GENERAL SUBMANIFOLDS OF A KAEHLER MANIFOLD-II

AMEERA A. ESHAN and FALLEH R. AL-SOLAMY

Department of Mathematics
Taif University
P. O. Box 20314
Makkah 21599, Saudi Arabia
e-mail: ameeraeshan@hotmail.com

Department of Mathematics University of Tabuk P. O. Box 80015 Jeddah 21589, Saudi Arabia

e-mail: falleh@hotmail.com

Abstract

In this paper, we continue the study of most general class of submanifolds of a Kaehler manifold initiated in [4], which includes all existing classes of submanifolds (complex submanifolds, totally real submanifolds, CR-submanifolds, slant submanifolds). Such a submanifold M of a Kaehler manifold \overline{M} has naturally defined operators ϕ , F, ψ and G. We study the geometry of a general submanifold with parallel F and obtain a condition under which a general submanifold is a complex submanifold.

 $2000\ Mathematics\ Subject\ Classification:\ Primary\ 53C20,\ 58C45.$

Keywords and phrases: complex submanifolds, totally real submanifolds, CR-submanifolds, slant submanifolds, Kaehler manifolds.

This work is supported by the Deanship of Scientific Research, King Abdul Aziz University, Project No. 801/428.

Received December 1, 2008

1. Introduction

The geometry of submanifolds of a Kaehler manifold is interesting because of the influence of the complex structure of the Kaehler manifold on the submanifold. Accordingly, there are various types of special submanifolds of a Kaehler manifold namely, complex submanifolds [5], totally real submanifolds, CR-submanifolds [1] (this class includes both complex submanifolds and totally real submanifolds), slant submanifolds [2]. We have initiated the study of most general submanifolds of a Kaehler manifold which includes all the existing types of submanifolds (cf. [4]). A general submanifold of a Kaehler manifold naturally carries four operators ϕ , F, ψ and G defined on this submanifold. In [4], it has been shown that a general submanifold of a Kaehler manifold with parallel \(\phi \) is essentially a CR-submanifold and there are examples of general submanifold where ϕ is not parallel. There are lot many questions about a general submanifold of a Kaehler manifold to be answered, for instance the impact of conditions that one of the structure operators F, ψ and G is parallel, as well as impact of other algebraic restrictions on the properties of these operators on the general submanifold. In this paper, we consider the question that the structure operator F is parallel on the general submanifold of a Kaehler manifold and study its impact on the geometry of general submanifold.

2. Preliminaries

Let M be an n-dimensional smooth manifold immersed into an n+k=2m-dimensional Kaehler manifold (\overline{M},J,g) with Riemannian connection $\overline{\nabla}$ and the induced metric and connection on M be g and ∇ , respectively. Then we have the following fundamental equations for the submanifold, namely

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad X, Y \in \mathfrak{X}(M), \tag{2.1}$$

$$\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \quad X \in \mathfrak{X}(M), \ N \in \Gamma(v), \tag{2.2}$$

where $\mathfrak{X}(M)$ is Lie-algebra of vector fields on M, $\Gamma(v)$ is the space of normal sections of the normal bundle v of M, h is the second fundamental

form, A_N is the Weingarten map with respect to $N \in \Gamma(v)$, ∇^{\perp} is the connection in the normal bundle v. The Weingarten maps A_N are related to the second fundamental form h by

$$g(A_NX, Y) = g(h(X, Y), N), \quad X, Y \in \mathfrak{X}(M), N \in \Gamma(v).$$

For an *n*-dimensional submanifold M of an n + k = 2m-dimensional Kaehler manifold (\overline{M}, J, g) , define:

$$JX = \phi(X) + F(X), \quad JN = \psi(N) + G(N),$$

where $X \in \mathfrak{X}(M)$ and $N \in \Gamma(v)$, and $\phi(X) = (JX)^T$ the tangential component of JX, $F(X) = (JX)^{\perp}$ the normal component of JX, $\psi(N) = (JN)^T$ and $G(N) = (JN)^{\perp}$, which define linear operators $\phi: \mathfrak{X}(M) \to \mathfrak{X}(M)$, $F: \mathfrak{X}(M) \to \Gamma(v)$, $\psi: \Gamma(v) \to \mathfrak{X}(M)$ and $G: \Gamma(v) \to \Gamma(v)$, respectively. It is trivial implication of the definition that:

$$\phi^{2}(X) = -X - \psi(F(X)), \quad G^{2}(N) = -N - F(\psi(N)),$$

$$F(\phi(X)) = -G(F(X)), \quad \phi(\psi(N)) = -\psi(G(N)), \tag{2.3}$$

hold for $X \in \mathfrak{X}(M)$, $N \in \Gamma(v)$. Also

$$g(\phi(X), Y) = g(JX - F(X), Y) = g(JX, Y) = -g(X, JY) = -g(X, \phi(Y))$$
 (2.4)

similarly, we have

$$g(G(N_1), N_2) = -g(N_1, G(N_2)),$$
 (2.5)

$$g(F(X), N) = -g(X, \psi(N))$$
 (2.6)

and

$$g(\psi(N), X) = -g(N, F(X))$$
 (2.7)

hold for $X, Y \in \mathfrak{X}(M)$ and $N, N_1, N_2 \in \Gamma(v)$.

If we define the covariant derivatives $(D_X F)(Y)$ and $(D_X \psi)(N)$ for the operators $F: \mathfrak{X}(M) \to \Gamma(v)$ and $\psi: \Gamma(v) \to \mathfrak{X}(M)$ by

$$(D_X F)Y = \nabla_X^{\perp} F(Y) - F(\nabla_X Y)$$

188

and

$$(D_X \psi)(N) = \nabla_X \psi(N) - \psi(\nabla_X^{\perp} N),$$

then we have the following:

Lemma 2.1 [4]. The operators ϕ , F, ψ and G obey

$$(\nabla_X \phi)(Y) = A_{F(Y)} X + \psi(h(X, Y)),$$

$$(D_X F)(Y) = G(h(X, Y)) - h(X, \phi(Y)),$$

$$(D_X \Psi)(N) = A_{G(N)} X - \phi(A_N X)$$

and

$$(\nabla_X^{\perp} G)(N) = -F(A_N X) - h(X, \psi(N))$$

for $X, Y \in \mathfrak{X}(M)$ and $N \in \Gamma(v)$.

We define the operators

$$B: \psi \circ F: \mathfrak{X}(M) \to \mathfrak{X}(M)$$

and

$$C: F \circ \psi: \Gamma(v) \to \Gamma(v),$$

then it is easy to see that they are symmetric operators. Also, using (2.3) we see that B commutes with ϕ that is $B \circ \phi = \phi \circ B$ and that G commutes with C that is $G \circ C = C \circ G$. As a result of this we get $trB \circ \phi = 0$ and $trG \circ C = 0$.

3. Submanifolds with Parallel F

In this section, we are interested in submanifolds with parallel F, that is,

$$\nabla_X^{\perp} FY = F(\nabla_X Y),$$

where $X, Y \in \mathfrak{X}(M)$. Using Lemma 2.1, we immediately have

Lemma 3.1. Let M be a submanifold of a Kaehler manifold \overline{M} . Then the operator F is parallel if and only if

$$G(h(X, Y)) = h(X, \phi Y)$$

for $X, Y \in \mathfrak{X}(M)$.

Remark. Observe that if F is parallel, then by Lemma 3.1,

$$h(X, \phi Y) = h(\phi X, Y)$$

holds for $X, Y \in \mathfrak{X}(M)$. The operator C defined in previous section is symmetric and we have

$$(\nabla_X^{\perp}C)(N) = \nabla_X^{\perp}C(N) - C(\nabla_X^{\perp}N), \quad X \in \mathfrak{X}(M), N \in \Gamma(v).$$

The operator C is said to be parallel if $(\nabla_X^{\perp}C)(N) = 0$, $X \in \mathfrak{X}(M)$, $N \in \Gamma(v)$.

Theorem 3.1. Let M be an n-dimensional submanifold of an (n+k)=2m-dimensional Kaehler manifold (\overline{M},J,g) . If the operator F is parallel, then C is also parallel.

Proof. We have for $X \in \mathfrak{X}(M)$, $N \in \Gamma(v)$ that

$$\nabla_X^{\perp}(CN) = \nabla_X^{\perp} F(\psi(N)) = (D_X F)(\psi(N)) + F(\nabla_X^{\perp} \psi(N))$$
$$= (D_X F)(\psi(N)) + F((D_X \psi)(N)) + \psi(\nabla_X^{\perp}(N)),$$

that is,

$$(\nabla_X^{\perp}C)(N) = (D_XF)(\psi(N)) + F((D_X\psi)(N)).$$

Using Lemma 2.1 in above equation, we get

$$(\nabla_{X}^{\perp}C)(N) = G(h(X, \psi(N)) - h(X, \phi(\psi N)) + F(A_{GN}X - \phi A_{N}X)). \quad (3.1)$$

Also, using Lemma 3.1, we get $g(h(X, \phi Y), N) = -g(h(X, Y), GN)$, that is, $g(\phi A_N X, Y) = g(A_{GN} X, Y)$, which gives

$$A_{GN}X = \phi A_N X. \tag{3.2}$$

Finally, using Lemma 3.1 together with equations (3.1) and (3.2), for parallel F, we get

$$(\nabla_X^{\perp}C)(N) = 0, \quad X \in \mathfrak{X}(M), N \in \Gamma(v)$$

that proves the theorem.

For $N \in \Gamma(v)$, if $C(N) = \lambda N$, $\lambda \in C^{\infty}(M)$, then λ is said to be an *eigenvalue* of C and N is called the *eigenvector* of C corresponding to eigenvalue λ . Using equation (3.2) we have the following:

Corollary 3.1. Let M be an n-dimensional submanifold of an (n + k) = 2m-dimensional Kaehler manifold (\overline{M}, J, g) . If the operator F is parallel, then ψ is also parallel.

Proof. If F is parallel, then we get equation (3.2). Using equation (3.2) together with Lemma 2.1, we get $(D_X\psi)(N) = 0$, that is, ψ is parallel.

Lemma 3.2. Let M be an n-dimensional submanifold of an (n + k) = 2m-dimensional Kaehler manifold (\overline{M}, J, g) . If the operator F is parallel, then the eigenvalues of C are constants.

Proof. Let $C(N) = \lambda N$, $N \in \Gamma(v)$, $\lambda \in C^{\infty}(M)$. Without loss of generality we can assume that N is a unit normal vector field. As F is parallel by Theorem 3.1, we have C is parallel and consequently

$$0 = (\nabla_X^{\perp} C)(N)$$

$$= \nabla_X^{\perp} (CN) - C(\nabla_X^{\perp} N)$$

$$= \nabla_X^{\perp} (\lambda N) - C(\nabla_X^{\perp} N)$$

$$= X(\lambda)N + \lambda \nabla_X^{\perp} N - C(\nabla_X^{\perp} N).$$

Taking inner product with $N \in \Gamma(v)$, we get

$$X(\lambda) = 0$$
,

which proves that λ is a constant.

Let M be an n-dimensional submanifold of an (n+k)=2m-dimensional Kaehler manifold $(\overline{M},\,J,\,g)$. Define

$$\|C\|^2 = \sum_{\alpha=1}^k g(C(N_{\alpha}), C(N_{\alpha})),$$

for a local orthonormal frame $\{N_1, ..., N_{\alpha}\}$. Since C is symmetric we can choose an orthonormal frame $\{N_1, ..., N_{\alpha}\}$ that diagonalizes C. Then in light of Lemma 3.2, we have proved the following:

Lemma 3.3. Let M be an n-dimensional submanifold of an (n + k) = 2m-dimensional Kaehler manifold (\overline{M}, J, g) . If the operator F is parallel, then $\|C\|^2$ is a constant as well as the trC is also a constant and $trC = -\|\psi\|^2$.

Using equation (2.3), we have $G^2 = -I - C$ and for a local orthonormal frame $\{N_1, ..., N_\alpha\}$ of normal vector fields, we have

$$\| G \|^{2} = \sum_{\alpha=1}^{k} g(G(N_{\alpha}), G(N_{\alpha}))$$

$$= \sum_{\alpha=1}^{k} g(N_{\alpha} + C(N_{\alpha}), N_{\alpha})$$

$$= k - \| \psi \|^{2}.$$
(3.3)

Theorem 3.2. Let M be an n-dimensional submanifold of an (n + k) = 2m-dimensional Kaehler manifold (\overline{M}, J, g) . If the operator F is parallel, then $\|G\|^2$ is a constant.

Proof. Suppose F is parallel. Then by equation (3.3)

$$\|G\|^2 + \|\psi\|^2 = k,$$

to prove $\parallel G \parallel^2$ is a constant, it is enough to show that $\parallel \psi \parallel^2$ is a

constant. Since the operator C is symmetric, we have

$$\begin{split} X(\parallel \psi \parallel^2) &= X \Biggl(\sum_{\alpha=1}^k g(\psi(N_\alpha), \, \psi(N_\alpha)) \Biggr) = -X \Biggl(\sum_{\alpha=1}^k g(C(N_\alpha), \, N_\alpha) \Biggr) \\ &= -\sum_{\alpha=1}^k \{ g((\nabla_X^{\perp} C)(N_\alpha), \, N_\alpha) + 2g(C(N_\alpha), \, \nabla_X^{\perp} N_\alpha) \}. \end{split}$$

Using Theorem 3.1 and the local orthonormal frame $\{N_1, ..., N_\alpha\}$ of normal vector fields that diagonalize C with $C(N_\alpha) = \lambda_\alpha N_\alpha$, we get together with Lemma 3.2 that

$$X(\|\psi\|^2) = -\sum_{\alpha=1}^k 2\lambda_{\alpha}g(N_{\alpha}, \nabla_X^{\perp}N_{\alpha}) = 0,$$

which proves that $\|\psi\|^2$ is a constant.

Theorem 3.3. Let M be an n-dimensional submanifold of an (n + k) = 2m-dimensional Kaehler manifold (\overline{M}, J, g) . If the operator F is parallel, and trC = 0, then M is a complex submanifold.

Proof. Suppose F is parallel and trC=0. Then by Lemma 3.3, we have $\|\psi\|^2=0$ and that gives $\psi=0$. This also gives B=0 and consequently

$$0 = g(BX, X) = -g(FX, FX) = -\|FX\|^2, \quad X \in \mathfrak{X}(M),$$

that is, $FX=0, X\in\mathfrak{X}(M)$. Thus the equations (2.3) and Lemma 2.1 prove that ϕ satisfies $\phi^2=-I$ and $(\nabla_X\phi)(Y)=0$. That is, M is a complex submanifold of the Kaehler manifold \overline{M} .

4. Examples

Example 4.1. Consider the Kaehler manifold $(R^4, J, \langle , \rangle)$, where J is the complex structure defined by

GENERAL SUBMANIFOLDS OF A KAEHLER MANIFOLD-II 193

$$J\!\!\left(\frac{\partial}{\partial x^1}\right) = \frac{\partial}{\partial x^2}\,,\; J\!\!\left(\frac{\partial}{\partial x^2}\right) = -\frac{\partial}{\partial x^1}\,,\; J\!\!\left(\frac{\partial}{\partial x^3}\right) = \frac{\partial}{\partial x^4}\,,\; \text{and}\;\; J\!\!\left(\frac{\partial}{\partial x^4}\right) = -\frac{\partial}{\partial x^3}$$

 $\frac{\partial}{\partial x^1}$, $\frac{\partial}{\partial x^2}$, $\frac{\partial}{\partial x^3}$ and $\frac{\partial}{\partial x^4}$ being coordinate vector fields on R^4 that is for each vector fields

$$X = f^{1} \frac{\partial}{\partial x^{1}} + f^{2} \frac{\partial}{\partial x^{2}} + f^{3} \frac{\partial}{\partial x^{3}} + f^{4} \frac{\partial}{\partial x^{4}} \in \mathfrak{X}(R^{4}),$$

$$JX = -f^{2} \frac{\partial}{\partial x^{1}} + f^{1} \frac{\partial}{\partial x^{2}} - f^{4} \frac{\partial}{\partial x^{3}} + f^{3} \frac{\partial}{\partial x^{4}},$$

$$(4.1)$$

and \langle , \rangle is the Euclidean metric on R^4 . We denote by $\overline{\nabla}$ the Euclidean connection on R^4 . Take $M=R^3$ and the embedding $f:M\to R^4$

$$f(x, y, z) = (y, x, 0, z).$$

Then we find the local orthonormal frame $\{e_1,\,e_2,\,e_3,\,N\}$ of \mathbb{R}^4 , where

$$e_1 = \frac{\partial}{\partial x^2}$$
, $e_2 = \frac{\partial}{\partial x^1}$, $e_3 = \frac{\partial}{\partial x^4}$ and $N = \frac{\partial}{\partial x^3}$,

such that $\{e_1, e_2, e_3\}$ is local orthonormal frame on M. Let ∇ be the induced Riemannian connection on M. Then using properties of $\overline{\nabla}$, it is straight-foreword to check that

$$\nabla_{e_i} e_j = 0, \quad i, \ j = 1, 2, 3,$$
 (4.2)

and using (4.1), we find that

$$F(e_1) = 0$$
, $F(e_2) = 0$ and $F(e_3) = -N$, (4.3)

and as N is parallel in the normal bundle, consequently using equations (4.1), (4.2) and (4.3), we get that

$$(D_X F)(Y) = 0, \quad X, Y \in \mathfrak{X}(M).$$

Thus F is parallel.

Next, we construct an example where F is not parallel, that is, M will not be a CR-submanifold.

Example 4.2. Consider 4-dimensional Euclidean space R^4 with Euclidean metric \langle , \rangle . Then $(R^4, J, \langle , \rangle)$ is a Kaehler manifold with the complex structure J defined by

$$J\left(\frac{\partial}{\partial x^1}\right) = \frac{\partial}{\partial x^2}, \ J\left(\frac{\partial}{\partial x^2}\right) = -\frac{\partial}{\partial x^1}, \ J\left(\frac{\partial}{\partial x^3}\right) = \frac{\partial}{\partial x^4} \text{ and } J\left(\frac{\partial}{\partial x^4}\right) = -\frac{\partial}{\partial x^3},$$

where $\frac{\partial}{\partial x^1}$, $\frac{\partial}{\partial x^2}$, $\frac{\partial}{\partial x^3}$, and $\frac{\partial}{\partial x^4}$ are the coordinate vector fields on \mathbb{R}^4 .

It is easy to see that J is parallel with respect to the Euclidean connection $\overline{\nabla}$ on R^4 , that is,

$$\overline{\nabla}_X JY = J\overline{\nabla}_X Y,$$

holds for $X, Y \in \mathfrak{X}(\mathbb{R}^4)$ the Lie-algebra of smooth vector fields on \mathbb{R}^4 .

Now consider the product $M = S^1 \times S^1$ of two copies of the unit circle S^1 and define

$$f: M \to R^4$$

by

 $f(\cos \theta, \sin \theta, \cos \varphi, \sin \varphi) = (\cos \theta, \cos \varphi, \sin \theta, \sin \varphi),$

where θ and ϕ are local coordinates of S^1 and S^1 , respectively. Then it is straight forward to see that at $p = (\theta, \phi) \in M$, differential df_p at $p \in M$ has the matrix respectively

$$df_p = \begin{bmatrix} -\sin\theta & 0\\ 0 & -\sin\phi\\ \cos\theta & 0\\ 0 & \cos\phi \end{bmatrix},$$

which has rank 2 at each $p \in M$; (as if $\sin \theta \sin \phi = 0$, then $\cos \theta \cos \phi \neq 0$ and vice-versa). Thus $f: M \to R^4$ is an immersion of M into R^4 , that is,

M is a 2-dimensional submanifold of R^4 . Choosing

$$\begin{split} e_1 &= -\sin\theta \, \frac{\partial}{\partial x^1} + \cos\theta \, \frac{\partial}{\partial x^3} \,, \quad e_2 &= -\sin\phi \, \frac{\partial}{\partial x^2} + \cos\phi \, \frac{\partial}{\partial x^4} \,, \\ N_1 &= \cos\theta \, \frac{\partial}{\partial x^1} + \sin\theta \, \frac{\partial}{\partial x^3} \,, \quad N_2 &= \cos\phi \, \frac{\partial}{\partial x^2} + \sin\phi \, \frac{\partial}{\partial x^4} \,, \end{split} \tag{4.4}$$

we get a local orthonormal frame $\{e_1, e_2, N_1, N_2\}$ of R^4 such that $\{e_1, e_2\}$ is a local orthonormal frame on M with respect to the induced metric g as a submanifold of R^4 and that $\{N_1, N_2\}$ is local field of normal to M.

Let $\overline{e}_1 = \frac{\partial}{\partial \theta}$ and $\overline{e}_2 = \frac{\partial}{\partial \phi}$ be the vector fields on the first and second copies of S^1 in $M = S^1 \times S^1$. Then we have

$$e_1 = df_{(\theta, \phi)}(\overline{e}_1)$$

and

$$e_2 = df_{(\theta, \, \phi)}(\overline{e}_2).$$

Next, we compute the values of F at e_1 and e_2 , respectively. Using

$$JX = \phi(X) + F(X), \quad X \in \mathfrak{X}(M)$$

and the equations (4.4), we get

$$Je_1 = J\left(-\sin\theta \frac{\partial}{\partial x^1} + \cos\theta \frac{\partial}{\partial x^3}\right)$$
$$= \left(-\sin\theta \frac{\partial}{\partial x^2} + \cos\theta \frac{\partial}{\partial x^4}\right) \in \mathfrak{X}(R^4).$$

We can express it as

$$Je_1 = ae_1 + be_2 + cN_1 + dN_2,$$

where a, b, c and $d \in C^{\infty}(\mathbb{R}^4)$. Then by (4.4)

$$Je_{1} = (-a\sin\theta + c\cos\theta)\frac{\partial}{\partial x^{1}} + (-b\sin\phi + d\cos\phi)\frac{\partial}{\partial x^{2}} + (a\cos\theta + c\sin\theta)\frac{\partial}{\partial x^{3}} + (b\cos\phi + d\sin\phi)\frac{\partial}{\partial x^{4}},$$

equating the two values of Je_1 , we conclude that

$$-a \sin \theta + c \cos \theta = 0,$$

$$a \cos \theta + c \sin \theta = 0,$$

$$-b\sin\varphi + d\cos\varphi = -\sin\theta$$

and

$$b\cos\varphi + d\sin\varphi = \cos\theta$$
.

Solving these equations, we get

$$a = 0$$
, $b = \cos(\varphi - \theta)$, $c = 0$ and $d = \sin(\varphi - \theta)$,

that is,

$$Je_1 = \cos(\varphi - \theta)e_2 + \sin(\varphi - \theta)N_2$$
,

thus using

$$Je_1 = \phi(e_1) + F(e_1),$$

we arrive at

$$F(e_1) = \sin(\theta - \varphi) N_2. \tag{4.5}$$

Similarly, using equation (4.4) we get

$$Je_2 = \sin \varphi \frac{\partial}{\partial x^1} - \cos \varphi \frac{\partial}{\partial x^3} \in \mathfrak{X}(R^4)$$

and consequently

$$Je_2 = -\cos(\varphi - \theta)e_1 + \sin(\varphi - \theta)N_1.$$

Thus we arrive at

$$F(e_2) = \sin(\varphi - \theta) N_1. \tag{4.6}$$

Now, we show that for this submanifold, F is not parallel. Since the immersion $f:M\to R^4$ is local embedding, we have

$$\overline{\nabla}_{e_1} e_1 = -\overline{e}_1 (\sin \theta) \frac{\partial}{\partial x^1} + \overline{e}_1 (\cos \theta) \frac{\partial}{\partial x^3}, \qquad (4.7)$$

GENERAL SUBMANIFOLDS OF A KAEHLER MANIFOLD-II 197

let ∇ be the Riemannian connection on M with respect to the induced metric. Then as

$$\overline{\nabla}_{e_1} e_1 = \overline{a} e_1 + \overline{b} e_2 + \overline{c} N_1 + \overline{d} N_2, \tag{4.8}$$

where \overline{a} , \overline{b} , \overline{c} and $\overline{d} \in C^{\infty}(\mathbb{R}^4)$. Also using Gauss equation, we have

$$\overline{\nabla}_{e_1} e_1 = \nabla_{e_1} e_1 + h(e_1, e_1).$$
 (4.9)

Inserting values of e_1 , e_2 , N_1 and N_2 into (4.8) and comparing with (4.7), we get

$$-\overline{a}\sin\theta + \overline{c}\cos\theta = -\overline{e}_1\sin\theta,$$

$$\overline{a}\cos\theta + \overline{c}\sin\theta = \overline{e}_1\cos\theta$$
,

$$-\overline{b}\sin\varphi + \overline{d}\cos\varphi = 0$$

and

$$\overline{b}\cos\varphi + \overline{d}\sin\varphi = 0.$$

Solving these equations and substituting in (4.8), we get

$$\nabla_{e_1} e_1 = 0$$

and from (4.9), we get that

$$h(e_1, e_1) = -N_1.$$

Similarly, computing for $\,\overline{\nabla}_{e_1}e_2,\,\overline{\nabla}_{e_2}e_1\,$ and $\,\overline{\nabla}_{e_2}e_2,\,$ we get

$$\nabla_{e_1}e_2 = 0$$
, $\nabla_{e_2}e_1 = 0$, $\nabla_{e_2}e_2 = 0$, $h(e_1, e_2) = 0$ and $h(e_1, e_2) = -N_2$, (4.10)

(this is consistent with $R(e_1, e_2)e_1 = 0$ as M is flat torus).

Also computing $\overline{\nabla}_{e_1}N_1$, $\overline{\nabla}_{e_2}N_1$, $\overline{\nabla}_{e_1}N_2$ and $\overline{\nabla}_{e_2}N_2$ together with equation (2.2) we conclude

$$\nabla_{e_1}^{\perp} N_1 = 0, \ \nabla_{e_2}^{\perp} N_1 = 0, \ \nabla_{e_1}^{\perp} N_2 = 0, \ \nabla_{e_2}^{\perp} N_2 = 0.$$
 (4.11)

Thus using equations (4.7), (4.10) and (4.11) we compute $(D_{e_1}F)(e_2)$ to arrive at

$$(D_{e_1}F)(e_2) = -\cos(\varphi - \theta)N_1.$$

Similarly, we have $(D_{e_1}F)(e_1) = -\cos(\theta - \varphi)N_2$, $(D_{e_2}F)(e_1) = \cos(\theta - \varphi)N_2$, $(D_{e_2}F)(e_2) = \cos(\varphi - \theta)N_1$. Since $\{e_1, e_2\}$ is a local orthonormal frame, we see that in general $(D_{e_i}F)(e_j) \neq 0$, i, j = 1, 2, that is, there are points where

$$(D_X F)(Y) \neq 0, \quad X, Y \in \mathfrak{X}(M),$$

that is, F is not parallel.

References

- A. Bejancu, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69(1) (1978), 135-142.
- [2] B. Y. Chen, General inequality for Kahlerian slant submanifolds and related results, Geom. Dedicata 85(1-3) (2001), 253-271.
- [3] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, 1972.
- [4] Ameera A. Eshan and Falleh R. Al-Solamy, General submanifolds of a Kaehler manifold, Preprint.
- [5] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces II, J. Math. Soc. Japan 20 (1968), 498-521.
- [6] K. Ogiue, Differential geometry of Kaehler submanifolds, Adv. Math. 13 (1974), 73-114.
- [7] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85(2) (1967), 246-266.