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Abstract

In this paper, we continue the study of most general class of
submanifolds of a Kaehler manifold initiated in [4], which includes
all existing classes of submanifolds (complex submanifolds, totally
real submanifolds, CR-submanifolds, slant submanifolds). Such a
submanifold M of a Kaehler manifold M has naturally defined
operators ¢, F, y and G. We study the geometry of a general submanifold
with parallel F and obtain a condition under which a general

submanifold is a complex submanifold.
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1. Introduction

The geometry of submanifolds of a Kaehler manifold is interesting
because of the influence of the complex structure of the Kaehler manifold
on the submanifold. Accordingly, there are various types of special
submanifolds of a Kaehler manifold namely, complex submanifolds [5],
totally real submanifolds, CR-submanifolds [1] (this class includes both
complex submanifolds and totally real submanifolds), slant submanifolds
[2]. We have initiated the study of most general submanifolds of a
Kaehler manifold which includes all the existing types of submanifolds
(cf. [4]). A general submanifold of a Kaehler manifold naturally carries
four operators ¢, F, v and G defined on this submanifold. In [4], it has
been shown that a general submanifold of a Kaehler manifold with
parallel ¢ is essentially a CR-submanifold and there are examples of
general submanifold where ¢ is not parallel. There are lot many
questions about a general submanifold of a Kaehler manifold to be
answered, for instance the impact of conditions that one of the structure
operators F, v and G is parallel, as well as impact of other algebraic
restrictions on the properties of these operators on the general
submanifold. In this paper, we consider the question that the structure
operator F' is parallel on the general submanifold of a Kaehler manifold

and study its impact on the geometry of general submanifold.
2. Preliminaries

Let M be an n-dimensional smooth manifold immersed into an
n + k = 2m -dimensional Kaehler manifold (M, J, g) with Riemannian

connection V and the induced metric and connection on M be g and V,
respectively. Then we have the following fundamental equations for the

submanifold, namely
VxY =VxY + WX, Y), X,Y e X(M), (2.1)
VxN = —ANX + V¥N, X e (M), N € T(v), (2.2)

where X(M) is Lie-algebra of vector fields on M, I'(v) is the space of

normal sections of the normal bundle v of M, A is the second fundamental
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form, Ay is the Weingarten map with respect to N € ['(v), Vvt is the
connection in the normal bundle v. The Weingarten maps Ap are related

to the second fundamental form A by
g(ANX,Y) = g(h(X,Y), N), X,Y e X(M), N eTI(v).

For an n-dimensional submanifold M of an n + k = 2m -dimensional

Kaehler manifold (]\_/I , o, g), define:
JX = ¢(X)+ F(X), JN = y(N)+ G(N),
where X € X(M) and N eT(v), and §(X)=(JX)! the tangential

component of JX, F(X)= (JX)" the normal component of JX, y(N)

= (JN )T and G(N) = (JN)*, which define linear operators ¢ : X(M) —
X(M), F:X(M)—>T(@),y:T(v) > X(M) and G : T'(v) - I['(v), respectively.

It is trivial implication of the definition that:
$*(X) = -X - y(F(X)), G*(N)=-N - F(y(N)),
F(4(X)) = -G(F(X)), $(y(N)) = ~y(G(N)), 2.3)
hold for X € X(M), N e I'(v). Also
g(0(X), Y) = g(JX - F(X),Y) = g(JX, Y) = —g(X, IY) = —g(X, §(Y)) (2.4)

similarly, we have

8(G(N;), Ng) = —g(Ny, G(N3)), (2.5)

g(F(X), N) = —g(X, y(N)) (2.6)
and

g(w(N), X) = -g(N, F(X)) 2.7)

hold for X, Y e (M) and N, N;, Ny e [(v).

If we define the covariant derivatives (DxF)(Y) and (Dxvy)(N) for
the operators F : X(M) — I'(v) and y : T(v) - X(M) by

(DxF)Y = VxF(Y)- F(VxY)
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and

(Dxy)(N) = Vxy(N) - y(VxN),
then we have the following:

Lemma 2.1 [4]. The operators ¢, F, v and G obey
(Vx$)(Y) = Apy)X + v(A(X, Y)),
(DxF)(Y) = G(M(X, Y)) - h(X, (Y)),
(Dxw)(N) = Ag(n)X — (AN X)
and
(VXG)(N) = -F(AxX) - h(X, w(N))
for X, Y e X(M) and N e I'(v).
We define the operators
B:yeF :x(M)— (M)
and
C:Foy:T) > T)

then it is easy to see that they are symmetric operators. Also, using (2.3)
we see that B commutes with ¢ that is Bo ¢ = ¢ o B and that G commutes
with C that is G o C = C o (G. As a result of this we get trBo ¢ =0 and
trGoC =0.

3. Submanifolds with Parallel I

In this section, we are interested in submanifolds with parallel F,
that is,

VxFY = F(VxY),

where X, Y € X(M). Using Lemma 2.1, we immediately have
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Lemma 3.1. Let M be a submanifold of a Kaehler manifold M. Then
the operator F is parallel if and only if

G(h(X,Y)) = h(X, ¢Y)
for X, Y € X(M).
Remark. Observe that if F'is parallel, then by Lemma 3.1,
X, ¢Y) = h(6X, Y)

holds for X,Y e X(M). The operator C defined in previous section is

symmetric and we have
(VxC)(N) = VxC(N)- C(VxN), X e x(M), N e I'(v).

The operator C is said to be parallel if (VxC)(N)=0, X e X(M),
N e T(v).

Theorem 3.1. Let M be an n-dimensional submanifold of an
(n + k) = 2m -dimensional Kaehler manifold (M, J, g). If the operator F

is parallel, then C is also parallel.

Proof. We have for X € X(M), N € I'(v) that
Vx(CN) = VxF(y(N)) = (Dx F) (w(N)) + F(Vxy(N))

= (DxF)(y(N)) + F((Dxw) (V) + w(Vx (N)),
that is,
(VXC)(N) = (DxF)(y(N)) + F((Dxw) (V).
Using Lemma 2.1 in above equation, we get
(VXC)(N) = G(A(X, w(N)) - (X, d(wN)) + F(AgnX - ¢AxX)). (3.1)

Also, using Lemma 3.1, we get g(h(X, ¢Y), N) = —g(h(X, Y), GN), that
is, 8(dANX,Y) = g(Agn X, Y), which gives

AgnX = $ANX. (3.2)
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Finally, using Lemma 3.1 together with equations (3.1) and (3.2), for
parallel F, we get

(VXC)(N)=0, X e x(M), N e I'(v)
that proves the theorem.

For N € I'(v), if C(N)=AN, % e C*(M), then X is said to be an

eigenvalue of C and N is called the eigenvector of C corresponding to

eigenvalue A. Using equation (3.2) we have the following:

Corollary 3.1. Let M be an n-dimensional submanifold of an
(n + k) = 2m- dimensional Kaehler manifold (M, J, g). If the operator F

is parallel, then vy is also parallel.

Proof. If F is parallel, then we get equation (3.2). Using equation
(3.2) together with Lemma 2.1, we get (Dyy)(N) =0, that is, y is

parallel.
Lemma 3.2. Let M be an n-dimensional submanifold of an (n + k) =

2m-dimensional Kaehler manifold (M, J, g). If the operator F is

parallel, then the eigenvalues of C are constants.

Proof. Let C(N)= AN, N eI(v), A e C*(M). Without loss of

generality we can assume that N is a unit normal vector field. As F'is

parallel by Theorem 3.1, we have C is parallel and consequently
0 = (VXC)(V)
= Vx(CN) - C(VxN)
= Vx(A\N) - C(VxN)
= X(\)N + %N - C(V%N).
Taking inner product with N e I'(v), we get
X(x) =0,

which proves that A is a constant.
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Let M be an n-dimensional submanifold of an (n+ k)= 2m-

dimensional Kaehler manifold (M, J, g). Define

k
[CIP =D g(C(V,), C(N,)),
a=1

for a local orthonormal frame {Ny, ..., N, }. Since C is symmetric we can
choose an orthonormal frame {Nj, ..., N} that diagonalizes C. Then in

light of Lemma 3.2, we have proved the following:

Lemma 3.8. Let M be an n-dimensional submanifold of an (n + k) =

2m-dimensional Kaehler manifold (M, J, g). If the operator F is

parallel, then | C ||2 is a constant as well as the trC is also a constant and

trC =y |*.

Using equation (2.3), we have G?=-I-C and for a local

orthonormal frame {Ny, ..., N} of normal vector fields, we have

k
IGIP =" 8(GIN,), GIN,))
a=1

k
= Zg(ch +C(N(x)’ N(x)

a=1
—k-|v]|* (3.3)

Theorem 3.2. Let M be an n-dimensional submanifold of an (n + k)

= 2m-dimensional Kaehler manifold (M, dJ, g). If the operator F is

parallel, then | G ||2 is a constant.

Proof. Suppose F'is parallel. Then by equation (3.3)
2 2
IGI7+wl] = £

to prove |G |* is a constant, it is enough to show that |y |* is a
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constant. Since the operator C is symmetric, we have

k k
X(lv|?) = X(Z 8w, ), w(N, ))] = —X[Z g(C(N,), Ny )J
a=1 a=1

k
= =D {8((VEC)(Ny), Ny) +28(C(Ny,), VN,

a=1

Using Theorem 3.1 and the local orthonormal frame {Ny, ..., N,} of
normal vector fields that diagonalize C with C(N,) = A,N,, we get
together with Lemma 3.2 that

k
X(" 4 "2) = _Z 2}\‘Otg(NOL7 V%(N(l) =0,

a=1
which proves that | v ||2 is a constant.

Theorem 3.3. Let M be an n-dimensional submanifold of an (n + k)

= 2m-dimensional Kaehler manifold (M, dJ, g). If the operator F is
parallel, and trC = 0, then M is a complex submanifold.

Proof. Suppose F' is parallel and #rC = 0. Then by Lemma 3.3,

we have |y ||2 =0 and that gives y = 0. This also gives B =0 and

consequently
0 = g(BX, X) = -g(FX, FX) = | FX|’, X < X(M),

that is, FX =0, X € X(M). Thus the equations (2.3) and Lemma 2.1

prove that ¢ satisfies ¢ = —I and (Vx¢)(Y) = 0. That is, M is a complex

submanifold of the Kaehler manifold M.

4. Examples

Example 4.1. Consider the Kaehler manifold (R*, J, (,)), where J

1s the complex structure defined by
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0 0 0 0 0 0 0 0
O O
ot oxc? on? onc’t o3 oxt oxt o>

0 0 9 and 9 1 being coordinate vector fields on R* that is for

ot ’ x> ’ o> ox

each vector fields

0 9 0 3 0 4 O 4
X=f+f +f +f e X(RY),
ot x> x> ox?t
JX =2 L gt O3 O (4.1)
ox ox ox ox

and (,) is the Euclidean metric on R*. We denote by V the Euclidean

connection on R*. Take M = R® and the embedding f: M — R*
flx, y,2) = (3, %, 0, 2).
Then we find the local orthonormal frame {e;, ey, e3, N} of R*, where

e =2 o= eg-9 ana N--2

ox?’ oxt’ ox*t ox®
such that {e;, ey, eg} is local orthonormal frame on M. Let V be the

induced Riemannian connection on M. Then using properties of V, it is

straight-foreword to check that
Veej =0, i,j=1,23, (4.2)
and using (4.1), we find that
F(e;) =0, F(ey)=0 and F(e3)=-N, (4.3)

and as N is parallel in the normal bundle, consequently using equations
(4.1), (4.2) and (4.3), we get that

(DxF)(Y)=0, X,Y e X(M).
Thus F'is parallel.

Next, we construct an example where F'is not parallel, that 1s, M will
not be a CR-submanifold.
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Example 4.2. Consider 4-dimensional Euclidean space R* with
Euclidean metric (,). Then (R, J, (,)) is a Kaehler manifold with the

complex structure JJ defined by

0 0 0 0 0 0 0 0
) A e e o
ot o2 on? oxt o3 ot ox? oxc®

where i 0 0 and 9 are the coordinate vector fields on R*.

ot ox? axd onct

It is easy to see that < is parallel with respect to the Euclidean

connection V on R4, that is,
VxJY = JVyY,
holds for X, Y e x(R*) the Lie-algebra of smooth vector fields on R*.

Now consider the product M = St xSt of two copies of the unit

circle S' and define

f: M — R*

f(cos 0, sin 0, cos @, sin @) = (cos 0, cos @, sin 0, sin @),

where 6 and ¢ are local coordinates of S’ and S!, respectively. Then it is

straight forward to see that at p = (6, ¢) € M, differential df, at p e M

has the matrix respectively

—sin 0 0
0 —sin @
df, = ,
cos 6 0
0 cos @

which has rank 2 at each p € M; (as if sin6sine =0, then cosOcos = 0

and vice-versa). Thus f : M — R* is an immersion of M into R*, that is,
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M is a 2-dimensional submanifold of R*. Choosing

e sin 6 0 + cos 0 0 e sin @ 0 + cos @ 0
1=~ ~ 1 a3 €2 =~ ~ 9 1
ox ox® ox? ox*t
Ny :cos9i1+sin9i3, Ny :cos¢%+sin(pi, (4.4)
ox ox ox ox

we get a local orthonormal frame {e, eq, N7, Ny} of R* such that {e;, ey}
is a local orthonormal frame on M with respect to the induced metric g as

a submanifold of R* and that {N;, Ny} is local field of normal to M.

Let ¢ = % and ey = aﬁ be the vector fields on the first and second
¢

copies of S' in M = S x S!. Then we have
e; = df(e,¢)(€1)
and
ey = dfe,¢)(€2)-
Next, we compute the values of F'at e; and ey, respectively. Using
JX = o(X)+ F(X), X e X(M)

and the equations (4.4), we get

. 0 0
Je; = J[—sm 0 — + cos 6—)
! ot ox®

. 0 0 4

= | —sin 6 —— + cos 6—) e X(R*).
( ox? ot

We can express it as

Je; = ae; + beg + cNy + dNgy,
where a, b, ¢ and d € C*(R*). Then by (4.4)

Je; = (—asin 0 + ¢ cos G)i1 + (-bsin ¢ + d cos go)i2
ox ox

+ (acos9+csin6)i3+ (bcoso + dsin(p)%,
Ox Ox



196 AMEERA A. ESHAN and FALLEH R. AL-SOLAMY
equating the two values of Je;, we conclude that

—asin®+ccosO =0,

acosO+csin® =0,

—-bsing +dcosp =—sin 0
and

bcos ¢+ dsin @ = cos 0.
Solving these equations, we get

a=0,b=cos(p-0),c=0 and d = sin(p — 0),
that is,
Je; = cos(¢ — 0)ey + sin(¢ — 0) Ng,
thus using
Jey = dler) + Fley),

we arrive at

F(e;) = sin(0 — @) N,. (4.5)
Similarly, using equation (4.4) we get

Jeg = sin (\D% - cos q)i3 e X(RY)
ox ox

and consequently

Jeg = —cos(p — 0)e; + sin(p — 0)N;.
Thus we arrive at
F(eg) = sin(p — 0) N;. (4.6)
Now, we show that for this submanifold, F is not parallel. Since the

immersion f : M — R* islocal embedding, we have

= - o - 0
Vel = —€(sin e)ﬁx_l + ¢ (cos 9)8.76‘_3, 4.7)
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let V be the Riemannian connection on M with respect to the induced

metric. Then as
Vo1 = Ge +bey + Ny + dNy, (4.8)
where @, b, ¢ and d € C*°(R*). Also using Gauss equation, we have
591(31 = Vo1 + hley, ). 4.9)

Inserting values of e, eg, Ny and Ny into (4.8) and comparing with

(4.7), we get
—asin 0 + ¢ cos 0 = —e; sin 6,
acosO+csin® = e cos6,
—b_sin(p+c7003(p =0
and
bcose+dsing = 0.
Solving these equations and substituting in (4.8), we get
Veer = 0
and from (4.9), we get that
h(ey, e;) = —Nj.
Similarly, computing for §e1 ey, §62e1 and 562 ey, we get
Vees =0,Vee =0,Vyes =0, hle, eg) =0 and hley, eg) = Ny, (4.10)
(this is consistent with R(e;, e9)e; = 0 as M is flat torus).

Also computing ?elNl, gele’ velNz and geZNg together with

equation (2.2) we conclude

1 _ 1 _ 1 _ 1 _
VoNy =0, Vo Ny =0, V,Ny =0, V, Ny =0. (4.11)
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Thus using equations (4.7), (4.10) and (4.11) we compute (DelF )(eg) to

arrive at

(De, F)(eg) = —cos(e — 0) N.

Similarly, we have (D, F')(e;) = —cos(6 — ¢) Ny, (D,, F)(e;) = cos(6 — ) Ny,
(De, F')(eg) = cos(¢ — 0) Ny. Since {e, ez} is a local orthonormal frame,
we see that in general (D,, F')(e;) = 0, i, j = 1, 2, that is, there are points
where

(DxF)(Y)=0, X,Y eX(M),

that is, F'is not parallel.
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