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Abstract 

It is shown that, if ,nMA ∈  then 
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and also that, if A and B are in ,nM  then 

∗∗ +≤ BBAAAB2  

[ ( ) ] ,4
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where ( )⋅w  and ⋅  are the numerical radius and the usual operator 

norm, respectively. We apply the numerical radius inequality to derive 
new bounds for the zeros of these polynomials. 

1. Introduction 

In this paper, we are concerned with the problem of locating the zeros 
of polynomials by employing the numerical radius inequality. Numerical 
radii estimate of companion matrices have been invoked by Linden [10] 
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and Kittaneh [7, 9]. In addition, it has been shown by Kittaneh [9], that if 
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In addition, we know that 
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In this paper, it is shown that, if ( ),CnMA ∈  then  
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and it shows that, if A and B are in ( ),CnM  then 

∗∗ +≤ BBAAAB2  

[ ( ) ],4
2
1 222222 ABBABA +−++≤  

where ( )⋅w  and ⋅  are the numerical radius and the usual operator 

norm, respectively. 

We apply the numerical radius inequality to the Frobenius 
companion matrices of monic polynomials to derive new bounds for the 
zeros of these polynomials. 

In this work, let ( )CnM  denote the algebra of all nn ×  complex 

matrices. 

Definitions 1.1 [3]. If ( ),CnMA ∈  then: 

 (I) The spectral norm (or the operator norm) is defined by 
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(II) The numerical radius of A is defined by 

 ( ) { }.1,:,max =∈= xxxAxAw nC  (2) 
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Now, we list some known results as the pre-requisite. 

Lemma 1.1 [13]. If A and B are in ( ),CnM  then 

 ( ) ( )∗∗∗ +≤ BBAAsBAs jj2    for ,1 nj ≤≤  (3) 

which is, Zhan’s inequality (see [13] and [1]). 

Lemma 1.2 [3]. If ( ),CnMA ∈  then 
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Lemma 1.3 [7]. If ( ),CnMA ∈  then 

 ( ) ( ).
2
1

2
1

2AAAw +≤  (5) 

Lemma 1.4 [9]. If ( ),HBA ∈  then 
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Lemma 1.5 [6]. If A and B are positive operators, then 
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Lemma 1.6 [11]. If 
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Lemma 1.7 [5]. Let 
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be a companion matrix of 
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with C∈ia  for ni ≤≤1  and .01 ≠a  Then 
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Lemma 1.8 [8]. If A and B are in ( ),CnM  then 

 { } ,,max 22 ABBABBAA +≤+ ∗∗  (11) 

which  is, Kittaneh’s inequality (see [8]). 

2. Main Results 

Now we state Lemma 1 in another form as follows: 

Lemma 2.1. If A and B are in ( ),CnM  then 

 ( ) ( )∗∗ +≤ BBAAsABs jj2     for .1 nj ≤≤  (12) 

Proof. Let .
00 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∗ BA
M  Then 

( )
.,

00

0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
==

∗∗

∗
∗

∗∗
∗

BBAB

ABAA
MMY

BBAA
MMX  

From the inequality (8), we have 

( ) ( ) ( ) ( )∗∗ +==≤ BBAAsYsXsABs jjjj2  for .1 nj ≤≤  

Lemma 2.2. If A and B are in ( ),CnM  then 

 [ ( ) ].4
2
1 222222 ABBABABBAA +−++≤+ ∗∗  (13) 

Proof. The desired inequality (13) follows from the inequality (7), by 

substituting AA∗  instead of A and ∗BB  instead of B, respectively. 
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The inequality (13) is sharper than the inequality (11), because 
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Corollary 2.3. Let ( )CnMBA ∈,  be  positive semidefinite. Then 

[ ( ) ].4
2
1 2222222 BAABBABABA +−++≤+  (14) 

Corollary 2.4. Letting ( )CnMBA ∈=  in the inequality (13), we 

have 

 ,22 AAAAAA +≤+ ∗∗  (15) 

which is, Kittaneh’s inequality see [8].  

Theorem 2.5. If ( ),CnMA ∈  then 
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Proof. The right hand side of the inequality (16) follows from the 
inequalities (6) and (15). 

The left hand side of the inequality (16) follows from the inequality 
(12). 

The inequality (16) is sharper than the inequality (4), because 

( ) ( ) ,
2
1

2
1 2222 AAAAA ≤+≤+  

and .22 AA ≤   

Also 

,
22

2
1

2 AA
≥  if .

2

2
2 A

A ≥  



M. AL-HAWARI 420 

Now, we use previous theorem to present new bounds for the zeros of 
polynomials as follows: 

Theorem 2.6. If z is a zero of 
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Proof. The desired inequality (17) follows from the inequality (16) 

( )( ) ( ( )( ) ( ) ) ,
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where ( )pC  is the companion matrix of ( ),zp  such that 
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and 
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(see [5], and [7]). 

3. Open Problems 

The first open problem is possible to complement the upper bound (6) 

by giving an upper bound estimate for the zeros of p. 

The second open problem is possible to complement the upper bound 

(6) or the bound (16) by giving a lower bound estimate for the zeros of p. 

To see this, observe that the zeros of the polynomial 
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are the reciprocals of those of p. Thus, applying the upper bound (6) or 

the bound (16) to the zeros of q yields the desired lower bound estimate 

for the zeros of p. This enables us to present a new annulus containing 

the zeros of p. 
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