be transformed using
Conditions (F1-F4) or (B1-B3) (see Formulas 5@, 10, 13, 14) or 7@, 1-3)).

Then there are possible cases

A(y) = ¢{(a, Y)g )y

A(y) = v, (Y)p)r»

n
B(y, z) = Z i (sjyizj)p>
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n
B(y, 2) = Zj:1 (2 w2

where

(y)F = ((y1>1?’ e (yn>F)’

y =, . ¥y) € K",

ykeK

for each k, v € R®, (¥, *)g is the scalar product in R", s; € K, a € K™.

The consideration of the transition matrix Y from one basis in K™ to

another or the matrix X of transition from one basis in R™ into another

leads to the more general expressions for B(y, z) such as B(y, z) =
O(y)gs (@)p)r, B, 2) = ((hy, 2)g)p, where b is the symmetric non-

negative definite n x n matrix with elements in the field of real numbers
R, & is the symmetric n x n matrix with elements in the locally compact
field K.

3. If A(y) = q¢((a, ¥)x)g> B(y, 2) = ((hy, 2)g )y, where a € K", his the
symmetric n x n matrix with elements in the field K, if the correlation

term an f(y, x)v(dx) = 0 from 5 of Section 2 or

J im0y (PG i) =1

—il(y, O )p + (0 ) )%/2)n(dx)

" JK“\B(KH,O,S) (explE{(y. x)K>F) ~n(dx) = 0

from 7 of Section 2 is zero, then

w(t, ¥) = exp(itg((a, y)g)p -~ {(hy, ¥)k),/2)-
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Then E(t) is one of the non-Archimedean variants of the Gaussian

process.

4. In the case, when A(y) = (v, (¥)p)r, B, 2) = (0(y)p, (2)p)r (see
paragraph 2), while the correlation term is zero, then (¢, y) =
exp(it(v, (¥)p)r — tO(¥)p, (¥)p)r/2) and again &(¢) is one of the analogs
of the Gaussian process. Though Gaussian processes in the non-
Archimedean case do not exist. That is, we can satisfy a part of properties
of the Gaussian type in the non-Archimedean case, but not all (see also
[19]).

5. When A = 0, B =0 (taking into account (F1-F4) and (B1-B3); see
Formulas 5@, 10, 13, 14) or 7@, 1-3)) where v is the purely atomic
measure, concentrated at the point zg, v({zg}) = ¢ > 0, then wy(t, y) =

exp(qt(exp(i((y, 20 )g)p) —1). Therefore, &(t) is the non-Archimedean

analog of the Poisson process.

6. If

A(y) = q{(a, Y)g)p + I

d.
B(Kn,O,s) <(y’ x)K)Fn( X),

B(y) = —j 5 0.8) (5, x)g)En(dx)/2, n(BE™, 0, &) < oo,

B(K

then

§0) = ifla, M)y + 0, (expli(y. ) hp) ~ D),

where L is the probability measure on (K®, B(K™)), 0 < w = n(K") < o,
n(dx) = wi(dx) (see Formulas 7(i, 1-3) and (F1-F4), (B1-B3)). Therefore,

w(t, ¥) = explit((a. Yg)p)Y ,_, expl-wt) (wt)* /&)

[ J n exp(i{(y, %)g )y ) ;L(dx)}k.
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This expression of the characteristic function of the random process &(t) =
p(t) + & + - + &), where p(t) is the random process in K" with
the characteristic function exp(itq((a, y)g)p), where &, ..., &, ... are

independent random vectors in K™ with the same probability distribution

Mdx), ¢(t) is the Poisson process with a parameter w independent from
P, &1, -oe» &,y ... Then there arises the non-Archimedean analog E(t) of

the generalized Poisson process.

If

A(y) = @ )pde + | (. )i ().

B(K™,0,¢)

where E(y) is the same as at the beginning of the given paragraph, then

w(t, ) = explit(v, (M)p)r )Y, exp(-wt) ((wt) /&)

[ _[ n PO D) )p )x(dx)T,

where p(t) has the characteristic function exp(it(v, (¥)p )R )-

17. Remark. Let a branching random process be realized with values
in the ring Z, of integer p-adic numbers or in the ring B(Fy(6), 0, 1),

denote it by B. In the particular case of the uniform distribution
| x |_2v(dx) in B the measure v is proportional to the Haar measure p,
| x |72v(dx) = qu(dx), where ¢ > 0, y(B) =1, v(F\B) = 0, K = F = Q,, or
K = F = F,(6), respectively here, n = 1. Then it is possible to calculate
A(y) and B(y). In view of 5 in Section 2 in this particular case A(y) =

qIB (yx)pu(dx) and B(y) = qIB (yx)%u(dx). If y =0, then A(0) =0 and

B(0) = 0, therefore, consider the case y # 0. The function (yx)p takes
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the zero value when | yx |p <1 and is different from zero when |x | >

1/|3’|F-

In the considered case the support of the measure v is contained in B,

then A(y) and B(y) are equal to zero when | y|p <1. But the Haar
measure is invariant relative to shifts p(A + z) = u(A) for each Borel

subset in F with the finite measure u(A) < « and each z € F. Moreover,

w(zdx) = | z [pu(dx), where |z |p = p_ordF(z) (see [31]). Then

W) = qf (D u(d2)/] 7|

zeF,| y|p2| z [p>1

and

B =af @k

where | y |p > 1. At the same time z = ZZZN(x)zkpk for F =Q, or z =

Z::N(x)zkek for F = F,,(0), where N(z) = ord ,(2), 2, € {0, 1, ..., p -1}

or z;, € Fy. If v(dx) = qu(dx), then

A =dl 3| [ ()l 2 [ n(d2)
zeF,| y|p2| 2 [p>1

and

B») =dyle ()il 2 [ ()
zeF,| y|p2| 2z [p>1

These integrals are expressible in the form of finite sums, since
w(B(F, x, p*)) = p* for each k € Z and z e F, where the functions in

the integrals are locally constant.

The measure v is Borelian, v : B(K™) — [0, »), therefore each of its
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atom may be only a singleton. More generally (see Formulas 5@, 13, 14)),

if v = v; + vy, where vy is the atomic measure, while vy (dx) = f(x)u(dx),

where
f(x) = (x|, (x)p). 8 : R* > [0, )

1s a continuous function, then

Aly) = Zj ()l 2 | valoj) + jF (y0)p f(x)] 2 [ n(dx),

B(y) = Z]. (o)l 5 [P vallas ) + JF (y)7 f(x)| = [g” n(dx),

where {x;} are atoms of the measure vy, vy({x;}) > 0, each x; # 0 is
nonzero. At the same time integrals by the Haar measure p on F
with functions (yx)pf(x)|x |i12 and (yx)%f(x)| x |iﬂg, where f(x) =
g(| x |, (x)p), are expressible in the form of series, since |x |p and (x)p

are locally constant, hence f is locally constant.

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, 1979.

[2] A. N. Bikulov and I. V. Volovich, p-adic Brownian motion, Izv. Akad. Nauk. Ser.
Math. 61(3) (1997), 75-90.

[3] N. Bourbaki, Integration, Vector Integration, Haar Measure. Convolution and

Representations, Nauka, Moscow, 1970.

[4] Yu. L. Dalecky and S. V. Fomin, Measures and Differential Equations in Infinite-
Dimensional Spaces, Kluwer Academic Publishers, Dordrecht, 1991.

[6] S. N. Evans, Continuity properties of Gaussian stochastic processes indexed by a
local field, Proc. London Math. Soc., Ser. 56(3) (1988), 380-416.

[6] S. N. Evans, Local field Gaussian measures, Seminar on Stochastic Processes 1988,
E. Cinlar et al., eds., Birkhduser, Boston, 1989, pp. 121-160.

[71 S. N. Evans, Equivalence and perpendicularity of local field Gaussian measures,
Seminar on Stochastic Processes 1990, E. Cinlar et al., eds., Birkh&auser, Boston,
1991, pp 173-181.

[8] S.N. Evans, Local field Brownian motion, J. Theo. Probab. 6 (1993), 817-850.

[9] W. Feller, An Introduction to Probability Theory and its Applications, Vols. 1 and 2,
John Wiley & Sons, Inc., New York, 1966.



(10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]
(25]

(26]

INFINITELY DIVISIBLE DISTRIBUTIONS ... 39

I. I. Gihman and A. V. Skorohod, Introduction in the Theory or Random Processes,
Nauka, Moscow, 1977.

P. Hennequin and A. Tortrat, Probability Theory and Some of its Applications,
Nauka, Moscow, 1974.

A. Khrennikov and S. V. Kozyrev, Ultrametric random field, Infin. Dimens. Anal.,
Quantum Probab. Relat. Top. 9(2) (2006), 199-213.

A. N. Kochubei, Limit theorems for sums of p-adic random variables, Expo. Math. 16
(1998), 425-440.

A. N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean
fields, Monogr. Textbooks Pure Appl. Math., Vol. 244, Marcel-Dekker, Inc., New
York, 2001.

S. V. Ludkovsky, Stochastic processes on groups of diffeomorphisms and loops of
real, complex and non-Archimedean manifolds, Fundam. i Prikl. Math. 7(4) (2001),
1091-1105.

S. V. Ludkovsky, Stochastic processes on non-Archimedean Banach spaces, Int. J.
Math. Math. Sci. 21 (2003), 1341-1363.

S. V. Ludkovsky, Stochastic processes on totally disconnected topological groups, Int.
J. Math. Math. Sci. 48 (2003), 3067-3089.

S. V. Ludkovsky, Stochastic processes and antiderivational equations on non-
Archimedean manifolds, Int. J. Math. Math. Sci. 31(1) (2004), 1633-1651.

S. V. Ludkovsky, Non-Archimedean valued quasi-invariant descending at infinity
measures, Int. J. Math. Math. Sci. 23 (2005), 3799-3817.

S. V. Ludkovsky, Topological transformation groups of manifolds over non-
archimedean fields, representations and quasi-invariant measures I, II, J. Mathem.
Sci. T 147(3) (2007), 6703-6846; II 150(4) (2008), 2123-2223 [Transl. from: Part I
(Chapters 1 and 2) in the Sovrem. Math. i ee Pril. 39 (2006); Part II (Chapters 3-5) in
Sovrem. Mathem. Fundam. Napravl. 18 (2006), 5-100].

S. Ludkovsky and A. Khrennikov, Stochastic processes on non-Archimedean spaces
with values in non-Archimedean fields, Markov Processes and Related Fields 9(1)
(2003), 131-162.

K. R. Parthasarathy, Probability measures on metric spaces, Probability and
Mathematical Statistics, Vol. 3, Academic Press, Inc., New York, 1967.

K. R. Parthasarathy, R. Ranga Rao and S. R. S. Varadhan, Probability distributions
on locally compact abelian groups, Illinois J. Math. 7 (1963), 337-369.

V. V. Petrov, Sums of Independent Random Variables, Nauka, Moscow, 1987.

M. Reed and B. Simon, Methods of modern mathematical physics, Functional
Analysis, Vol. 1, Academic Press, New York, 1977.

A. C. M. van Rooij, Non-Archimedean Functional Analysis, Marcel-Dekker, Inc., New
York, 1978.



40

(27]

(28]
(29]

(30]

(31]
(32]

S. V. LUDKOVSKY
W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge,
1984.
A. N. Shirjaev, Probability, Nauka, Moscow, 1989.

N. N. Vahanija, V. I. Tarieladze and S. A. Chobanjan, Probability Distributions in
Banach Spaces, Nauka, Moscow, 1985.

V. S. Vladimirov, I. V. Volovich and E. 1. Zelenov, p-adic Analysis and Mathematical
Physics, Fiz.-Mat. Lit., Moscow, 1994.

A. Weil, Basic Number Theory, Springer, Berlin, 1973.

K. Yasuda, Semi-stable processes on local fields, Tohoku Math. J. 58 (2006),
419-431.





