GENERAL SUBMANIFOLDS OF A KAEHLER MANIFOLD-II

AMEERA A. ESHAN and FALLEH R. AL-SOLAMY
Department of Mathematics
Taif University
P. O. Box 20314
Makkah 21599, Saudi Arabia
e-mail: ameeraeshan@hotmail.com
Department of Mathematics
University of Tabuk
P. O. Box 80015
Jeddah 21589, Saudi Arabia
e-mail: falleh@hotmail.com

Abstract

In this paper, we continue the study of most general class of submanifolds of a Kaehler manifold initiated in [4], which includes all existing classes of submanifolds (complex submanifolds, totally real submanifolds, CR-submanifolds, slant submanifolds). Such a submanifold M of a Kaehler manifold \bar{M} has naturally defined operators ϕ, F, ψ and G. We study the geometry of a general submanifold with parallel F and obtain a condition under which a general submanifold is a complex submanifold.

2000 Mathematics Subject Classification: Primary 53C20, 58C45.
Keywords and phrases: complex submanifolds, totally real submanifolds, CR-submanifolds, slant submanifolds, Kaehler manifolds.

This work is supported by the Deanship of Scientific Research, King Abdul Aziz University, Project No. 801/428.

Received December 1, 2008

1. Introduction

The geometry of submanifolds of a Kaehler manifold is interesting because of the influence of the complex structure of the Kaehler manifold on the submanifold. Accordingly, there are various types of special submanifolds of a Kaehler manifold namely, complex submanifolds [5], totally real submanifolds, CR-submanifolds [1] (this class includes both complex submanifolds and totally real submanifolds), slant submanifolds [2]. We have initiated the study of most general submanifolds of a Kaehler manifold which includes all the existing types of submanifolds (cf. [4]). A general submanifold of a Kaehler manifold naturally carries four operators ϕ, F, ψ and G defined on this submanifold. In [4], it has been shown that a general submanifold of a Kaehler manifold with parallel ϕ is essentially a CR-submanifold and there are examples of general submanifold where ϕ is not parallel. There are lot many questions about a general submanifold of a Kaehler manifold to be answered, for instance the impact of conditions that one of the structure operators F, ψ and G is parallel, as well as impact of other algebraic restrictions on the properties of these operators on the general submanifold. In this paper, we consider the question that the structure operator F is parallel on the general submanifold of a Kaehler manifold and study its impact on the geometry of general submanifold.

2. Preliminaries

Let M be an n-dimensional smooth manifold immersed into an $n+k=2 m$-dimensional Kaehler manifold (\bar{M}, J, g) with Riemannian connection $\bar{\nabla}$ and the induced metric and connection on M be g and ∇, respectively. Then we have the following fundamental equations for the submanifold, namely

$$
\begin{array}{ll}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), & X, Y \in \mathfrak{X}(M) \\
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N, & X \in \mathfrak{X}(M), N \in \Gamma(v) \tag{2.2}
\end{array}
$$

where $\mathfrak{X}(M)$ is Lie-algebra of vector fields on $M, \Gamma(v)$ is the space of normal sections of the normal bundle v of M, h is the second fundamental
form, A_{N} is the Weingarten map with respect to $N \in \Gamma(v), \nabla^{\perp}$ is the connection in the normal bundle v. The Weingarten maps A_{N} are related to the second fundamental form h by

$$
g\left(A_{N} X, Y\right)=g(h(X, Y), N), \quad X, Y \in \mathfrak{X}(M), N \in \Gamma(v)
$$

For an n-dimensional submanifold M of an $n+k=2 m$-dimensional Kaehler manifold (\bar{M}, J, g), define:

$$
J X=\phi(X)+F(X), \quad J N=\psi(N)+G(N)
$$

where $X \in \mathfrak{X}(M)$ and $N \in \Gamma(v)$, and $\phi(X)=(J X)^{T}$ the tangential component of $J X, F(X)=(J X)^{\perp}$ the normal component of $J X, \psi(N)$ $=(J N)^{T}$ and $G(N)=(J N)^{\perp}$, which define linear operators $\phi: \mathfrak{X}(M) \rightarrow$ $\mathfrak{X}(M), F: \mathfrak{X}(M) \rightarrow \Gamma(v), \psi: \Gamma(v) \rightarrow \mathfrak{X}(M)$ and $G: \Gamma(v) \rightarrow \Gamma(v)$, respectively. It is trivial implication of the definition that:

$$
\begin{gather*}
\phi^{2}(X)=-X-\psi(F(X)), \quad G^{2}(N)=-N-F(\psi(N)), \\
F(\phi(X))=-G(F(X)), \quad \phi(\psi(N))=-\psi(G(N)), \tag{2.3}
\end{gather*}
$$

hold for $X \in \mathfrak{X}(M), N \in \Gamma(v)$. Also

$$
\begin{equation*}
g(\phi(X), Y)=g(J X-F(X), Y)=g(J X, Y)=-g(X, J Y)=-g(X, \phi(Y)) \tag{2.4}
\end{equation*}
$$

similarly, we have

$$
\begin{align*}
& g\left(G\left(N_{1}\right), N_{2}\right)=-g\left(N_{1}, G\left(N_{2}\right)\right) \tag{2.5}\\
& g(F(X), N)=-g(X, \psi(N)) \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
g(\psi(N), X)=-g(N, F(X)) \tag{2.7}
\end{equation*}
$$

hold for $X, Y \in \mathfrak{X}(M)$ and $N, N_{1}, N_{2} \in \Gamma(v)$.
If we define the covariant derivatives $\left(D_{X} F\right)(Y)$ and $\left(D_{X} \psi\right)(N)$ for the operators $F: \mathfrak{X}(M) \rightarrow \Gamma(v)$ and $\psi: \Gamma(v) \rightarrow \mathfrak{X}(M)$ by

$$
\left(D_{X} F\right) Y=\nabla_{X}^{\perp} F(Y)-F\left(\nabla_{X} Y\right)
$$

and

$$
\left(D_{X} \psi\right)(N)=\nabla_{X} \psi(N)-\psi\left(\nabla_{X} \frac{1}{X} N\right),
$$

then we have the following:
Lemma 2.1 [4]. The operators ϕ, F, ψ and G obey

$$
\begin{aligned}
& \left(\nabla_{X} \phi\right)(Y)=A_{F(Y)} X+\psi(h(X, Y)), \\
& \left(D_{X} F\right)(Y)=G(h(X, Y))-h(X, \phi(Y)), \\
& \left(D_{X} \psi\right)(N)=A_{G(N)} X-\phi\left(A_{N} X\right)
\end{aligned}
$$

and

$$
\left(\nabla \frac{\perp}{X} G\right)(N)=-F\left(A_{N} X\right)-h(X, \psi(N))
$$

for $X, Y \in \mathfrak{X}(M)$ and $N \in \Gamma(v)$.
We define the operators

$$
B: \psi \circ F: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

and

$$
C: F \circ \psi: \Gamma(v) \rightarrow \Gamma(v)
$$

then it is easy to see that they are symmetric operators. Also, using (2.3) we see that B commutes with ϕ that is $B \circ \phi=\phi \circ B$ and that G commutes with C that is $G \circ C=C \circ G$. As a result of this we get $\operatorname{tr} B \circ \phi=0$ and $\operatorname{tr} G \circ C=0$.

3. Submanifolds with Parallel F

In this section, we are interested in submanifolds with parallel F, that is,

$$
\nabla_{X}^{\perp} F Y=F\left(\nabla_{X} Y\right)
$$

where $X, Y \in \mathfrak{X}(M)$. Using Lemma 2.1, we immediately have

Lemma 3.1. Let M be a submanifold of a Kaehler manifold \bar{M}. Then the operator F is parallel if and only if

$$
G(h(X, Y))=h(X, \phi Y)
$$

for $X, Y \in \mathfrak{X}(M)$.
Remark. Observe that if F is parallel, then by Lemma 3.1,

$$
h(X, \phi Y)=h(\phi X, Y)
$$

holds for $X, Y \in \mathscr{X}(M)$. The operator C defined in previous section is symmetric and we have

$$
\left(\nabla \frac{\perp}{X} C\right)(N)=\nabla \frac{1}{X} C(N)-C\left(\nabla \frac{1}{X} N\right), \quad X \in \mathfrak{X}(M), N \in \Gamma(v)
$$

The operator C is said to be parallel if $\left(\nabla \frac{1}{X} C\right)(N)=0, \quad X \in \mathfrak{X}(M)$, $N \in \Gamma(v)$.

Theorem 3.1. Let M be an n-dimensional submanifold of an $(n+k)=2 m$-dimensional Kaehler manifold (\bar{M}, J, g). If the operator F is parallel, then C is also parallel.

Proof. We have for $X \in \mathfrak{X}(M), N \in \Gamma(v)$ that

$$
\begin{aligned}
\nabla_{X}^{\perp}(C N) & =\nabla_{X}^{\perp} F(\psi(N))=\left(D_{X} F\right)(\psi(N))+F\left(\nabla_{X}^{\perp} \psi(N)\right) \\
& =\left(D_{X} F\right)(\psi(N))+F\left(\left(D_{X} \psi\right)(N)\right)+\psi\left(\nabla \frac{\perp}{X}(N)\right),
\end{aligned}
$$

that is,

$$
\left(\nabla_{X}^{\perp} C\right)(N)=\left(D_{X} F\right)(\psi(N))+F\left(\left(D_{X} \psi\right)(N)\right)
$$

Using Lemma 2.1 in above equation, we get

$$
\begin{equation*}
\left(\nabla \frac{1}{X} C\right)(N)=G\left(h(X, \psi(N))-h(X, \phi(\psi N))+F\left(A_{G N} X-\phi A_{N} X\right)\right) \tag{3.1}
\end{equation*}
$$

Also, using Lemma 3.1, we get $g(h(X, \phi Y), N)=-g(h(X, Y), G N)$, that is, $g\left(\phi A_{N} X, Y\right)=g\left(A_{G N} X, Y\right)$, which gives

$$
\begin{equation*}
A_{G N} X=\phi A_{N} X \tag{3.2}
\end{equation*}
$$

Finally, using Lemma 3.1 together with equations (3.1) and (3.2), for parallel F, we get

$$
\left(\nabla \frac{\perp}{X} C\right)(N)=0, \quad X \in \mathfrak{X}(M), N \in \Gamma(v)
$$

that proves the theorem.
For $N \in \Gamma(v)$, if $C(N)=\lambda N, \quad \lambda \in C^{\infty}(M)$, then λ is said to be an eigenvalue of C and N is called the eigenvector of C corresponding to eigenvalue λ. Using equation (3.2) we have the following:

Corollary 3.1. Let M be an n-dimensional submanifold of an $(n+k)=2 m$-dimensional Kaehler manifold (\bar{M}, J, g). If the operator F is parallel, then ψ is also parallel.

Proof. If F is parallel, then we get equation (3.2). Using equation (3.2) together with Lemma 2.1, we get $\left(D_{X} \psi\right)(N)=0$, that is, ψ is parallel.

Lemma 3.2. Let M be an n-dimensional submanifold of an $(n+k)=$ 2m-dimensional Kaehler manifold (\bar{M}, J, g). If the operator F is parallel, then the eigenvalues of C are constants.

Proof. Let $C(N)=\lambda N, \quad N \in \Gamma(v), \quad \lambda \in C^{\infty}(M)$. Without loss of generality we can assume that N is a unit normal vector field. As F is parallel by Theorem 3.1, we have C is parallel and consequently

$$
\begin{aligned}
0 & =\left(\nabla \frac{1}{X} C\right)(N) \\
& =\nabla \frac{\perp}{X}(C N)-C\left(\nabla_{X}^{\perp} N\right) \\
& =\nabla \frac{\perp}{X}(\lambda N)-C\left(\nabla \frac{\perp}{X} N\right) \\
& =X(\lambda) N+\lambda \nabla{ }_{X}^{\perp} N-C\left(\nabla_{X}^{\perp} N\right)
\end{aligned}
$$

Taking inner product with $N \in \Gamma(v)$, we get

$$
X(\lambda)=0
$$

which proves that λ is a constant.

Let M be an n-dimensional submanifold of an $(n+k)=2 m$ dimensional Kaehler manifold (\bar{M}, J, g). Define

$$
\|C\|^{2}=\sum_{\alpha=1}^{k} g\left(C\left(N_{\alpha}\right), C\left(N_{\alpha}\right)\right)
$$

for a local orthonormal frame $\left\{N_{1}, \ldots, N_{\alpha}\right\}$. Since C is symmetric we can choose an orthonormal frame $\left\{N_{1}, \ldots, N_{\alpha}\right\}$ that diagonalizes C. Then in light of Lemma 3.2, we have proved the following:

Lemma 3.3. Let M be an n-dimensional submanifold of an $(n+k)=$ $2 m$-dimensional Kaehler manifold (\bar{M}, J, g). If the operator F is parallel, then $\|C\|^{2}$ is a constant as well as the $\operatorname{tr} C$ is also a constant and $\operatorname{tr} C=-\|\psi\|^{2}$.

Using equation (2.3), we have $G^{2}=-I-C$ and for a local orthonormal frame $\left\{N_{1}, \ldots, N_{\alpha}\right\}$ of normal vector fields, we have

$$
\begin{align*}
\|G\|^{2} & =\sum_{\alpha=1}^{k} g\left(G\left(N_{\alpha}\right), G\left(N_{\alpha}\right)\right) \\
& =\sum_{\alpha=1}^{k} g\left(N_{\alpha}+C\left(N_{\alpha}\right), N_{\alpha}\right) \\
& =k-\|\psi\|^{2} \tag{3.3}
\end{align*}
$$

Theorem 3.2. Let M be an n-dimensional submanifold of an $(n+k)$ $=2 m$-dimensional Kaehler manifold (\bar{M}, J, g). If the operator F is parallel, then $\|G\|^{2}$ is a constant.

Proof. Suppose F is parallel. Then by equation (3.3)

$$
\|G\|^{2}+\|\psi\|^{2}=k
$$

to prove $\|G\|^{2}$ is a constant, it is enough to show that $\|\psi\|^{2}$ is a
constant. Since the operator C is symmetric, we have

$$
\begin{aligned}
X\left(\|\psi\|^{2}\right) & =X\left(\sum_{\alpha=1}^{k} g\left(\psi\left(N_{\alpha}\right), \psi\left(N_{\alpha}\right)\right)\right)=-X\left(\sum_{\alpha=1}^{k} g\left(C\left(N_{\alpha}\right), N_{\alpha}\right)\right) \\
& =-\sum_{\alpha=1}^{k}\left\{g\left(\left(\nabla \frac{\perp}{X} C\right)\left(N_{\alpha}\right), N_{\alpha}\right)+2 g\left(C\left(N_{\alpha}\right), \nabla^{\perp}{ }_{X} N_{\alpha}\right)\right\}
\end{aligned}
$$

Using Theorem 3.1 and the local orthonormal frame $\left\{N_{1}, \ldots, N_{\alpha}\right\}$ of normal vector fields that diagonalize C with $C\left(N_{\alpha}\right)=\lambda_{\alpha} N_{\alpha}$, we get together with Lemma 3.2 that

$$
X\left(\|\psi\|^{2}\right)=-\sum_{\alpha=1}^{k} 2 \lambda_{\alpha} g\left(N_{\alpha}, \nabla \frac{\perp}{X} N_{\alpha}\right)=0
$$

which proves that $\|\psi\|^{2}$ is a constant.
Theorem 3.3. Let M be an n-dimensional submanifold of an $(n+k)$ $=2 m$-dimensional Kaehler manifold (\bar{M}, J, g). If the operator F is parallel, and $\operatorname{tr} C=0$, then M is a complex submanifold.

Proof. Suppose F is parallel and $\operatorname{trC}=0$. Then by Lemma 3.3, we have $\|\psi\|^{2}=0$ and that gives $\psi=0$. This also gives $B=0$ and consequently

$$
0=g(B X, X)=-g(F X, F X)=-\|F X\|^{2}, \quad X \in \mathfrak{X}(M)
$$

that is, $F X=0, X \in \mathfrak{X}(M)$. Thus the equations (2.3) and Lemma 2.1 prove that ϕ satisfies $\phi^{2}=-I$ and $\left(\nabla_{X} \phi\right)(Y)=0$. That is, M is a complex submanifold of the Kaehler manifold \bar{M}.

4. Examples

Example 4.1. Consider the Kaehler manifold $\left(R^{4}, J,\langle\rangle,\right)$, where J is the complex structure defined by

$$
J\left(\frac{\partial}{\partial x^{1}}\right)=\frac{\partial}{\partial x^{2}}, J\left(\frac{\partial}{\partial x^{2}}\right)=-\frac{\partial}{\partial x^{1}}, J\left(\frac{\partial}{\partial x^{3}}\right)=\frac{\partial}{\partial x^{4}}, \text { and } J\left(\frac{\partial}{\partial x^{4}}\right)=-\frac{\partial}{\partial x^{3}}
$$

$\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}$ and $\frac{\partial}{\partial x^{4}}$ being coordinate vector fields on R^{4} that is for each vector fields

$$
\begin{align*}
& X=f^{1} \frac{\partial}{\partial x^{1}}+f^{2} \frac{\partial}{\partial x^{2}}+f^{3} \frac{\partial}{\partial x^{3}}+f^{4} \frac{\partial}{\partial x^{4}} \in \mathfrak{X}\left(R^{4}\right), \\
& J X=-f^{2} \frac{\partial}{\partial x^{1}}+f^{1} \frac{\partial}{\partial x^{2}}-f^{4} \frac{\partial}{\partial x^{3}}+f^{3} \frac{\partial}{\partial x^{4}}, \tag{4.1}
\end{align*}
$$

and \langle,$\rangle is the Euclidean metric on R^{4}$. We denote by $\bar{\nabla}$ the Euclidean connection on R^{4}. Take $M=R^{3}$ and the embedding $f: M \rightarrow R^{4}$

$$
f(x, y, z)=(y, x, 0, z) .
$$

Then we find the local orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, N\right\}$ of R^{4}, where

$$
e_{1}=\frac{\partial}{\partial x^{2}}, e_{2}=\frac{\partial}{\partial x^{1}}, e_{3}=\frac{\partial}{\partial x^{4}} \text { and } N=\frac{\partial}{\partial x^{3}},
$$

such that $\left\{e_{1}, e_{2}, e_{3}\right\}$ is local orthonormal frame on M. Let ∇ be the induced Riemannian connection on M. Then using properties of $\bar{\nabla}$, it is straight-foreword to check that

$$
\begin{equation*}
\nabla_{e_{i}} e_{j}=0, \quad i, j=1,2,3, \tag{4.2}
\end{equation*}
$$

and using (4.1), we find that

$$
\begin{equation*}
F\left(e_{1}\right)=0, \quad F\left(e_{2}\right)=0 \quad \text { and } \quad F\left(e_{3}\right)=-N, \tag{4.3}
\end{equation*}
$$

and as N is parallel in the normal bundle, consequently using equations (4.1), (4.2) and (4.3), we get that

$$
\left(D_{X} F\right)(Y)=0, \quad X, Y \in \mathfrak{X}(M) .
$$

Thus F is parallel.
Next, we construct an example where F is not parallel, that is, M will not be a CR-submanifold.

Example 4.2. Consider 4-dimensional Euclidean space R^{4} with Euclidean metric \langle,$\rangle . Then \left(R^{4}, J,\langle\rangle,\right)$ is a Kaehler manifold with the complex structure J defined by

$$
J\left(\frac{\partial}{\partial x^{1}}\right)=\frac{\partial}{\partial x^{2}}, J\left(\frac{\partial}{\partial x^{2}}\right)=-\frac{\partial}{\partial x^{1}}, J\left(\frac{\partial}{\partial x^{3}}\right)=\frac{\partial}{\partial x^{4}} \text { and } J\left(\frac{\partial}{\partial x^{4}}\right)=-\frac{\partial}{\partial x^{3}}
$$

where $\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}$, and $\frac{\partial}{\partial x^{4}}$ are the coordinate vector fields on R^{4}. It is easy to see that J is parallel with respect to the Euclidean connection $\bar{\nabla}$ on R^{4}, that is,

$$
\bar{\nabla}_{X} J Y=J \bar{\nabla}_{X} Y
$$

holds for $X, Y \in \mathfrak{X}\left(R^{4}\right)$ the Lie-algebra of smooth vector fields on R^{4}.
Now consider the product $M=S^{1} \times S^{1}$ of two copies of the unit circle S^{1} and define

$$
f: M \rightarrow R^{4}
$$

by

$$
f(\cos \theta, \sin \theta, \cos \varphi, \sin \varphi)=(\cos \theta, \cos \varphi, \sin \theta, \sin \varphi),
$$

where θ and φ are local coordinates of S^{1} and S^{1}, respectively. Then it is straight forward to see that at $p=(\theta, \varphi) \in M$, differential $d f_{p}$ at $p \in M$ has the matrix respectively

$$
d f_{p}=\left[\begin{array}{cc}
-\sin \theta & 0 \\
0 & -\sin \varphi \\
\cos \theta & 0 \\
0 & \cos \varphi
\end{array}\right]
$$

which has rank 2 at each $p \in M$; (as if $\sin \theta \sin \varphi=0$, then $\cos \theta \cos \varphi \neq 0$ and vice-versa). Thus $f: M \rightarrow R^{4}$ is an immersion of M into R^{4}, that is,
M is a 2 -dimensional submanifold of R^{4}. Choosing

$$
\begin{align*}
& e_{1}=-\sin \theta \frac{\partial}{\partial x^{1}}+\cos \theta \frac{\partial}{\partial x^{3}}, \quad e_{2}=-\sin \varphi \frac{\partial}{\partial x^{2}}+\cos \varphi \frac{\partial}{\partial x^{4}}, \\
& N_{1}=\cos \theta \frac{\partial}{\partial x^{1}}+\sin \theta \frac{\partial}{\partial x^{3}}, \quad N_{2}=\cos \varphi \frac{\partial}{\partial x^{2}}+\sin \varphi \frac{\partial}{\partial x^{4}}, \tag{4.4}
\end{align*}
$$

we get a local orthonormal frame $\left\{e_{1}, e_{2}, N_{1}, N_{2}\right\}$ of R^{4} such that $\left\{e_{1}, e_{2}\right\}$ is a local orthonormal frame on M with respect to the induced metric g as a submanifold of R^{4} and that $\left\{N_{1}, N_{2}\right\}$ is local field of normal to M.

Let $\bar{e}_{1}=\frac{\partial}{\partial \theta}$ and $\bar{e}_{2}=\frac{\partial}{\partial \varphi}$ be the vector fields on the first and second copies of S^{1} in $M=S^{1} \times S^{1}$. Then we have

$$
e_{1}=d f_{(\theta, \varphi)}\left(\bar{e}_{1}\right)
$$

and

$$
e_{2}=d f_{(\theta, \varphi)}\left(\bar{e}_{2}\right) .
$$

Next, we compute the values of F at e_{1} and e_{2}, respectively. Using

$$
J X=\phi(X)+F(X), \quad X \in \mathfrak{X}(M)
$$

and the equations (4.4), we get

$$
\begin{aligned}
J e_{1} & =J\left(-\sin \theta \frac{\partial}{\partial x^{1}}+\cos \theta \frac{\partial}{\partial x^{3}}\right) \\
& =\left(-\sin \theta \frac{\partial}{\partial x^{2}}+\cos \theta \frac{\partial}{\partial x^{4}}\right) \in \mathfrak{X}\left(R^{4}\right) .
\end{aligned}
$$

We can express it as

$$
J e_{1}=a e_{1}+b e_{2}+c N_{1}+d N_{2},
$$

where a, b, c and $d \in C^{\infty}\left(R^{4}\right)$. Then by (4.4)

$$
\begin{aligned}
J e_{1}= & (-a \sin \theta+c \cos \theta) \frac{\partial}{\partial x^{1}}+(-b \sin \varphi+d \cos \varphi) \frac{\partial}{\partial x^{2}} \\
& +(a \cos \theta+c \sin \theta) \frac{\partial}{\partial x^{3}}+(b \cos \varphi+d \sin \varphi) \frac{\partial}{\partial x^{4}}
\end{aligned}
$$

equating the two values of $J e_{1}$, we conclude that

$$
\begin{aligned}
& -a \sin \theta+c \cos \theta=0 \\
& a \cos \theta+c \sin \theta=0 \\
& -b \sin \varphi+d \cos \varphi=-\sin \theta
\end{aligned}
$$

and

$$
b \cos \varphi+d \sin \varphi=\cos \theta
$$

Solving these equations, we get

$$
a=0, b=\cos (\varphi-\theta), c=0 \text { and } d=\sin (\varphi-\theta)
$$

that is,

$$
J e_{1}=\cos (\varphi-\theta) e_{2}+\sin (\varphi-\theta) N_{2}
$$

thus using

$$
J e_{1}=\phi\left(e_{1}\right)+F\left(e_{1}\right)
$$

we arrive at

$$
\begin{equation*}
F\left(e_{1}\right)=\sin (\theta-\varphi) N_{2} \tag{4.5}
\end{equation*}
$$

Similarly, using equation (4.4) we get

$$
J e_{2}=\sin \varphi \frac{\partial}{\partial x^{1}}-\cos \varphi \frac{\partial}{\partial x^{3}} \in \mathfrak{X}\left(R^{4}\right)
$$

and consequently

$$
J e_{2}=-\cos (\varphi-\theta) e_{1}+\sin (\varphi-\theta) N_{1}
$$

Thus we arrive at

$$
\begin{equation*}
F\left(e_{2}\right)=\sin (\varphi-\theta) N_{1} . \tag{4.6}
\end{equation*}
$$

Now, we show that for this submanifold, F is not parallel. Since the immersion $f: M \rightarrow R^{4}$ is local embedding, we have

$$
\begin{equation*}
\bar{\nabla}_{e_{1}} e_{1}=-\bar{e}_{1}(\sin \theta) \frac{\partial}{\partial x^{1}}+\bar{e}_{1}(\cos \theta) \frac{\partial}{\partial x^{3}} \tag{4.7}
\end{equation*}
$$

let ∇ be the Riemannian connection on M with respect to the induced metric. Then as

$$
\begin{equation*}
\bar{\nabla}_{e_{1}} e_{1}=\bar{a} e_{1}+\bar{b} e_{2}+\bar{c} N_{1}+\bar{d} N_{2}, \tag{4.8}
\end{equation*}
$$

where $\bar{a}, \bar{b}, \bar{c}$ and $\bar{d} \in C^{\infty}\left(R^{4}\right)$. Also using Gauss equation, we have

$$
\begin{equation*}
\bar{\nabla}_{e_{1}} e_{1}=\nabla_{e_{1}} e_{1}+h\left(e_{1}, e_{1}\right) . \tag{4.9}
\end{equation*}
$$

Inserting values of e_{1}, e_{2}, N_{1} and N_{2} into (4.8) and comparing with (4.7), we get

$$
\begin{aligned}
& -\bar{a} \sin \theta+\bar{c} \cos \theta=-\bar{e}_{1} \sin \theta, \\
& \bar{a} \cos \theta+\bar{c} \sin \theta=\bar{e}_{1} \cos \theta, \\
& -\bar{b} \sin \varphi+\bar{d} \cos \varphi=0
\end{aligned}
$$

and

$$
\bar{b} \cos \varphi+\bar{d} \sin \varphi=0 .
$$

Solving these equations and substituting in (4.8), we get

$$
\nabla_{e_{1}} e_{1}=0
$$

and from (4.9), we get that

$$
h\left(e_{1}, e_{1}\right)=-N_{1} .
$$

Similarly, computing for $\bar{\nabla}_{e_{1}} e_{2}, \bar{\nabla}_{e_{2}} e_{1}$ and $\bar{\nabla}_{e_{2}} e_{2}$, we get

$$
\begin{equation*}
\nabla_{e_{1}} e_{2}=0, \nabla_{e_{2}} e_{1}=0, \nabla_{e_{2}} e_{2}=0, h\left(e_{1}, e_{2}\right)=0 \text { and } h\left(e_{1}, e_{2}\right)=-N_{2}, \tag{4.10}
\end{equation*}
$$

(this is consistent with $R\left(e_{1}, e_{2}\right) e_{1}=0$ as M is flat torus).
Also computing $\bar{\nabla}_{e_{1}} N_{1}, \bar{\nabla}_{e_{2}} N_{1}, \bar{\nabla}_{e_{1}} N_{2}$ and $\bar{\nabla}_{e_{2}} N_{2}$ together with equation (2.2) we conclude

$$
\begin{equation*}
\nabla_{e_{1}}^{\perp} N_{1}=0, \quad \nabla_{e_{2}}^{\perp} N_{1}=0, \quad \nabla_{e_{1}}^{\perp} N_{2}=0, \quad \nabla_{e_{2}}^{\perp} N_{2}=0 . \tag{4.11}
\end{equation*}
$$

Thus using equations (4.7), (4.10) and (4.11) we compute $\left(D_{e_{1}} F\right)\left(e_{2}\right)$ to arrive at

$$
\left(D_{e_{1}} F\right)\left(e_{2}\right)=-\cos (\varphi-\theta) N_{1} .
$$

Similarly, we have $\left(D_{e_{1}} F\right)\left(e_{1}\right)=-\cos (\theta-\varphi) N_{2},\left(D_{e_{2}} F\right)\left(e_{1}\right)=\cos (\theta-\varphi) N_{2}$, $\left(D_{e_{2}} F\right)\left(e_{2}\right)=\cos (\varphi-\theta) N_{1}$. Since $\left\{e_{1}, e_{2}\right\}$ is a local orthonormal frame, we see that in general $\left(D_{e_{i}} F\right)\left(e_{j}\right) \neq 0, i, j=1,2$, that is, there are points where

$$
\left(D_{X} F\right)(Y) \neq 0, \quad X, Y \in \mathfrak{X}(M),
$$

that is, F is not parallel.

References

[1] A. Bejancu, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69(1) (1978), 135-142.
[2] B. Y. Chen, General inequality for Kahlerian slant submanifolds and related results, Geom. Dedicata 85(1-3) (2001), 253-271.
[3] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, 1972.
[4] Ameera A. Eshan and Falleh R. Al-Solamy, General submanifolds of a Kaehler manifold, Preprint.
[5] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces II, J. Math. Soc. Japan 20 (1968), 498-521.
[6] K. Ogiue, Differential geometry of Kaehler submanifolds, Adv. Math. 13 (1974), 73-114.
[7] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85(2) (1967), 246-266.

