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Abstract 

In this paper, we prove general properties of local commutative 

residuated lattices, which are extended results proved in [5]: 

(1) For a commutative residuated lattice L, it is local if and only if 

( ) ∞<xord  or ( ) ∞<∗xord  for all .Lx ∈  

(2) If D is a perfect deductive system and FD ⊆  for a deductive 

system F, then F is also a perfect deductive system. 

(3) For a deductive system D, it is an ultra ds if and only if it is a 

maximal and perfect ds. 

As a consequence, our results hold at least for the local BL-algebras, 

local ML algebras, local MTL algebras, local MV algebras and so on. 

1. Introduction 

BL-algebras were invented by Hájek [2] in order to prove the 
completeness theorem of basic fuzzy logic, BL-logic in short. Soon after 
Cignoli et al. [1] proved that Hájek’s logic really is the logic of continuous 

t-norms as conjectured by Hájek. At the same time started a systematic 

study of BL-algebras, too. Indeed, Turunen [4] published where 
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BL-algebras were studied by deductive systems. Deductive systems 
correspond to subsets closed with respect to Modus Ponens and they are 

called filters, too. In [4], Boolean deductive systems and implicative 

deductive systems were introduced. 

On the other hand, some fundamental results about local 

BL-algebras are obtained by Turunen and Seesa in [5]. They proved that, 

for example, 

(1) Every linear BL-algebra is local and, since every BL-algebra is 

isomorphic to a subdirect product of linear (totally ordered) BL-algebras. 

(2) Any BL-algebra is isomorphic to a subdirect product of local 

BL-algebras. 

This means that for every equation ,ts =  it holds in any BL-algebra 

if and only if it does in any local BL-algebra. Thus it is very important to 

investigate properties of local BL-algebras to develop the theory of 

BL-algebras. In general, a class V  of algebras is called representable if 

any member of V  is isomorphic to a subdirect product of totally ordered 

members of .V  From this point of view, we can say that the class BL  of 

all BL-algebras is representable. Thus it is worth thinking about 

properties of representable algebras. Considering deeply proofs of results 

in [5], we see that many results hold for more weaker algebras such as 

commutative residuated lattices, although the class CRL  of all 

commutative residuated lattices is not representable. In this paper we 

prove general properties of local commutative residuated lattices. 

(1) For a commutative residuated lattice L, it is local if and only if 

( ) ∞<xord  or ( ) ∞<∗xord  for all .Lx ∈  

(2) If D is a perfect deductive system (ds) and FD ⊆  for a deductive 

system F, then F is also a perfect deductive system. 

(3) For a ds D, it is an ultra ds if and only if it is a maximal and 

perfect ds. 

As a consequence, our results hold at least for the local BL-algebras, 

local ML algebras, local MTL algebras, local MV algebras and so on, 
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because such algebras are axiomatic extensions of commutative 

residuated lattices.  

2. Preliminaries 

At first we recall the definition of commutative residuated lattices. 

By a commutative residuated lattice (CRL), we mean an algebraic 

structure ( ),1,0,,,,, →∨∧L  where 

(1) ( )1,0,,, ∨∧L  is a bounded lattice; 

(2) ( )1,,L  is a commutative monoid with a unit element 1; 

(3) For all zyxLzyx ≤∈ ,,,  if and only if .zyx →≤  

Let L be a CRL. For any element ,Lx ∈  we define 0→=∗ xx  and 

nx  by .,1 10 xxxx nn == +  If there is a non-negative integer n such 

that ,0=nx  then we denote the smallest such integer by ( ).xord  If there 

is no such integer we define ( ) .∞=xord  Let ( )LD  be the set of all 

elements x such that ( ) ,∞=xord  that is, 

( ) ( ){ } { ( )}.0 nxLxxordLxLD n ∀>|∈=∞=|∈=  

Proposition 1. Let L be a CRL. Then for all ,,, Lzyx ∈  we have 

(a) ( ) ,zyxzyx →=→→  

(b) ( ) ,yyxx ≤→  

(c) ,∗∗ ≤⇒≤ xyyx  

(d) ., ∗∗∗∗∗∗ =≤ xxxx  

A non-empty subset LD ⊆  is called a deductive system (ds) if: 

(1) If ,, Dyx ∈  then .Dyx ∈  

(2) If Dx ∈  and ,yx ≤  then .Dy ∈  

It is easy to prove that for a non-empty subset D of a commutative 

residuated lattice L, it is a deductive system if and only it satisfies the 
conditions: 
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(ds1) D∈1  and 

(ds2) If ,, Dyxx ∈→  then .Dy ∈  

For any non-empty subset ,LS ⊆  we define a subset 

{ }.; 1 xssSsLxS ni ≤∈∃|∈=  

Proposition 2. For any non-empty subset ,LS ⊆  S  is the least 

deductive system including S. 

Proof. It is obvious that SS ⊆  and S  is upwards closed, that is, 

Sx ∈  and yx ≤  imply .Sy ∈  

For all ,, Syx ∈  there are Sss ji ∈′,  such that xss n ≤1  

and .1 yss m ≤′′  Since ,11 yxssss mn ≤′′  we 

have .Syx ∈  

Let D be a deductive system such that .DS ⊆  For any ,Sx ∈  

there exists Ssi ∈  such that .1 xss n ≤  Since DSsi ⊆∈  and 

D is the deductive system, we have Dss n ∈1  and thus .Dx ∈  

This means that .DS ⊆  Hence S  is the least deductive system 

including S. � 

Let L be a CRL. It is called local if there exists a unique maximal 

deductive system [5]. It is also called locally finite if every non-unit 

element has a finite order, that is, ( ) ∞<xord  for all .1≠x  Moreover it 

is called perfect if ( ) ∞<xord  if and only if ( ) ∞=∗xord  for all .Lx ∈  

Lemma 1. For every proper ds D of L, we have ( ).LDD ⊆  

Proof. For every ,Dx ∈  since D is a proper ds and Dxn ∈  for every 

n, we have .0≠nx  This means that ( )LDx ∈  and hence ( ).LDD ⊆  � 

Lemma 2. For every proper ds D, there is a maximal ds M including 

D. 

Proof. Let D be a proper ds. If we take ais,{ λλλ ⊆|=Γ DDDD  

proper ds}, since ,Γ∈D  then we have .∅≠Γ  It is easy to prove that Γ 
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has a maximal element M by Zorn’s lemma. That element M is a maximal 

ds containing D. � 

Proposition 3. Let L be a CRL. Then the following conditions are 

equivalent: 

(1) L is local. 

(2) Unique maximal ds is ( ).LD  

(3) ( )LD  is a proper ds. 

(4) ( )LD  is a ds. 

Proof. ( ) ( )21 ⇒  If L is local, then there is unique maximal ds M by 

definition. We take a subset { }nuxLuxD n
x somefor≤|∈==  for 

all ( ).LDx ∈  Since xD∉0  and xD  is a proper ds, there is a maximal ds 

containing .xD  It follows from supposition that it is exactly M. Thus 

MDx x ⊆∈  and Mx ∈  for all ( ).LDx ∈  This means that ( ) .MLD ⊆  

On the other hand, since M is the proper ds, it follows that ( ).LDM ⊆  

Thus we have ( ).LDM =  

( ) ( )32 ⇒  Since ( )LD  is proper, it follows that ( ) ( )LDLD =∉0  

and hence that ( )LD  is the proper ds. 

( ) ( )43 ⇒  Suppose that ( )LD  is a proper ds. We have ( ) ( )LDLD ⊆  

by Lemma 1. On the other hand, it is obvious that ( ) ( ) .LDLD ⊆  Thus 

we get ( ) ( )LDLD =  and ( )LD  is the deductive system. 

( ) ( )14 ⇒  Let ( )LD  be a ds. Since ( )LDD ⊆  for every proper ds D, 

this implies that ( )LD  is the greatest proper ds. Hence L has a unique 

maximal ds. � 

Theorem 1. Let L be a CRL. Then L is local if and only if ( ) ∞<xord  

or ( ) ∞<∗xord  for all .Lx ∈  

Proof. Suppose that L is a local commutative residuated lattice. If 

( ) ( ) ∞== ∗xordxord  for some ,Lx ∈  then we have ( ) ⊆∈∗ LDxx,  



MICHIRO KONDO 352 

( )LD  and ( ) .0 LDxx ∈= ∗  But, since L is local, this contradicts to 

the fact that ( )LD  is the proper ds. Thus we have ( ) ∞<xord  or 

( ) ∞<∗xord  for all .Lx ∈  

Conversely, we assume that ( ) ∞<xord  or ( ) ∞<∗xord  for all .Lx ∈  

It is enough to show that ( )LD  is the proper ds. If ( ) ,0 LD∈  then 

there exists ( ),LDxi ∈  such that .01 =nxx  Thus, 1x  

.1
∗

− ≤ nn xx  Since ( ),LDxn ∈  it has an infinite order. It follows from 

assumption that ( ) ∞<=∗
nn mxord  for some .nm  This implies that 

( ) ( ) 01111 =≤= ∗
−−

nnnn m
n

m
n

m
n

m xxxxx  and hence that 

.011 =−
nn m

n
m xx  We also have ( ) .121

∗
−− ≤ nnn m

n
m
n

m xxx  Since 

( ),1 LDxn ∈−  we get ( ).1 LDx nm
n ∈−  This means that nm

nx 1−  has an infinite 

order and thus (( ) ) ∞<= −
∗

− 11 n
m
n mxord n  for some .1−nm  We have 

[( ) ] .0111
121 =≤ −−− ∗
−−

nnnnnn mm
n

mm
n

mm xxx  Iterating this process we 

have 021
1 =− mmm nnx  for some ....,, 21 mmm nn −  This means that 1x  has 

the finite order. But this is a contradiction. Hence we have ( ) .0 LD∉  � 

For any ds D, we define a relation induced by D as follows [2, 5]: 

yx D~  if and only if ( ) ( ) .Dxyyx ∈→→  

It is easy to prove that the relation D~  is a congruence on L and the 

quotient set { }LxDxDL ∈|=  defined by D~  is a commutative 

residuated lattice, where { }yxLyDx D~|∈=  and ( ) ( ) =DyDx  

( ) Dyx  for { }.,,, →∨∧∈  Moreover from any congruence θ on L we 

can construct a ds θD  by 

( ){ }.1, θ∈|=θ xxD  

Thus there is a lattice isomorphism between the class of all deductive 

systems and the class of all congruences on L. 
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For proper deductive systems D and F such that ,FD ⊆  we can also 

define a relation DF~  on DL  as follows: For ,, DLDyDx ∈  

.~~ yxDyDx FDF ⇔  

It follows from the general theory of universal algebras that 

Proposition 4. For proper deductive systems D, F of L, we have 

(1) DF~  is a congruence relation on ;DL  

(2) ( ) ( ) .FLDFDL ≅  

Proposition 5. Let L be a local commutative residuated lattice and F 

be a proper ds. We have 

( ) ( ) .FLDFLD =  

Proof. Suppose that there is FLFx ∈  such that ( )FLDFx ∈  

but ( ) .FLDFx ∉  It follows from ( )FLDFx ∈  that ( ) .∞=Fxord  

Since ( ) ,FLDFx ∉  we also have ( )LDx ∉  and hence 0=nx  for some 

n. This means that ( ) 0=nFx  and ( ) .∞<Fxord  But this is a 

contradiction. We conclude that ( ) ( ) .FLDFLD ⊆  The converse 

relation can be proved similarly. Thus we have ( ) ( ).FLDFLD =  � 

In [5], a deductive system P is called primary when it satisfies the 
condition: 

For all ,, Lyx ∈  if ( ) ,Pyx ∈∗  then ( ) Pxn ∈∗  or ( ) Pyn ∈∗  for 

some n. 

It is easy to prove the next result for commutative residuated lattices 
as in the case of BL-algebras in [5]. 

Proposition 6. Let L be a CRL and P be a proper ds. Then we have P 

is primary if and only if PL  is local. 

Corollary 1. For a proper ds P, we have P is primary if and only if 

for every x there exists a positive integer n such that ( ) Pxn ∈∗  or 

(( ) ) .Px n ∈∗∗  
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Proof. Suppose that P is a primary ds. It follows from ( ) =∗∗xx  

P∈=∗ 10  that there exists a positive integer n such that ( ) Pxn ∈∗  or 

(( ) ) .Px n ∈∗∗  

Conversely, if ( ) ,Pyx ∈∗  since ( ) ,Pxyyxyx ∈→=→= ∗∗∗  

then we have .PxPy ∗≤  If ( ) Pxn ∉∗  for all n, since ( ) ,1 PPxn ≠∗  

then PPxn 0≠  for all n. That is, ( ) .∞=Pxord  Since PL  is local, we 

have ( ) PPx m 0=∗  for some m. This implies that ( ) ( )mm PxPy ∗≤  

P0=  and .0 PPym =  It follows that ( ) Pym ∈∗  for some m. This 

shows that P is primary. � 

Proposition 7. Every CRL-chain (i.e., totally ordered commutative 

residuated lattice) is local. 

Proof. Let L be a CRL-chain and .Lx ∈  Since L is the chain, we 

have ∗≤ xx  or .xx ≤∗  In the first case, it follows that 
∗≤= xxxxx2  0=  and thus .02 =x  This means that ( ) .∞<xord  

For the case of ,xx ≤∗  since ( ) 02 =≤= ∗∗∗∗ xxxxx  and thus 

( ) .∞≤∗xord  

Thus every CRL-chain is local. � 

A proper ds LD ⊆  is called perfect if, for all ,Lx ∈  ( ) Dxn ∈∗  for 

some n if and only if [( ) ] Dxm ∉∗∗  for all m. It is proved in [5] that, for a 

perfect ds D of a BL-algebra L, D is perfect if and only if DL  is a perfect 

BL-algebra. The results hold for the case of commutative residuated 
lattice. 

Proposition 8. Let L be a CRL and D be a ds. D is perfect if and only 

if DL  is a perfect commutative residuated lattice. 

Proof. The proof comes from the following sequence of statements: 

DL  is perfect ( ) ∞<⇔ Dxord  iff ( ) ∞=∗ Dxord  
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DDxn 0=⇔  for some n iff ( ) DDx m 0≠∗  for all m 

( ) Dxn ∈⇔ ∗  for some n iff [( ) ] Dx m ∉∗∗  for all m 

D⇔  is perfect. � 

Proposition 9. If L is a perfect commutative residuated lattice, then 

any ds D of L is a perfect ds. 

Proof. For any ,DLDx ∈  suppose ( ) .∞<Dxord  There is an n 

such that ( ) DDx n 0=  and that ( ) .Dxn ∈∗  Then we have [( ) ] Dx m ∉∗∗  

for all m by assumption. This means that (( ) ) DDx m 1≠∗∗  and that 

( ) DDx m 0≠∗  for all m. This indicates that ( ) .∞=∗ Dxord  The 

converse can be proved similarly. We can conclude that DL  is perfect 

and hence that D is the perfect ds.  � 

Moreover we can show that 

Theorem 2. If D is a perfect ds and FD ⊆  for a ds F, then F is a 

perfect ds. 

Proof. Suppose that D is a perfect ds and FD ⊆  for a ds F. Since 

DL  is a perfect commutative residuated lattice, any ds of DL  is 

perfect. Moreover it is clear that any ds of DL  has a form DS  for some 

ds S such that .SD ⊆  This means that DF  is a ds of DL  and FL  is 

the perfect commutative residuated lattice by ( ) ( ) .FLDFDL ≅  Thus 

F is the perfect ds.  � 

We define a new kind of deductive system, called ultra ds according 

to the theory of Boolean algebras. A deductive system D is called ultra if 

Dx ∈  or Dx ∈∗  for all .Lx ∈  As to the ultra deductive systems we 

have the following result. 

Proposition 10. Let D be a proper ds. D is an ultra ds if and only if 

{ }.1,0≅DL  

Proof. For any ,DLDx ∈  since ,Lx ∈  we have Dx ∈  or .Dx ∈∗  
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This implies DDx 1=  or .1 DDx =∗  If ,1=∗ Dx  since ( ) ∗∗≤ DxDx  

( ) ,01 DD == ∗  then we have .0 DDx =  Thus we have DDx 1=  or 

DDx 0=  for all DLDx ∈  and thus { }.1,0≅DL  

Conversely, suppose that { }.1,0≅DL  Since { },1,0≅∈ DLDx  

DDx 1=  or .0 DDx =  Thus we get that Dx ∈  or Dx ∈∗  and hence 

that D is the ultra ds. � 

We have a characterization of ultra deductive systems as follows. 

Theorem 3. Let D be a deductive system. Then D is an ultra ds if and 

only if it is a maximal perfect ds. 

Proof. Suppose that D is an ultra ds. If there is a ds F such that it 

contains D properly, then there is an element Fa ∈  such that .Da ∉  

Since D is the ultra ds, we have .FDa ⊂∈∗  It follows that ∗= aa0  

.F∈  This implies that D is the maximal ds. Moreover, since 

{ }1,0≅DL  and { }1,0  is a perfect commutative residuated lattice, DL  

is the perfect commutative residuated lattice, which means that D is 
perfect. 

Conversely, suppose that D is a maximal and perfect ds. Since D is 

maximal, DL  is locally finite and thus ( ) ∞<Dxord  for all .1 DDx ≠  

Since DL  is perfect, this means that ( ) ∞=∗ Dxord  and .1 DDx =∗
 We 

get Dx ∈∗  for all DDx 1≠  and thus Dx ∈  or .Dx ∈∗  This indicates 

that D is the ultra ds. � 

Lemma 3. Let L be a local commutative residuated lattice. Then 

( )LD  is an ultra ds if and only if {1} is a perfect ds, that is, L is a perfect 

commutative residuated lattice. 

Proof. Suppose that ( )LD  is an ultra ds. We have the following 

sequences of equivalent equations: 

( ) 1=∗nx  for some 0=⇔ nxn  for some n 

( )LDx ∉⇔  
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( )LDx ∈⇔ ∗  

( ) ( )LDx m ∈⇔ ∗  for all m 

[( ) ] ( )LDx m ∉⇔ ∗∗  for all m. 

This means that {1} is the perfect ds. 

Conversely, if {1} is the perfect ds, since { } ( ),1 LD⊆  then ( )LD  is the 

perfect ds. It is obvious that ( )LD  is maximal. Thus we have ( )LD  is the 

ultra ds. � 

As proved in the case of BL-algebras (Proposition 22 in [5]), we have 
a similar result in the case of commutative residuated lattice. 

Theorem 4. Let L be a CRL. Then the following conditions are 

equivalent: 

(a) L is a perfect commutative residuated lattice. 

(b) {1} is a perfect ds. 

(c) ( )LD  is an ultra ds. 

(d) { }.1,0≅DL  
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