
 

Far East Journal of Mathematical Sciences (FJMS) 
Volume 32, Issue 3, 2009, Pages 311-328 
Published online: March 28, 2009 
This paper is available online at http://www.pphmj.com  
© 2009 Pushpa Publishing House 

 

:tionClassifica jectSub sMathematic 2000 Primary 68W20; Secondary 60-04, 68T45.

 Keywords and phrases: pattern detection, computer vision, Monte Carlo algorithms, search 

strategies, Java applet, optimisation. 

Supported in part by NSERC of Canada. 

Received November 15, 2008 

OPTIMISING MONTE CARLO SEARCH STRATEGIES 

FOR AUTOMATED PATTERN DETECTION 

JEFFREY S. ROSENTHAL 

Department of Statistics 
University of Toronto 
Toronto, Ontario, Canada M5S 3G3 
e-mail: jeff@math.toronto.edu 

Abstract 

We consider the relatively simple computer vision challenge of 

accurately detecting a “face” within a sea of pixels. We describe an 

interactive Java applet which accomplishes this task using a Monte 

Carlo search of the relevant configuration space. We discuss how to 

optimise various search parameters, both experimentally and by 

theoretical analysis. 

1. Introduction 

Automated pattern detection is a well-studied area of computer vision 
(see, e.g., [3], [1], [2], and the references therein), with obvious 
importance for computer vision and artificial intelligence. Among other 
things, it presents challenging problems in statistical computation, 
requiring Monte Carlo and other sophisticated search strategies to 
efficiently explore large parameter spaces. 

In this short paper, we consider the relatively simple problem of 
accurately detecting a “face” (two eyes and a nose) from a sea of pixels. 



JEFFREY S. ROSENTHAL 312 

We describe an interactive pattern-detection Java applet [7]. We present 
a simple score function for facilitating pattern detection, and various 
Monte Carlo algorithms for attempting to maximise it. We report 
simulation experiments to investigate various algorithm choices, and 
determine which choices lead to most efficient score optimisation. We 
also develop a simple theoretical framework for approximately optimising 
one of the parameters in the algorithm. 

2. Experimental Framework 

We use the Java applet [7] to conduct experiments on the various 
search strategies. We use a test image as in Figure 1, consisting of a 

95125 ×  grid of pixels (some on and some off), which we regard as a 

“blurry” image including two eyes and a nose plus lots of noise. 

The challenge for the computer algorithm is to find the face within 
the image, given only the image pixel values. A successful search (Figure 
2) finds the face fairly accurately, placing the eyes and nose in nearly 
their correct location. On the other hand, an unsuccessful search (Figure 
3) miscalculates the face location, in this case placing the nose where the 
right eye should be. Between these two extremes, a partially-successful 
search might place the eyes and nose in approximately the correct 
location, but somewhat off-center or wrong sized or otherwise inaccurate. 

 

Figure 1. A test pattern for a face location search. 



OPTIMISING MONTE CARLO SEARCH STRATEGIES … 313 

So, now the question becomes, which computer search strategies will 

lead to more successful searches and fewer unsuccessful ones? 

3. A Pattern-recognition Model 

To implement a search algorithm, we require a model for what 

constitutes a successful or unsuccessful search. We do this by means of a 

score function S, depending on various parameters, which indicates the 

extent to which parameters do or do not accurately describe the location 

of an object. 

We begin by describing a general framework, applicable to any 

objects. 

3.1. General framework 

We focus on a very simple model of pattern recognition (following the 

advice of [1], p. xiii, to keep object detection models “as simple as 

possible”). 

We assume that we seek some object (e.g., a face), and that the object 

is approximated by some specified object region depending on various 

parameters (e.g., eye width, nose height, etc.). 

 

Figure 2. A successful search result (red). 



JEFFREY S. ROSENTHAL 314 

 

Figure 3. An unsuccessful search result (red). 

We measure the evidence for an object with particular parameters in 
a particular location by means of an extremely simple score function, 
namely the number of activated pixels minus twice the number of 
unactivated pixels within the specified object region. (This model thus 
gives highest scores to large object regions which are mostly activated, 
though the “twice” factor is included to discourage gratuitously large 
potential objects. In practice [7], this model seems to work as well or 
better than the more complicated statistical models we have considered 
involving likelihood ratios, etc.) Any pixel outside of the available image 
range is treated as being unactivated. 

This general framework could apply to detection of any objects. To 
specify a model for particular objects (e.g., faces), it is necessary to list 
the parameters being allowed, and the object region corresponding to 
those parameters. We do that next. 

3.2. Faces model 

We model a face (two eyes and a nose) in terms of seven parameters 

,,,,,,, bheswyx  as follows. The location (origin) is at ( )., yx  The 

parameter w represents the width of the face, so the centers of the eyes 

are at ( )., ywx ±  The parameter e represents the size of the eyes, so the 

eyes each have width 2e and height e. The parameter s represents the 



OPTIMISING MONTE CARLO SEARCH STRATEGIES … 315 

separation of the nose from the eyes, so the top of the nose is at 

( )., syx −  The parameters h and b represent the height and breadth of 

the nose, so the nose is a triangle with top vertex at ( ),, syx −  and 

bottom vertices at ( )., hsybx −−±  These seven parameters then define 

a corresponding object region, as shown in Figure 4. 

The score function in terms of these seven parameters, ( ,,, wyxS  

),,,, bhes  is then given, as above, by the number of activated pixels 

minus twice the number of unactivated pixels within the corresponding 

object region. 

To avoid illogical special cases, we make the following restrictions on 

the parameter values (by returning a score of −∞  if they are violated): 

,201 ≤<≤ we  ,0 ws ≤≤  ,200 ≤≤ h  ,0 wb ≤≤  and (so the nose 

extends below the eyes) .2ehs >+  Any parameter configuration 

violating these restrictions will be referred to as out-of-bounds. We 

further assume that all parameters are integers. 

We do not explicitly restrict the center point ( )yx,  to lie within the 

image range (to allow for the possibility of detecting a face which is 

slightly less than half visible). However, it obviously must lie either 

within or just adjacent to the image range to achieve a positive score. So, 

the parameter search space is “essentially” finite, though very large 

because it is seven-dimensional. 

Roughly speaking, for the 95125 ×  image grid used in our 

experiments, the search space size is on the order of 42095125 5××  

,1010=  about ten billion. (The factor of 4 arises because of the three 

parameters each restricted to be less than w.) In any case, for the 

purposes of this paper, we assume the search space is too large to do a 

brute-force search of all possible values of all seven parameters. 



JEFFREY S. ROSENTHAL 316 

 

Figure 4. The model parameters of a face (eyes and nose). 

4. Search Strategies 

To search the large parameter space effectively, we employ modified 
Monte Carlo algorithms, as follows. 

4.1. Main algorithm 

Our algorithm begins with a randomly-chosen configuration of the 
seven parameters, and computes the corresponding score. On subsequent 
moves, it tries modifying the parameter values, in an effort to find larger 
scores. Depending on the results of the previous computation, it may use 
a local update (modifying the previous parameter values just slightly), or 
a global update (selecting brand new randomly-chosen parameter values, 
sometimes called a restart). 

Our algorithm accepts various tuning values, including: 

• NUMTRIES (int), the total number of parameter configurations 
whose score functions will be computed. (So, the larger NUMTRIES, the 
better the result, but the longer the computation will take.) 

• NUMLOC (int), the maximum number of successive local updates 
before the next global update. 

• BACKTRACK (boolean), whether moves to lower-score parameter 
values should be retracted before doing the next local update. 



OPTIMISING MONTE CARLO SEARCH STRATEGIES … 317 

• ONEATTIME (boolean), whether the local updates should modify 

just a single randomly-chosen parameter (as opposed to all seven 

parameters). 

• ABORTVAL (int), a score value such that any move to any 

parameter configuration having score lower than this automatically 

triggers a global update. 

That is, a global update is performed at the beginning of the search, 

and after NUMLOC successive local updates, and after visiting any 

configuration whose score is lower than ABORTVAL. Otherwise, local 

updates are performed. For example, setting NUMLOC is equal to 

NUMTRIES, and ABORTVAL is equal to ,−∞  corresponds essentially to 

doing purely local updates after the first iteration. 

One ambiguity should be clarified here. If ABORTVAL equals ,−∞  

and we visit a state with out-of-bounds parameters (corresponding to a 

score of ),−∞  then our convention is to always follow this with a global 

update if the previous update was global (i.e., if a previous global update 

brought us to the out-of-bounds state), but allow a local update (perhaps 

after backtracking) if the previous update was local. This rule avoids the 

problem of a global update to out-of-bounds values, which then wander 

locally through many different out-of-bounds values without finding any 

finite scores. Notationally, we denote the corresponding more extreme 

version (i.e., not triggering a second global update even if the first global 

update brought us to an out-of-bounds state) as setting ABORTVAL to 

.∗∞  

In our specific implementation for the experiments below, the global 

updates set ( )yx,  to a random point on the image space, and have ranges 

of about 10 for each of the final five parameters. So, the total number of 

possible global updates is equal to about ,10341095125 85 ×=××  a fact 

that will be important in Section 6. 

Also, the local updates add an increment chosen from 

Uniform{ }2,1,0,1,2 −−  for x and y, and Uniform{ }1,0,1−  for each of the 

other five parameters; this will also be important in Section 6. 



JEFFREY S. ROSENTHAL 318 

4.2. Simulated annealing 

For completeness, we also consider a simple version of simulated 

annealing (e.g., [4]), whereby a local update is retained only with 

probability ( ) ,TSe
−Δ−  otherwise retracted. Here SΔ  is the new score 

minus the old score, and T is a decreasing “temperature” variable (which 

we choose to decrease linearly from 10 to 0.1 over the course of the run). 

Thus, local updates to higher scores ( )0≥ΔS  are always retained, 

while local updates to lower scores ( )0<ΔS  are only retained with 

probability ( ) 1<Δ TSe  and are otherwise retracted. Here 0→T  

corresponds to retracting all moves to lower scores, or equivalently 

setting BACKTRACK to true. Also ∞→T  corresponds to retaining all 

local updates, or equivalently setting BACKTRACK to false. Other values 

of T are partway between these two extremes. 

Algebraically, we wish to retract local moves with probability 

( ) ,1 TSe
−Δ−−  which corresponds to backtracking if (newscore - prevscore) 

,log UT<  where ~U  Uniform [ ]1,0  is chosen independently at each 

iteration. 

For fair comparison to the other schemes, we allow the simulated 

annealing scheme to keep track of the highest score of all previously-

visited parameter settings, not just the final parameter setting of the run 

(as is done in “pure” simulated annealing). 

4.3. Algorithm output 

After considering the NUMTRIES different parameter 

configurations, the algorithm outputs the configuration giving the 

highest score, together with that score. So, the better the algorithm, the 

larger (on average) will be the output scores. In the next section, this 

comparison is used to determine which algorithm settings are the best. 

5. Experimental Results 

We now describe the results of various experiments with these 



OPTIMISING MONTE CARLO SEARCH STRATEGIES … 319 

algorithms, using the Java applet [7] and the experimental framework 

and test image described previously. 

We focus on comparisons of the algorithms with different tuning 

values. For fair comparison, we fix NUMTRIES at 50,000 for all the trials 

considered. (Since there are approximately 1010  possible configurations, 

this corresponds to testing less than 000,1001  of the possible 

configurations, indicating the scope of the computational challenge 

involved.) Each algorithm choice considered below was run 20 times on 

the same image data, to compute a mean score (and the associated 

standard error), as reported in the following tables. 

5.1. Backtracking and variable grouping 

We begin by considering the effect of the BACKTRACK and 

ONEATTIME boolean variables. The following results were obtained: 

NUMTRIES NUMLOC BACKTRACK ONEATTIME ABORTVAL Mean Score 
 

50,000 1000 True True 100−  8.26.51 ±  

50,000 1000 False True 100−  6.24.27 ±  

50,000 1000 True False 100−  9.27.30 ±  

From these results, it is clear that backtracking improves the 

algorithm (increasing the average score from 27.4 to 51.6). This indicates 

that it is wasteful to continue to pursue parameter values which lead to 

worse estimates in a “random-walk” style of small increments (for related 

considerations see, e.g., [5]). 

Perhaps more surprisingly, it is also clear that updating just one 

randomly-chosen variable at a time is preferable to updating them all at 

once (increasing the average score from 30.7 to 51.6), even though these 

results in smaller local moves, presumably because the algorithm is quite 

unlikely to improve all of the parameter values in a single update. (This 

is somewhat related to the issue of optimal scaling of random-walk 

Metropolis algorithms, see, e.g., [6].) 



JEFFREY S. ROSENTHAL 320 

5.2. Aborting of local updates 

Next, we investigate the effect of the ABORTVAL parameter, again 

running each algorithm 20 times on the same image data. The results are 

as follows: 

NUMTRIES NUMLOC BACKTRACK ONEATTIME ABORTVAL Mean Score 
 

50,000 1000 True True 0 5.35.22 ±  

50,000 1000 True True 50−  6.25.44 ±  

50,000 1000 True True 100−  8.26.51 ±  

50,000 1000 True True 500−  5.21.55 ±  

50,000 1000 True True ∗∞−  6.39.17 ±  

50,000 1000 True True −∞  1.55.36 ±  

These results show a clear trend that as ABORTVAL gets smaller, 
the average score values increase. This suggests that, surprisingly, with 
these parameters, forcing a global update just because of low score values 
is not beneficial. It is better to continue with local updates even when in 
very bad parameter configurations. 

On the other hand, if we actually take ABORTVAL to be ,∗∞−  so that 

even out-of-bounds parameter values do not trigger a global update, then 
this leads to very low scores. This shows that, while local updates are fine 
even when dealing with poor parameter choices, they are not sufficient 
when dealing with out-of-bounds parameters which could waste many 
score evaluations on invalid configurations. 

Finally, if we set ABORTVAL to −∞  (so a new global update is 
triggered if the previous global update led to out-of-bounds parameter 
values, but not if the previous local update did), then this is preferable to 

the ∗∞−  option though not as good as setting ABORTVAL to 100−  or 

.500−  

5.3. The NUMLOC parameter, with finite ABORTVAL 

To investigate the benefits of local versus global updates with a fixed, 
finite ABORTVAL, we consider different values of the NUMLOC 
parameter: 



OPTIMISING MONTE CARLO SEARCH STRATEGIES … 321 

NUMTRIES NUMLOC BACKTRACK ONEATTIME ABORTVAL Mean Score 
 

50,000 1 True True 100−  8.27.22 ±  

50,000 500 True True 100−  5.26.51 ±  

50,000 1000 True True 100−  8.26.51 ±  

50,000 50,000 True True 100−  9.15.56 ±  

These results suggest, again perhaps surprisingly, that large values 

of NUMLOC only improve the means scores. Even when NUMLOC is 

equal to NUMTRIES (so no global updates will be triggered by excessive 

numbers of local updates), the scores are still high (in fact, slightly higher 

than with more moderate NUMLOC values). As expected, if NUMLOC 

equals just one, i.e., the algorithm does a global update each time, then 

this leads to poor results since the algorithm cannot “find” the good 

parameter values without local searching. 

The high scores resulting from large values of NUMLOC may seem 

surprising. However, even if NUMLOC is very large, there may still be 

local updates triggered by ABORTVAL, thus partially “nullifying” the 

effect of large NUMLOC. To consider this, we tried a smaller value of 

ABORTVAL, too: 

NUMTRIES NUMLOC BACKTRACK ONEATTIME ABORTVAL Mean Score 
 

50,000 50,000 True True 100−  9.15.56 ±  

50,000 50,000 True True 500−  3.25.54 ±  

This shows that even if global updates are largely eliminated (due to 

large NUMLOC and small ABORTVAL parameters), the mean scores are 

still virtually as good. However, even here, since ABORTVAL is still 

finite, a global update is triggered whenever out-of-bounds parameters 

are attempted. We consider this issue next. 

5.4. The NUMLOC parameter, when ABORTVAL equals −∞  

To get a more “pure” measure of the effects of global updates, we do 

further experiments with ABORTVAL set to −∞  as discussed above, and 

with various values of NUMLOC. The results are as follows: 



JEFFREY S. ROSENTHAL 322 

NUMTRIES NUMLOC BACKTRACK ONEATTIME ABORTVAL Mean Score 
 

50,000 1 True True −∞  8.29.17 ±  

50,000 10 True True −∞  2.22.36 ±  

50,000 50 True True −∞  5.29.41 ±  

50,000 100 True True −∞  3.31.49 ±  

50,000 200 True True −∞  6.34.49 ±  

50,000 300 True True −∞  7.32.54 ±  

50,000 400 True True −∞  5.44.46 ±  

50,000 500 True True −∞  8.48.45 ±  

50,000 600 True True −∞  1.56.33 ±  

50,000 800 True True −∞  0.55.42 ±  

50,000 1000 True True −∞  1.55.36 ±  

50,000 1500 True True −∞  5.36.19 ±  

We see from these results that, with ABORTVAL set to ,−∞  it is 

optimal to set NUMLOC to approximately 300, leading to a mean score 

around 54. The algorithm still performs reasonably well for any values of 

NUMLOC between about 50 and 800. Values of NUMLOC much smaller 

(e.g., 10) or much larger (e.g., 1000) than this lead to significantly smaller 

average score values. 

5.5. The simulated annealing option 

As for the simulated annealing algorithm, we recorded the following 

results: 

NUMTRIES NUMLOC BACKTRACK ONEATTIME ABORTVAL Mean Score 
 

50,000 1000 S. A. True 100−  4.32.47 ±  

50,000 1000 S. A. True −∞  3.45.28 ±  

50,000 300 S. A. True −∞  3.45.45 ±  

50,000 400 S. A. True −∞  2.41.37 ±  

Comparing these results to the corresponding previous results with 
BACKTRACK set to true, we see that the Simulated Annealing average 

score values are slightly lower than the corresponding pure-backtracking 



OPTIMISING MONTE CARLO SEARCH STRATEGIES … 323 

scores. These seem to suggest that, for these search strategies and 
models at least, there is no benefit to using Simulated Annealing as 
opposed to pure backtracking. 

Of course, it may be possible to modify the Simulated Annealing 
algorithm to achieve higher scores. However, we suspect that the real 
advantage of Simulated Annealing would only become apparent in a 
different search space having more in the way of steep local maxima 
which are far from global maxima (a challenging problem that does not 
really arise in the test images considered here). We plan to consider this 
issue further in later work. 

6. Theoretical Considerations 

From a theoretical point of view, it would of course be desirable to 
have clear theory about which search strategies and choices are 
preferable. Of course, such questions are broad and involve many factors. 
For now, we focus specifically on the case considered in Subsection 5.4, 
where we set ABORTVAL to ,−∞  and BACKTRACK and ONEATTIME 

both true, and NUMTRIES fixed at the value .000,50=N  We then ask, 

in this configuration, what value L of NUMLOC then maximises the 
probability of finding very good parameter values? 

6.1. An idealised theoretical model 

To put this question in a theoretical framework, we note that 
parameter values which are fairly close to optimal will result in score 
values which are somewhat close to maximal, or at least somewhat larger 
than those of randomly-chosen parameter values. Roughly speaking, the 
score values will fall off linearly as functions of each of the seven 
parameters, ultimately reaching small (and essentially stochastic) 
baseline values once the parameter values are far from optimal. 

So, we model an idealised version of this question as saying we wish 
to maximise the function ( )dxxS ...,,1  (where 7=d  represents the 

number of parameters) given by: 

( ) ∏
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=
d

i i

ii
d r

tx
xxS

1
1 .

1
1,0max...,,  (1) 



JEFFREY S. ROSENTHAL 324 

Here it  is the optimal (target) value of parameter i, and ir  represents a 

“radius” of values that will still give some overlap with the target image, 
i.e., still have a score which is larger than baseline due to partial overlap 

with the true image. Thus, if 1+≥− iii rtx  for any i, then the score is 

0 (i.e., background level), while if ,iii rtx ≤−  then the score is positive 

(i.e., there is some overlap with the true image) and gets larger as the 

values ix  get closer to the targets .it  

Of course, the function (1) is an oversimplification, which does not 
take into account various local features (such as the possibility of placing 
the nose where an eye should be). Still, it is sufficient to provide some 
theoretical context for the search algorithm optimisations, as we now 
describe. 

6.2. Constraints based on global updates required 

The function (1) implies that the number of parameter configurations 
having some overlap with the true image is approximately given by 

( )∏ =
+≡

d
i irV

1
.12  So, if the total number of global update parameter 

values is G, then the probability that a given global update will result in 
parameter values having some overlap with the target image is 

approximately .GV  

Now, if NUMLOC is equal to L, then the number of global updates 

will be approximately .LN  So, the number of global updates resulting in 

some overlap with the true image will be Poisson distributed with mean 

approximately equal to ( ) ( ).GVLN  (Of course, it is also possible that 

local updates will happen to move the parameter values from those not 
overlapping the true image, to those overlapping the true image, but this 
is fairly unlikely and we neglect it from this analysis.) 

So, to have high probability of achieving overlap with the true image 

at least once, we require that ( ) ( ) ,1GVLN  or .GNVL   This is 

our first constraint on L. 

6.3. Constraints based on local updates required 

Once a global update provides some overlap with the true image, 



OPTIMISING MONTE CARLO SEARCH STRATEGIES … 325 

then the distance to optimal will average about 2ir  in each coordinate. 

Let ic  be the average net improvement of coordinate i (towards its 

optimal value) each time it is locally updated. (So, with ONEATTIME 

and BACKTRACK both true, ic  will be equal to the expected value of the 

positive part of the proposed increment.) Then each coordinate will need 

approximately ii cr 2  local updates to get very close to its optimal value. 

Now, over the course of L local updates, the number of times 

coordinate i is modified will have Poisson distribution with mean .dL  

So, to have high probability of converging to optimal parameter values 

once overlap is achieved, we require that ii crdL 2  for each i, i.e., 

that ( ).2max iii crdL   This is our second constraint on L. 

6.4. Good and optimal values of NUMLOC 

The above discussion indicates that to have high probability of 

finding good parameter values in this setting, we require that 

 ( ) .2max GNVLcrd ii
i

  (2) 

In particular, we would expect to achieve fairly good results 

whenever ( ) ,2max GNVLcrd iii <<  and optimal results when the two 

ratios are approximately equal, i.e., when 

( )
GNV

L
L

crd iii ≈
2max

 

or 

 ( ) ( ) .2max ii
i

opt crdGNVLL ≈=  (3) 

We compare these bounds with the previous experimental results in the 

next section. 

As an aside, we also note that (2) can only be satisfied if 

( ) ,2max GNVcrd iii   which requires that 

 ( ) ( ).2max ii
i

crdVGN   (4) 



JEFFREY S. ROSENTHAL 326 

Equation (4) provides an approximate lower bound on the minimal value 
of NUMTRIES which, for appropriate choice of NUMLOC, will lead to 
remotely successful algorithm searches. 

6.5. Application to the test case 

In our test image described previously, the optimal parameter values 

appear to be approximately given by: ,85=x  ,62=y  ,7=w  ,5=h  

.3,5,6 === ebs  More importantly, the overlap radii ir  appear to each 

be approximately 4, i.e., we can adjust each parameter value by 
approximately 4 while still maintaining some overlap with the true 
target image. 

We then compute that ( )∏ =
×==+=

d
i irV

1
67 .105912  

Furthermore, in our case, while there are approximately 
1010  

possible configurations, there are only about 8103 ×  possible global 

updates, i.e., .103 8×≈G  Thus, .60≈VG  

As for the ,ic  recall that the local increments are 

Uniform{ }2,1,0,1,2 −−  for x and y, and Uniform{ }1,0,1−  for the other 

five parameters. Now, due to backtracking, the net movement of x (say) 
towards the optimal value is equal to the expected positive part of this 
increment, i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .532511510510510511 =++++=c  

Similarly 532 =c  and .3176543 ===== ccccc  We then compute 

that 

( ) ( ) ( )[ ] .63124,5324max2max ==ii
i

cr  

Hence, recalling that 7=d  and ,000,50=N  we see that (2) reduces 

to 

( ) ( ) ( ) ( )86 103105000,5067 ×× L  

or 

.83342  L  



OPTIMISING MONTE CARLO SEARCH STRATEGIES … 327 

Furthermore, from (3), 

.18783342 =×≈optL  

So, this analysis suggests that the optimal value of L in this case 
should be on the order of 187, with reasonably good performance for any 

L between about 42 and 833. 

Now, according to the experimental results in the corresponding in 

table in Subsection 5.4, the optimal value of L appears to be about 300, 

with nearly as good results for L is equal to 100 or 200, and fairly good 

results for L between about 50 and 800. Overall, this is quite consistent 
with the theoretical analysis. 

We conclude that, despite the simplicity of our theoretical framework, 
it provides fairly accurate estimates of the optimal values of NUMLOC in 
this context. 

7. Conclusion 

In this paper, we have presented a simple but useful model for 

scoring the fit of parameters when searching images for objects such as 

faces. We have described an interactive Java applet [7] for conducting 

efficient Monte Carlo searches of the parameter space. We have described 

a number of different algorithm options such as backtracking, updating 

the variables one-at-a-time or all together, limiting the number of local 

updates before the next global update (“restart”), forcing a global update 

upon reaching a sufficiently low score, etc. 

Experiments indicated that backtracking is beneficial (and is not 

significantly improved further by simulated annealing), and it is the best 

to update the variables in a one-at-a-time fashion. Forcing a global 

update upon reaching a sufficiently low score is also very useful. 

In the absence of such forcing, choosing an appropriate maximum 

number of consecutive local updates (NUMLOC) is very important. We 

considered that question in detail through both experimentation and 

theoretical analysis, and found quite good agreement between the two 

approaches. 



JEFFREY S. ROSENTHAL 328 

It would obviously be useful to consider similar ideas applied to more 
complicated images (including real images imported from photographs, 
see, e.g., [1]), to more detailed image models (perhaps involving 
additional parameters), to more challenging test cases (including those 
with a stronger multimodal flavour), to less stylised experimental set-ups 
(e.g., detecting several different objects at once), and to more 
sophisticated Monte Carlo search algorithms (perhaps involving 
additional choices and tuning values). We hope to consider some of these 
issues in future work. 

Acknowledgement 

Author thanks Yali Amit and Sven Dickinson for inspiring me to 
think about these issues. 

References 

 [1] Y. Amit, 2D Object Detection and Recognition: Models, Algorithms, and Networks, 
MIT Press, 2002. 

 [2] F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner and S. Dickinson, Object 
recognition as many-to-many feature matching, Int. J. Comp. Vision 69(2) (2006), 
203-222. 

 [3] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the 
Bayesian restoration of images, IEEE Trans. on Pattern Analysis and Machine 
Intelligence 6 (1984), 721-741. 

 [4] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, 
Science 220 (1983), 671-680. 

 [5] R. M. Neal, Suppressing Random Walks in Markov Chain Monte Carlo using 
Ordered Overrelaxation, M. I. Jordan, ed., Learning in Graphical Models, Kluwer 
Academic Publishers, 1998, pp. 205-225. 

 [6] G. O. Roberts and J. S. Rosenthal, Optimal scaling for various Metropolis-Hastings 
algorithms, Stat. Sci. 16 (2001), 351-367. 

 [7] J. S. Rosenthal, Computer vision Java applets, 2008.  
  Available at: http://probability.ca/vision 


