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Abstract 

There is extensive research on prediction of various clinical phenotypes 
using gene expression profiles. Success has been demonstrated in 
molecular classification of different cancer types. However, relatively 
less attention has been paid to study the connection of gene expressions 
to time to event of patients such as time to tumour metastasis, an 
important problem in cancer research. One reason is that traditional 
survival analysis techniques may not be directly applicable in dealing 
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with gene expression data, as typically the number of genes is much 
larger than the number of subjects. A primary objective of microarray 
studies is to identify informative or differentially expressed genes, and 
based upon them to make predictions on outcomes such as tumor type in 
cancer research. We develop methods for selecting survival relevant 
genes which may explain the time to event, and build prediction models, 
based on those genes, for the survival probability. Specifically, 
dimension reduction methods are invoked to pick out informative gene 
profiles that carry survival information. Cox proportional hazards 
models are utilized to conduct prediction, and the prediction accuracy is 
assessed by means of the Receive Operating Curve (ROC) method. 
Extensions to other survival models, such as accelerated failure time 
models, can be done along the same line. Simulation studies are 
conducted to evaluate the performance of the proposed methods under 
various conditions. A real microarray data set is analyzed using the 
proposed methods. 

1. Introduction 

In medical studies including cancer research, traditional methods 
focus on using clinical outcomes to study, for example, patient’s survival 
information. Due to the fast advance of microarray technology, 
microarray data analysis has recently been receiving increasing interest 
in medical studies. Microarray technology is powerful in that it can 
simultaneously measure the expressions of thousands of genes and hence 
it becomes an increasingly common laboratory tool in biomedical and 
genomic research. This technology makes it possible to study clinical 
phenomenon such as tumor type identification and patient’s survival 
prediction by means of gene profiles (e.g., West et al. [27], Dudoit et al. 
[7], van’t Veer et al. [25]). It is believed that gene expression profiles, in 
combination with traditionally clinical information, may serve as a better 
tool to build prediction models on patient’s survival probability. Due to 
the large variability in time to an event such as cancer recurrence or 
tumor metastasis among cancer patients, treating phenotypes as survival 
data which can be more effective than classifying the phenotypes as 
binary or categorical variable (Gui and Li [9]). It is of scientific interest to 
build prediction models of survival probability for cancer patients based 
upon informative genes, and this in turn may lead to novel approach to 
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diagnosis and treatment. However, due to a number of challenges, 
traditional survival data analysis methods can not be applied directly to 
handle gene expression data. Collinearity and huge dimensionality, for 
instance, are typical features possessed by gene expression data that 
prevent direct application of survival data analysis. The number of genes 
is usually in thousands, but the number of subjects is a lot smaller. It is 
difficult or impossible to model those high dimensional data by applying 
usual survival models directly. 

To employ survival analysis techniques, we need first to reduce the 
dimension of genes by using methods such as clustering discussed in von 
Heydebreck et al. [26] for which distinctive gene expressions are 
classified into different groups. However, this approach fails to use 
clinical information, and thereby it may lead to clusters that are not of 
survival relevance. To overcome this problem, authors including Nguyen 
and Rocke [19] and Park et al. [20] discussed the partial least squares 
method which accommodates the survival information by sequentially 
maximizing the covariance between the survival time and a linear 
combination of the genes. Recently, Li and Luan [18] proposed an 2L  

penalized Cox proportional hazards model where kernel estimation is 
used to ease computational burden. Li and Li [17] proposed a dimension 
reduction strategy which combines principle components analysis and 
sliced inverse regression to identify useful linear combinations of genes. 
Bair et al. [2] explored the supervised principle component procedure 
which is similar to conventional principal components analysis except 
that it uses a subset of the predictors selected based on their association 
with the outcome. Zhao and Sun [28] used a modified correlation 
principal component regression to reduce the dimension and address the 
censoring in survival data. Among various dimension reduction methods, 
principle components analysis is perhaps the most popular one which 
provides the basis for many other modified dimension reduction methods. 
An overview of this method may be found in Jolliffe [15] and Chiaromonte 
and Martinelli [5]. 

These dimension reduction methods have enjoyed wide applications 
in microarray data analysis, and the focus mainly centers on building a 
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prediction model for future patients based on the gene expression profiles 
and survival times of previous patients. Typically, the prediction model is 
formulated using the extracted linear combinations of all of the genes in 
the database, where those gene combinations are identified based on 
their variability in the gene expression levels and preservation of the 
phenotypic information (e.g., Li and Li [17]). However, from the biological 
point of view, only a small portion of genes is of predicting power for 
phenotypes. Including all or most of the genes in the predictive model 
may induce substantial noise and thereby lead to poor predictive 
performance. It is therefore important to identify individual informative 
genes that are of survival relevance and have to carry out prediction for 
future patient survival based on those genes. Furthermore, as a pleasant 
byproduct those selected genes may be used to fulfill other objectives in 
microarray studies. Identifying phenotypic relevant genes is of primary 
interest in many problems. There has been extensive research on this 
subject and various gene selection methods have been proposed in the 
literature (e.g., Chiaromonte and Martinelli [5], Dudoit et al. [7], He [11], 
Gui and Li [9]). Our proposed algorithm of survival relevant gene 
selection provides an addition to this topic. 

In this paper we propose a three-step algorithm for survival relevant 
gene selection. Cox proportional hazards models are typically used to 
build prediction models for patients’ survival probabilities using the 
selected gene profiles. The prediction model will be evaluated with the 
Receive Operating Curve (ROC) technique. The remainder is organized 
as follows. In Section 2 we present the notation and gene selection 
methodology. In Section 3 we establish the prediction model and describe 
the evaluation of its prediction accuracy. The performance of the proposed 
methods is assessed in Section 4 through simulation studies. In Section 5 
we analyze a real microarray data set with the proposed methods. A 
general discussion is included in the last section. 

2. Framework and Methodology 

Let the matrix [ ]ijX=X  denote a microarray data set of gene 

expressions, with rows being genes and columns being arrays (samples), 
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....,,2,1;...,,2,1 MjNi ==  Here X can be the relative log intensity 
ratios in cDNA array or the log intensity ratios of test samples versus a 
baseline sample in Affymetrix array, which have been processed by a 
certain normalization procedure to remove systematic background noise 
(e.g., He et al. [12]). Denote by j;X  the 1×N  column vector of gene 

expressions for sample or subject j, and T
i;X  the 1×M  vector of the 

realizations for the ith gene expression, where the superscript T 
represents the transpose of a vector or matrix. Let jT  and jC  be the 

survival and censoring times for subject j, respectively, and jδ  be the 

censoring indicator variable taking 1 if jj CT ≤  and 0 otherwise. Let 

( )jjj CTt ,min=  for ....,,2,1 Mj =  Independent censoring is assumed, 

i.e., the censoring process does not depend on the survival process, given 
the covariate process. 

It is of primary interest to study the relationship between the 
survival times and the gene expression levels and based upon it to build a 
prediction model. The number of genes ranges from thousands to tens of 
thousands, but as believed in most microarray studies, the majority of 
those genes may not have informative expressions and thus do not have 
significant contribution to the survival information. Below we describe a 
three-step algorithm for selecting individual genes that are useful for 
prediction. 

Step 1. Gene Screening 

Single covariate Cox proportional hazards models are invoked to 
screen out those genes with no (or little) effects on survival. For a given 

,...,,2,1 Ni =  including the ith gene expression as the only covariate, 

we fit the Cox proportional hazards model with the hazard function 

( ) ( ) ( ) ,...,,2,1,exp0 MjXtt ijijj =βλλ=λ  (1) 

where iβ  is the regression parameter, and ( )jt0λ  represents the baseline 

hazard function that is left unspecified. The Cox partial loglikelihood 
(Cox [6]) 
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is employed to obtain the estimate iβ̂  of the covariate coefficient ,iβ  

where ( ) ( )ttItY ll ≥=  is the at risk indicator and ( )⋅I  is the indicator 

function. The asymptotic normal distribution may be established for 

( ) ,...,,2,1,ˆ NiM ii =β−β  and based upon it, the test statistic can then 

be easily formulated to screen out those genes whose regression 
coefficients are not significant at a prespecified significance level. This 
method has been widely used for gene selection with survival data. The 
purpose of this step is to reduce the noise that would be induced by 
including a large number of non-informative genes. See Bair et al. [2], for 
example. 

For screening purpose, an alternative may be employed. Note that 
gene expression may be represented by the relative expression between 
the test and reference samples such as in cDNA microarray studies, or 
the relative expression between the test sample and a common baseline 
sample in Affymetrix array. Informative genes with up-regulated (i.e., 
positive relative expression) or down-regulated (i.e., negative relative 
expression) expressions would have the measures farther away from zero, 
whereas non-informative genes have relative expressions close to zero. 
Furthermore, usual normalizations may shift the mean or median of the 
relative expressions within an array to be zero, but the mean or median 
across arrays for a single gene is not necessarily zero. Given these 
properties, we propose to use 

( ) .ˆ iiXif β=  (3) 

as a criterion to do screening. Here ∑ =
−= M

j iji XMX 1
1 ..  A large absolute 

value of ( )if  indicates that the survival contribution from gene i is 

different from the baseline survival information. Therefore, a threshold 

1α  can be set to exclude genes with ( ) ,1α<if  or a percentage (say, 

90%) is specified such that a given proportion of genes is retained. 
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The use of ( )if  is motivated by the following consideration: for gene i, 

its expressions iMii XXX ...,,, 21  are usually assumed independently 

identically distributed with a normal distribution with mean iμ  and 

variance ,2
iσ  and hence ( ).,~ 22

iiiiiji NX σβμββ  To test the effect of gene 

i, one may test for the null hypothesis .0: =μβ iioH  Based on the 

average of the realizations of gene i, we can use the test statistic .ˆ iiXβ  to 

test for .oH  This statistic is a special case of the compound covariate 

proposed in Tukey [24]. Such an idea was also discussed in Radmacher 
et al. [21] and Li and Gui [16]. 

We comment that issues related to multiple comparison may arise 
because thousands of comparisons are conducted in this step. It is a 
practical way to relax the significance level 0α  (or  the threshold )1α  so 

that potentially survival relevant genes are not screened out. 

Step 2. Gene Combination Selection 

Let [ ]∗∗ = ijXX  denote the new gene expression matrix containing the 

remaining potentially informative genes after Step 1, where i indexes 

these genes from 1 to ,∗m  say. After the screening step, the number ∗m  
of the remaining genes may still be very large, and it may usually be 
much larger than the number of the observations. Moreover, the 
correlation among genes makes it difficult to select out the informative 
genes solely based on the first step. Now we invoke the principle 
components analysis method to further reduce the dimension of the gene 
expression variables. Extensions to other approaches such as supervised 
principle components procedure follow the same spirit. 

Principle components can be obtained through the singular value 

decomposition of the matrix ∗X  (Hastie et al. [10]). The decomposition of 
∗X  is given by 

,TUDVX =∗  

where D is the MM ×  diagonal matrix with diagonal elements being 
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ordered singular values 021 ≥≥≥≥ Mddd  of ,∗X  i.e., they are the 

square roots of the eigenvalues of .∗∗ XX T  Here U and V are, 

respectively, the Mm ×∗  and MM ×  matrices having M
T IUU =  and 

,M
T IVV =  where MI  is the MM ×  unit matrix. Letting 

∗−= XUDV TT 1  

gives that the column vectors Mvvv ...,,, 21  of V are the linear 

combinations of the row vectors of ∗X  with coefficients ,1 AUD =− T  say, 

and they form the principle components of .∗X  Note that A is an ∗× mM  

matrix with orthogonal row vectors, i.e., TAA  is an MM ×  diagonal 
matrix. As the singular value jd  is the square root of the variance that 

the associated principle component can explain, thus we further select a 
number of principle components so that the associated total variance can 
be explained over a threshold ,8.0=γ  say. Let m be the label such that 

,22
1

22
1 γ≥

++

++

M

m
dd
dd  

and A~  be the submatrix of the first m rows of A. Define .~ ∗= XAZ  This 
Mm ×  matrix consists of the expressions of gene combinations that are 

important in the sense that they explain a large proportion of the total 
variation of gene expressions. To exclude possible gene combinations that 
are not of survival relevance, we may repeat Step 1 for matrix Z to pick 
out n survival relevant combinations and form a new matrix [ ]∗∗ = ijZZ  

with Mn×  dimension, say. Denote by ( )∗∗∗
∗= maaA ...,,1  the corresponding 

∗× mn  submatrix of ,~A  where ( )Tniiii aaa ∗∗∗∗ = ...,,, 21a  is an 1×n  

column vector, ....,,2,1 ∗= mi  As a result, .∗∗∗ = XAZ  

Step 3. Individual Gene Selection 

The selected gene combinations ∗∗∗
njjj ZZZ ...,,, 21  ( )mn <with  may 

be used to build the prediction model using the Cox proportional hazard 
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function 

( ) ( ) ,...,,2,1,exp
1

0 MjZtt
n

k
kjkjj =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
βλ=λ ∑

=

∗∗  (4) 

where ∗∗ ββ n...,,1  are the regression coefficients. The partial log-likelihood 

can be employed to estimate ( ) ,...,,1
T

n
∗∗∗ ββ=β  and let ∗β̂  be the 

resulting estimator of .∗β  Though those selected gene combinations 

explain a major proportion of variation, their biological meaning is not 

clear as the expression combinations of ∗
kjZ ’s combine all or most of the 

gene expressions on an array for which survival irrelevant genes are also 
included. It is desirable to identify individual genes that are associated 
with the survival time. If a model based on individual survival relevant 
genes (often of a considerably small number) can be built for prediction, 
then a lot cheaper methods can be used to solely measure those small 
number of genes for patients rather than to measure all the gene 
expressions. To this end we propose the following step. 

In model (4), we may explicitly present the initial gene expressions 
∗X  by using 

∑
∗

=

∗∗∗ =
m

i
ijkikj XaZ

1
.  

Therefore, 

∑ ∑ ∑
= =

∗

=

∗∗∗∗
∗

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
β=β
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ij

n

k
kikkjk XaZ

1 1 1
,  

that is, the coefficient related to original gene i is ∑ =
∗∗β

n
k kika1 .  Let 

∑ =
∗∗∗∗ β=β

n
k kiki a1 .  Then model (4) may be written as 

( ) ( ) ,...,,2,1,exp
1

0 MjXtt
m

i
ijijj =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
βλ=λ ∑

∗

=

∗∗∗  (5) 
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with ∗m  original genes as predictors. However, model (5) can not be 

directly used to conduct prediction because the number ∗m  of the 

predictors ∗
ijX ’s could be greater than the number M of the subjects. To 

detect the effects of genes ∗
ijX ’s we need to test 0: =β∗∗ioH  for each 

....,,2,1 ∗= mi  In the same spirit as (3) in Step 1, we employ 

( ) ∗
⋅

∗∗∗ β= ii Xif ˆ  

to choose survival relevant individual genes from ,∗X  where 

∑ =
∗−∗

⋅ =
M
j iji XMX 1

1 ,  and ∑ =
∗∗∗∗ β=β

n
k kiki a1 .ˆˆ  More specifically, for a 

given threshold ,∗α  we proceed through initial gene expression matrix 

,∗X  and include gene i in the final set of selected genes if ( ) .∗∗ α>if  

Let { }∗∗ = Nii ...,,2,1,;X  denote the gene expression of those selected 

genes. The value of ∗α  can be chosen based on the feature of individual 

data set. In principle, we can take ∗α  such that MN <∗  and the 

proportion ∗∗ mN  of survival relevant genes is smaller than a desired 
percentage. 

3. Survival Prediction Model 

Using the selected genes { },...,,2,1,; ∗∗ = NiiX  we build a prediction 

model by specifying the hazard function as 

( ) ( ) ,...,,2,1,~exp
1

0 MjXtt
N

i
ijijj =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
βλ=λ ∑

∗

=

∗  (6) 

where iβ
~ ’s are the regression coefficients corresponding to individually 

selected genes, and ( )jt0λ  is the baseline hazard function. 

Let iβ̂
~ ’s be the estimates of iβ

~ ’s and ( )t0Λ̂  be the Breslow estimate 
for the baseline cumulative hazard function ( ).0 tΛ  Then the estimate of 
the survival probability at a given time t is given by 
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( ) ( ) ,~̂expˆexpˆ
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where { }∗∗∗
∗Nxxx ...,,, 21  are the expressions of genes obtained by the 

algorithm in Section 2 for a subject to be predicted. 

In addition to building a useful prediction model, we also concern 
about how the prediction model (6) performs. It is desirable to develop a 
tool to measure the prediction accuracy of model (6). In classification 
problems, for example, it is often a concern to estimate the classification 
error. The cross-validated misclassification rate is often used for this 
purpose. With linear regression analysis we commonly use the mean 
squared residuals as a criterion to assess models. For survival models, 
however, those criteria can not be applied due to the complications 
caused by censoring. If we use only the observed survival times for 
constructing a measure of prediction power, we essentially loss much 
information that is conveyed by censored data. Particularly for survival 
data with a large portion of censoring, mean squared errors can provide 
very poor evaluation for a survival prediction model. Heagerty et al. [14] 
proposed a time-dependent Receive Operation Curve (ROC) for censoring 
data. The Area Under the Curve (AUC) is utilized to assess survival 
prediction models (Li and Gui [16]). Here we adapt the discussion in Li 
and Gui [16] to assess the accuracy of the prediction model (6). 

In model (6), the covariate effects ∑
∗

=
∗β

N
i ijiX1

~  have decreasing impact 

on the survival probability. That is, the larger the value of ∑
∗

=
∗βN

i ijiX1 ,~  

the smaller the value of the survival probability. Denote ( ) =∗
jg ;X  

∑
∗

=
∗βN

i ijiX1 .~̂  Let ( )tDj  be the event status of subject j at time t, i.e., 

( ) 1=tDj  if the event jT  occurs at time t, and 0 otherwise. For a 

constant c and a time point t, define 

( ) ( ( ) ( ) ),1Pr,ySensitivit ; =|>= ∗ tDcgtc jjX  
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( ) ( ( ) ( ) ).0Pr,ySpecificit ; =|≤= ∗ tDcgtc jjX  (7) 

Those quantities can be estimated through the nearest neighbor 
estimation of the bivariate distribution of c and t (Akritas [1]). 

For a given time point t, the plot of estimated sensitivity against 1-
specificity with cutoff point c varying gives the ROC curve, and the AUC 
as the area under the ROC curve may then be calculated. AUC values 
range from 0 to 1, and a larger AUC at time t suggests a better 
predictability at time t. 

4. Simulation Studies 

We conduct simulation studies to evaluate the performance of the 
proposed methods. 100 simulations are run for each configuration. In 
practice, a microarray usually has tens of thousands of genes with a 
small portion of informative genes. But for the purposes of maintaining 
computation ease and getting a direct insight into the proposed methods, 
we consider a setting with 3000=N  genes and 100=M  samples, and 
keep the proportion of informative genes in an array to be similar to real 
situations. Namely, about 1% of genes, or 30 genes here, are set to be of 
survival relevance. To facilitate possible heterogeneity we generate 
informative genes from two different distributions. 

To be specific, we partition the gene expression matrix =X  
[ ] 1003000×ijX  as 

,
3231

2221

1211

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
XX
XX
XX

X  

where the submatrices [ ]1211, XX  and [ ],, 2221 XX  respectively, 
represent each of the two groups of informative genes, each of dimension 

.10015 ×  The submatrices 1lX  and ,2,1,2 =llX  are introduced to 

divide 100 samples into two different categories, where 1lX  is of 

dimension 4015 ×  and 2lX  is of dimension .6015 ×  As a result, the 
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remaining matrices 31X  and 32X  represent 2970 non-informative gene 
expressions, corresponding to the first 40 and the last 60 samples, 
respectively. 

Let ll
j
′

;X  be the column vector of the submatrix ,ll ′X  ,2,1, =′ll  

corresponding to the jth sample. For each j we simulate ll
j
′

;X  from a 

multivariate normal distribution ( ),,MVN Σμ ll ′  where 

,1.0,8.0 1211 11 ⋅=⋅= μμ  

,2.0,1.0 2221 11 ⋅=⋅−= μμ  

and 1 is the 115 ×  unit vector. The variance matrix Σ is specified as 

[ ]ijv=Σ  with 2σ=iiv  and 2ρσ=iiv  for ji ≠  to facilitate exchangeable 

correlation among gene expressions. Set .5.0=σ  Non-informative gene 

expression is simulated as ( ),2.0,0~ 23 NX l
ij  where l

ijX 3  is the ( )ji,  

component of ,3lX  .2,1=l  Survival times are simulated using a Cox 

proportional hazards model with the informative gene expressions 
included as covariates, where the baseline hazard function is specified as 
a constant. That is, an exponential model is employed to generate the 
survival time for patient ,100...,,2,1=j  

( ) ,explog100
30

1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
β−−= ∑

=i
ijijj XuT  (8) 

with 4.0−=βi  for 15...,,1=i  and 4.0=βi  for ,30...,,16=i  where ju  

is generated from the uniform distribution [ ].1,0U  We consider fixed 

censoring times 70=jC  for .100...,,2,1=j  

To illustrate how the proposed three-step algorithm in Section 2 may 
be applied to select survival relevant genes, we report the results for a 
case with ρ specified as 0. Various other values of ρ may be considered in 
a similar manner but not reported here. In the first step we choose a 
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threshold such that 5% of genes pass this screening step. In the second 
step we pick a number of principle components so that 80% of the total 
variation can be explained, and a threshold 1.0 is used to exclude survival 
irrelevant gene combinations .;iZ  In Step 3, we set the threshold value 
∗α  as 0.25, 0.20, 0.15 and 0.10, respectively, to control different 

proportions of selected genes. Table 1 reports on the number of selected 
genes, the average number of true positives in selected genes and the 
false discovery rate, along with the empirical standard errors reported in 

the brackets. It is seen that when the threshold ∗α  is small, say, 0.10 or 
0.15, almost all selected genes are truly survival relevant, and no 
irrelevant genes are selected. However, some survival relevant genes are 
screened out at Step 1 already, and thus are not included in the final list. 
Typically about 50% relevant genes are missed in the case of the 

threshold 0.10. As the threshold value ∗α  increases, more relevant genes 
are selected, but we can see that more irrelevant genes are also being 
selected as well. It appears that the threshold 0.20 gives the optimal 
result with about 92% truly relevant genes being selected and falsely 
selected irrelevant genes being kept at a reasonably low proportion. This 
finding suggests that the selection based on the three steps in Section 2 
can provide reasonable results, provided the threshold values are 
properly chosen. 
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Table 1. Simulation results: selected genes by the three-step 
algorithm in Section 2 

Threshold Number of Number of True False 

 Selected 
genes 

positives Positive rate1 discovery rate2 

0.25 37 28.740 (0.645) 0.958 (0.022) 0.223 (0.017) 

0.20 31 27.630 (1.454) 0.921 (0.048) 0.109 (0.047) 

0.15 23 22.650 (0.880) 0.755 (0.029) 0.015 (0.038) 

0.10 15 14.990 (0.001) 0.500 (0.003) 0.000 (0.007) 

positive True
positive Selectedrate postive True1 =  

selected True
positive false Selectedrate discovery False2 =  

Our second objective here is to assess the power of the prediction 
models that are built based on individual survival relevant genes that are 
selected from the three-step algorithm in Section 2. Here we explicitly 
consider the cases with ,5.0,0=ρ  and 0.9 to reflect independence, mild 

and strong correlation among gene expressions. The prediction models 
are applied to predict the survival probability at given time points 

,70...,,10,5  and the AUC at each time point is calculated. Figure 1 

displays the plots of the AUC values against the chosen time points. It is 
apparent that the AUCs are between 0.8 and 0.9 for the scenarios with 
correlation ρ ranging from 0 to 0.9. This demonstrates that the prediction 
model using the selected individual genes performs reasonably well. 
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Figure 1. The AUC values against survival times from the 
simulation study. 

To see how the performance of the proposed method is affected by the 
correlation ρ among gene expressions, we report the AUC values in 
contrast to ρ values in Figure 2. It seems that the method is not very 
much influenced by the strength of the correlation ,ρ  as the AUC values 

are fairly stable over the long range of time points from 5 to 70. It is not 
surprising that the AUC values tend to decrease as the prediction time 
gets large. 
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Figure 2. The AUC values for simulated data with different 
correlations. 

 5. An Example  

We apply the proposed methods to analyze a microarray data set 
discussed in Rosenwald et al. [22]. The data set consists of 240 biopsy 
samples from patients with diffuse large B-cell lymphoma (DLBCL), the 
most common lymphoma in adults, with the gene expression measured 
for 7399 genes after some preprocessing procedures. The outcomes 
include the survival information of the patients, either observed death 
times or right censored times. Survival times vary in a range from 0 to 
21.8 years with median 7.3 years. About 43% patients are still alive at 
the end of the study. 
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A well-established predictor of survival in DLBCL is the International 
Prognostic Index (IPI) which is based on five clinical variables (i.e., age, 
tumor stage, serum lactate dehydrogenase concentration, performance 
status, and the number of extranodal disease sites). But it has been found 
that the outcome in patients with DLBCL who have identical IPI values 
may vary considerably. As a result, Rosenwald et al. [22] hypothesized 
that gene-expression profiles of DLBCL could be used independently of 
the IPI factor to predict patients’ survival after their chemotherapy. 
Many authors have analyzed survival times based on gene expression 
profiles, and their findings suggested it is possible to characterize 
patients’ survival based on gene expression data (Sinisi et al. [23]). 

Here our objectives are to (1) select individual survival relevant 
genes that may be of prime interest for other microarray studies; and (2) 
build prediction models using the methods described in Section 3. For the 
first screening step we set ,05.00 =α  and this leads to 367 genes that 

are potentially useful for survival prediction. A threshold of 8.0=γ  is 

used for the second step to select principle components, and the threshold 

is set to be 1 for repeating Step 1 for the matrix .∗Z  Set a value for ∗α  
such that 20% genes are selected at the third step, and this results in 73 
genes as survival relevant genes. We consider two methods here to build 
prediction models. With Method 1 we formulate a prediction model by 
entering those selected genes in hazard function (6). To accommodate 
possible correlation of the screened out genes with those 73 genes, we add 
back those excluded genes if they have a correlation with one of the 73 
genes higher than 0.7. It turns out that only one screened out gene is 
added back. We use those 74 genes to build a prediction model by using 
hazard function form (6), and this is Method 2. To compare the 
performance of these methods, we work on the ROC curve for the time 
point 10=t  and the AUC values for a given sequence of time points 
ranging from 0 to 22. The results are displayed in Figures 3 and 4, 
respectively. It can be seen that, from Figure 3, the shape of the ROC 
curves obtained from Methods 1 and 2 is very similar. 

Figure 4 presents the change of the AUC with respect to the 



SURVIVAL PREDICTION WITH GENE EXPRESSION … 35 

predicting times, corresponding to each method. It is seen that the AUCs 
for Methods 1 and 2 are almost the same, though Method 2 yields a bit 
higher AUCs, indicating a slightly better prediction. The trend of the 
AUC changes is the same for the two methods. The AUCs are about 0.8 
before 15 years, which suggests that the survival prediction before 15 
years is very good. The AUCs decrease to about 0.6 at 17 years and then 
to about 0.5 at 22 years, which pronounces the prediction after 15 years 
is not very reliable. This may not be surprising because only 7 samples 
after 15 years are observed, and among them only one observed failure at 
16.9 years while the other 6 samples are all censored. 

 

Figure 3. The ROC curves for survival prediction at time 10=t  for 
DLBCL data. 

6. Discussion 

In this paper, we develop a method to select survival relevant genes 
and based upon them build survival prediction models. The genes used in 
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the survival model are both survival relevant and biologically 
interpretable, and this is a typically appealing feature of the proposed 
method. Many existing methods focus on building prediction models with 
the linear combinations of genes, but our methods here, in addition to 
building a prediction model for patient’s survival probability, are able to 
identify individual survival relevant genes, which is of interest in its own 
right. This feature distinguishes the proposed methods from other 
approaches such as the Supervised Principle Component (SPC) method in 
Bair et al. [2] for which the linear combinations of a subset of genes are 
incorporated in the survival prediction model. Simulation studies 
demonstrate that the proposed methods perform generally well under 
various situations. 

In this paper we employ Cox proportional hazards models to relate 
gene profiles to patient survival. Extensions to other survival models 
such as accelerated failure time (AFT) models are straightforward. Such 
models have transparent interpretation of the covariate effects on the 
survival information (e.g., He and Lawless [13]). 
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Figure 4. The AUC values for predicting survival at distinct time 
points of DLBCL data. 

One may note that in building prediction models, only gene profiles 
are included as covariates. This is driven by that gene profiles are 
regarded as of most importance and interest in predicting survival. 
However, one may also wish, in some situations, to control clinical 
covariates such as age, gender, and other health information when 
building prediction models. A possible option is to use the partially linear 
regression (Carroll et al. [4]) form ( )zx αβ ′η+′  to specify the hazard 
function, i.e., let 

( ) ( ) ( )( ),exp0 zx αβ ′η+′λ=λ tt  (9) 

where ( )t0λ  is the baseline hazard function, x represents the gene 

profiles that are of interest, and z includes clinical covariates that are      
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of less importance. This specification generalizes traditional Cox 
proportional hazards models by including an unknown smooth function 
( ).⋅η  It would be interesting to conduct survival prediction by employing 

(9). 
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