Far East Journal of Mathematical Sciences (FJMS)

Volume 32, Issue 1, 2009, Pages 43-53 Published online: March 18, 2009

This paper is available online at http://www.pphmj.com

© 2009 Pushpa Publishing House

FUZZY PAIRWISE ALMOST (r, s)-CONTINUOUS MAPPINGS

EUN PYO LEE and CHANG HYUN LEE

Department of Mathematics Seonam University Namwon 590-711, Korea e-mail: eplee@seonam.ac.kr or eplee55@paran.com

chlee@seonam.ac.kr

Abstract

In this paper, we introduce the concepts of fuzzy pairwise almost (r, s)-continuous, fuzzy pairwise almost (r, s)-open and fuzzy pairwise almost (r, s)-closed mappings in smooth bitopological spaces and then we investigate some of their characteristic properties.

1. Introduction

Chang [2] introduced fuzzy topological spaces and other authors continued the investigation of such spaces. Azad [1] introduced the concepts of fuzzy regular open set and fuzzy almost continuous mappings in fuzzy topological spaces. Chattopadhyay et al. [3] introduced another definition of smooth topology as a generalization of fuzzy topology. Kandil [4] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces. Lee [5] introduced the concept of smooth bitopological spaces as a generalization of smooth topological spaces and Kandil's fuzzy bitopological spaces.

2000 Mathematics Subject Classification: 54A40.

Keywords and phrases: fuzzy pairwise almost (r, s)-continuous mappings, fuzzy pairwise almost (r, s)-copen mappings, fuzzy pairwise almost (r, s)-closed mappings.

Received November 3, 2008

In this paper, we introduce the concepts of fuzzy pairwise almost (r, s)-continuous, fuzzy pairwise almost (r, s)-open and fuzzy pairwise almost (r, s)-closed mappings in smooth bitopological spaces and then we investigate some of their characteristic properties.

2. Preliminaries

In this paper, we denote by I the unit interval [0, 1] of the real line and $I_0 = (0, 1]$. A member μ of I^X is called a fuzzy set of X. By $\widetilde{0}$ and $\widetilde{1}$ we denote constant mappings on X with value 0 and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $\widetilde{1} - \mu$. All other notations are the standard notations of fuzzy set theory.

A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\widetilde{0}$, $\widetilde{1} \in T$.
- (2) If μ_1 , $\mu_2 \in T$, then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_k \in T$ for all k, then $\vee \mu_k \in T$.

The pair (X, T) is called a *Chang's fuzzy topological space*. Members of T are called T-fuzzy open sets of X and their complements T-fuzzy closed sets of X.

A smooth topology on X is a mapping $\mathcal{T}:I^X\to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\widetilde{0}) = \mathcal{T}(\widetilde{1}) = 1$.
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$.
- (3) $\mathcal{T}(\vee \mu_i) \geq \wedge \mathcal{T}(\mu_i)$.

The pair (X, \mathcal{T}) is called a *smooth topological space*. For $r \in I_0$, we call μ a \mathcal{T} -fuzzy r-open set of X if $\mathcal{T}(\mu) \geq r$ and μ a \mathcal{T} -fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \geq r$.

A system $(X, \mathcal{T}_1, \mathcal{T}_2)$ consisting of a set X with two smooth topologies \mathcal{T}_1 and \mathcal{T}_2 on X is called a *smooth bitopological space*. Throughout this paper the indices i, j take values in $\{1, 2\}$ and $i \neq j$.

Let (X, \mathcal{T}) be a smooth topological space. Then it is easy to see that for each $r \in I_0$, an r-cut

$$\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \ge r \}$$

is a Chang's fuzzy topology on X.

Let (X, T) be a Chang's fuzzy topological space and $r \in I_0$. Then the mapping $\mathcal{T}^r: I^X \to I$ is defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \widetilde{0}, \ \widetilde{1} \\ r & \text{if } \mu \in T - \{\widetilde{0}, \ \widetilde{1}\} \\ 0 & \text{otherwise} \end{cases}$$

becomes a smooth topology.

Hence, we obtain that if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$ is a Kandil's fuzzy bitopological space. Also, if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a Kandil's fuzzy bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)^r, (\mathcal{T}_2)^s)$ is a smooth bitopological space.

Definition 2.1 [5]. Let (X, \mathcal{T}) be a smooth topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the \mathcal{T} -fuzzy r-closure is defined by

$$\mathcal{T}\text{-Cl}(\mu, r) = \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \, \mathcal{T}(\rho^c) \geq r \}$$

and the T-fuzzy r-interior is defined by

$$\mathcal{T}$$
-Int $(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \geq \rho, \, \mathcal{T}(\rho) \geq r \}.$

Lemma 2.2 [5]. Let μ be a fuzzy set of a smooth topological space (X, \mathcal{T}) and $r \in I_0$. Then we have

- (1) \mathcal{T} -Cl(μ , r)^c = \mathcal{T} -Int(μ ^c, r).
- (2) \mathcal{T} -Int(μ , r)^c = \mathcal{T} -Cl(μ ^c, r).

Definition 2.3 [5]. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

- (1) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set if there is a \mathcal{T}_i -fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \mathcal{T}_j$ -Cl (ρ, s) ,
- (2) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set if there is a \mathcal{T}_i -fuzzy r-closed set ρ in X such that \mathcal{T}_j -Int $(\rho, s) \leq \mu \leq \rho$.

Definition 2.4 [5]. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a smooth bitopological space. For each $r, s \in I_0$ and for each $\mu \in I^X$, the $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosure is defined by

$$(\mathcal{T}_i, \mathcal{T}_i)$$
-sCl (μ, r, s)

=
$$\bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \rho \text{ is } (\mathcal{T}_i, \mathcal{T}_i) \text{-fuzzy } (r, s) \text{-semiclosed} \}$$

and the $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiinterior is defined by

$$(\mathcal{T}_i, \mathcal{T}_j)$$
-sInt (μ, r, s)

$$=\bigvee\{\rho\in I^X\,|\,\mu\geq\rho,\,\rho\text{ is }(\mathcal{T}_i,\,\mathcal{T}_j)\text{-fuzzy }(r,\,s)\text{-semiopen}\}.$$

Lemma 2.5 [5]. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then the following statements are equivalent:

- (1) μ is a (T_i, T_j) -fuzzy (r, s)-semiopen set.
- (2) μ^c is a (T_i, T_j) -fuzzy (r, s)-semiclosed set.
- (3) $\mu \leq T_i \text{Cl}(T_i \text{Int}(\mu, r), s)$.
- (4) \mathcal{T}_{j} -Int $(\mathcal{T}_{i}$ -Cl $(\mu^{c}, r), s) \leq \mu^{c}$.

Definition 2.6 [6]. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

- (1) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set if $\mu \leq \mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\mu, s), r)$,
- (2) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preclosed set if \mathcal{T}_i -Cl $(\mathcal{T}_j$ -Int $(\mu, s), r) \leq \mu$.

Definition 2.7 [6]. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a smooth bitopological space. For each $r, s \in I_0$ and for each $\mu \in I^X$, the $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preclosure is defined by

$$(\mathcal{T}_i, \mathcal{T}_j)$$
-pCl(μ, r, s)

$$= \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \, \rho \text{ is } (\mathcal{T}_i, \, \mathcal{T}_j) \text{-fuzzy } (r, \, s) \text{-preclosed} \}$$

and the (T_i, T_j) -fuzzy (r, s)-preinterior is defined by

$$(\mathcal{T}_i, \mathcal{T}_i)$$
-pInt(μ, r, s)

=
$$\bigvee \{ \rho \in I^X \mid \mu \geq \rho, \rho \text{ is } (\mathcal{T}_i, \mathcal{T}_i) \text{-fuzzy } (r, s) \text{-preopen} \}.$$

Definition 2.8 [5, 6]. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to a smooth bitopological space Y and $r, s \in I_0$. Then f is said to be

- (1) a fuzzy pairwise (r, s)-continuous mapping if the induced mapping $f: (X, \mathcal{T}_1) \to (Y, \mathcal{U}_1)$ is a fuzzy r-continuous mapping and the induced mapping $f(X, \mathcal{T}_2) \to (Y, \mathcal{U}_2)$ is a fuzzy s-continuous mapping,
- (2) a fuzzy pairwise (r, s)-semicontinuous mapping if $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-semiopen set of X for each \mathcal{U}_1 -fuzzy r-open set μ of Y and $f^{-1}(v)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)-semiopen set of X for each \mathcal{U}_2 -fuzzy s-open set v of Y,
- (3) a fuzzy pairwise (r, s)-precontinuous mapping if $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preopen set of X for each \mathcal{U}_1 -fuzzy r-open set μ of Y and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)-preopen set of X for each \mathcal{U}_2 -fuzzy s-open set ν of Y.

3. Fuzzy Pairwise Almost (r, s)-continuous, Fuzzy Pairwise Almost (r, s)-open and Fuzzy Pairwise Almost (r, s)-closed Mappings

Definition 3.1. Let μ be a fuzzy set in a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

(1)
$$(\mathcal{T}_i, \mathcal{T}_j)$$
-fuzzy (r, s) -regular open if \mathcal{T}_i -Int $(\mathcal{T}_i$ -Cl $(\mu, s), r) = \mu$,

(2)
$$(\mathcal{T}_i, \mathcal{T}_i)$$
-fuzzy (r, s) -regular closed if \mathcal{T}_i -Cl $(\mathcal{T}_i$ -Int $(\mu, s), r) = \mu$.

Theorem 3.2. Let μ be a fuzzy set in a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular open if and only if μ^c is $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular closed.

Proof. It follows from Lemma 2.2.

Theorem 3.3. (1) The intersection of two $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular open sets is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular open set.

(2) The union of two $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular closed sets is a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy (r, s)-regular closed set.

Proof. (1) Let μ and ρ be any $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular open sets in a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. Then μ and ρ are \mathcal{T}_i -fuzzy r-open sets and hence $\mathcal{T}_i(\mu \wedge \rho) \geq \mathcal{T}_i(\mu) \wedge \mathcal{T}_i(\rho) \geq r$. Thus $\mu \wedge \rho$ is a \mathcal{T}_i -fuzzy r-open set. Since $\mu \wedge \rho \leq \mathcal{T}_i$ -Cl $(\mu \wedge \rho, s)$,

$$\mathcal{T}_i$$
-Int $(\mathcal{T}_i$ -Cl $(\mu \wedge \rho, s), r) \geq \mathcal{T}_i$ -Int $(\mu \wedge \rho, r) = \mu \wedge \rho$.

Now, $\mu \wedge \rho \leq \mu$ and $\mu \wedge \rho \leq \rho$ imply

$$\mathcal{T}_i$$
-Int $(\mathcal{T}_i$ -Cl $(\mu \wedge \rho, s), r) \leq \mathcal{T}_i$ -Int $(\mathcal{T}_i$ -Cl $(\mu, s), r) = \mu$

and

$$\mathcal{T}_i$$
-Int $(\mathcal{T}_i$ -Cl $(\mu \wedge \rho, s), r) \leq \mathcal{T}_i$ -Int $(\mathcal{T}_i$ -Cl $(\rho, s), r) = \rho$.

Thus \mathcal{T}_i -Int $(\mathcal{T}_i$ -Cl $(\mu \wedge \rho, s), r) \leq \mu \wedge \rho$. Therefore

$$\mathcal{T}_i$$
-Int(\mathcal{T}_i -Cl($\mu \wedge \rho, s$), r) = $\mu \wedge \rho$

and hence $\mu \wedge \rho$ is a (T_i, T_j) -fuzzy (r, s)-regular open set.

(2) Let μ and ρ be any $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular closed sets in a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. Then μ and ρ are \mathcal{T}_i -fuzzy r-closed sets and hence μ^c and ρ^c are \mathcal{T}_i -fuzzy r-open sets. So, $\mathcal{T}_i((\mu \vee \rho)^c) = \mathcal{T}_i(\mu^c \wedge \rho^c) \geq \mathcal{T}_i(\mu^c) \wedge \mathcal{T}_i(\rho^c) \geq r$ and hence $\mu \vee \rho$ is a \mathcal{T}_i -fuzzy r-closed set. Since \mathcal{T}_i -Int $(\mu \vee \rho, s) \leq \mu \vee \rho$,

$$\mathcal{T}_i$$
-Cl $(\mathcal{T}_i$ -Int $(\mu \vee \rho, s), r) \leq \mathcal{T}_i$ -Cl $(\mu \vee \rho, r) = \mu \vee \rho$.

Now, $\mu \lor \rho \ge \mu$ and $\mu \lor \rho \ge \rho$ imply

$$\mathcal{T}_i$$
-Cl $(\mathcal{T}_j$ -Int $(\mu \vee \rho, s), r) \ge \mathcal{T}_i$ -Cl $(\mathcal{T}_j$ -Int $(\mu, s), r) = \mu$

and

$$\mathcal{T}_i$$
-Cl(\mathcal{T}_i -Int($\mu \vee \rho, s$), r) $\geq \mathcal{T}_i$ -Cl(\mathcal{T}_i -Int(ρ, s), r) = ρ .

Thus \mathcal{T}_i -Cl $(\mathcal{T}_i$ -Int $(\mu \vee \rho, s), r) \geq \mu \vee \rho$. Therefore

$$\mathcal{T}_i$$
-Cl(\mathcal{T}_i -Int($\mu \vee \rho, s$), r) = $\mu \vee \rho$

and hence $\mu \vee \rho$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular closed set.

Theorem 3.4. (1) The \mathcal{T}_i -fuzzy r-interior of \mathcal{T}_j -fuzzy s-closed set is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular open set.

(2) The \mathcal{T}_i -fuzzy r-closure of \mathcal{T}_j -fuzzy s-open set is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular closed set.

Proof. (1) Let μ be a \mathcal{T}_j -fuzzy s-closed set in a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. Then clearly \mathcal{T}_j -Cl $(\mathcal{T}_i$ -Int $(\mu, r), s) \ge \mathcal{T}_i$ -Int (μ, r) implies that

$$\begin{split} \mathcal{T}_i\text{-}\mathrm{Int}(\mathcal{T}_j\text{-}\mathrm{Cl}(\mathcal{T}_i\text{-}\mathrm{Int}(\mu,\,r),\,s),\,r) &\geq \mathcal{T}_i\text{-}\mathrm{Int}(\mathcal{T}_i\text{-}\mathrm{Int}(\mu,\,r),\,r) \\ &= \mathcal{T}_i\text{-}\mathrm{Int}(\mu,\,r). \end{split}$$

Since μ is a \mathcal{T}_j -fuzzy s-closed set, $\mu = \mathcal{T}_j$ -Cl (μ, s) . Also since \mathcal{T}_i -Int (μ, r) $\leq \mu$, \mathcal{T}_j -Cl $(\mathcal{T}_i$ -Int (μ, r) , $s) \leq \mathcal{T}_j$ -Cl $(\mu, s) = \mu$. Thus

$$\mathcal{T}_i\text{-}\mathrm{Int}(\mathcal{T}_j\text{-}\mathrm{Cl}(\mathcal{T}_i\text{-}\mathrm{Int}(\mu,\,r),\,s),\,r)\leq \mathcal{T}_i\text{-}\mathrm{Int}(\mu,\,r).$$

Therefore

$$\mathcal{T}_i$$
-Int(μ , r) = \mathcal{T}_i -Int(\mathcal{T}_i -Cl(\mathcal{T}_i -Int(μ , r), s), r)

and hence \mathcal{T}_i -Int(μ , r) is a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy (r, s)-regular open set.

(2) Let ρ be a \mathcal{T}_j -fuzzy s-open set in a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. Then clearly \mathcal{T}_j -Int $(\mathcal{T}_i$ -Cl $(\rho, r), s) \leq \mathcal{T}_i$ -Cl (ρ, r) implies that

$$\begin{split} \mathcal{T}_i\text{-}\mathrm{Cl}(\mathcal{T}_j\text{-}\mathrm{Int}(\mathcal{T}_i\text{-}\mathrm{Cl}(\rho,\,r),\,s),\,r) &\leq \mathcal{T}_i\text{-}\mathrm{Cl}(\mathcal{T}_i\text{-}\mathrm{Cl}(\rho,\,r),\,r) \\ &= \mathcal{T}_i\text{-}\mathrm{Cl}(\rho,\,r). \end{split}$$

Since ρ is a \mathcal{T}_j -fuzzy s-open set, $\rho = \mathcal{T}_j$ -Int (ρ, s) . Also since $\rho \leq \mathcal{T}_i$ -Cl (ρ, r) , $\rho = \mathcal{T}_j$ -Int $(\rho, s) \leq \mathcal{T}_j$ -Int $(\mathcal{T}_i$ -Cl (ρ, r) , s). Thus

$$\mathcal{T}_i$$
-Cl(ρ , r) $\leq \mathcal{T}_i$ -Cl(\mathcal{T}_i -Int(\mathcal{T}_i -Cl(ρ , r), s), r).

Therefore

$$\mathcal{T}_i$$
-Cl(ρ , r) = \mathcal{T}_i -Cl(\mathcal{T}_i -Int(\mathcal{T}_i -Cl(ρ , r), s), r)

and hence \mathcal{T}_i -Cl(ρ , r) is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular closed set.

Definition 3.5. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from a smooth bitopological space X to a smooth bitopological space Y and $r,s\in I_0$. Then f is called

- (1) a fuzzy pairwise almost (r, s)-continuous mapping if $f^{-1}(\mu)$ is a \mathcal{T}_i -fuzzy r-open set of X for each $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-regular open set μ of Y,
- (2) a fuzzy pairwise almost (r, s)-open mapping if $f(\rho)$ is a \mathcal{U}_i -fuzzy r-open set of Y for each $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular open set ρ of X,
- (3) a fuzzy pairwise almost (r, s)-closed mapping if $f(\rho)$ is a \mathcal{U}_i -fuzzy r-closed set of Y for each $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular closed set ρ of X.

Theorem 3.6. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy pairwise almost (r, s)-continuous mapping.
- $(2) \quad f^{-1}(\mu) \leq \mathcal{T}_i \text{-} \mathrm{Int}(f^{-1}(\mathcal{U}_i \text{-} \mathrm{Int}(\mathcal{U}_j \text{-} \mathrm{Cl}(\mu,\, s),\, r)),\, r) \quad \text{for each} \quad \mathcal{U}_i \text{-} \text{fuzzy}$ $r\text{-} open \, \, set \, \, \mu \, \, of \, \, Y.$
- (3) \mathcal{T}_i -Cl $(f^{-1}(\mathcal{U}_i$ -Cl $(\mathcal{U}_j$ -Int $(\mu, s), r)), r) \leq f^{-1}(\mu)$ for each \mathcal{U}_i -fuzzy r-closed set μ of Y.

Proof. (1) \Rightarrow (2) Let f be a fuzzy pairwise almost (r, s)-continuous mapping and μ be a \mathcal{U}_i -fuzzy r-open set of Y. Since μ is \mathcal{U}_i -fuzzy r-open and $\mu \leq \mathcal{U}_i$ -Cl (μ, s) ,

$$\mu = \mathcal{U}_i \operatorname{-Int}(\mu, r) \leq \mathcal{U}_i \operatorname{-Int}(\mathcal{U}_i \operatorname{-Cl}(\mu, s), r).$$

By Theorem 3.4(1), \mathcal{U}_i -Int(\mathcal{U}_j -Cl(μ , s), r) is a (\mathcal{U}_i , \mathcal{U}_j)-fuzzy (r, s)-regular open set of Y. Since f is a fuzzy pairwise almost (r, s)-continuous mapping, $f^{-1}(\mathcal{U}_i$ -Int(\mathcal{U}_j -Cl(μ , s), r)) is a \mathcal{T}_i -fuzzy r-open set of X. Hence

$$\begin{split} f^{-1}(\mu) &\leq f^{-1}(\mathcal{U}_i\text{-}\mathrm{Int}(\mathcal{U}_j\text{-}\mathrm{Cl}(\mu,\,s),\,r)) \\ &= \mathcal{T}_i\text{-}\mathrm{Int}(f^{-1}(\mathcal{U}_i\text{-}\mathrm{Int}(\mathcal{U}_j\text{-}\mathrm{Cl}(\mu,\,s),\,r)),\,r). \end{split}$$

(2) \Rightarrow (3) Let μ be a \mathcal{U}_i -fuzzy r-closed set of Y. Then μ^c is a \mathcal{U}_i -fuzzy r-open set of Y. By (2),

$$f^{-1}(\mu^c) \leq \mathcal{T}_i \operatorname{-Int}(f^{-1}(\mathcal{U}_i \operatorname{-Int}(\mathcal{U}_i \operatorname{-Cl}(\mu^c, s), r)), r).$$

Hence

$$\begin{split} f^{-1}(\mu) &= (f^{-1}(\mu^c))^c \, \geq (\mathcal{T}_i\text{-}\mathrm{Int}(f^{-1}(\mathcal{U}_i\text{-}\mathrm{Int}(\mathcal{U}_j\text{-}\mathrm{Cl}(\mu^c,\,s),\,r)),\,r))^c \\ &= \mathcal{T}_i\text{-}\mathrm{Cl}(f^{-1}(\mathcal{U}_i\text{-}\mathrm{Cl}(\mathcal{U}_j\text{-}\mathrm{Int}(\mu,\,s),\,r)),\,r). \end{split}$$

(3) \Rightarrow (1) Let μ be a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-regular open set of Y. Then $\mu = \mathcal{U}_i\text{-Int}(\mathcal{U}_j\text{-Cl}(\mu, s), r). \text{ Since } \mu^c \text{ is a } (\mathcal{U}_i, \mathcal{U}_j)\text{-fuzzy } (r, s)\text{-regular closed set of } Y, \mu^c \text{ is a } \mathcal{U}_i\text{-fuzzy } r\text{-closed set of } Y. \text{ By (3),}$

$$\mathcal{T}_i\text{-}\mathrm{Cl}(f^{-1}(\mathcal{U}_i\text{-}\mathrm{Cl}(\mathcal{U}_i\text{-}\mathrm{Int}(\mu^c,\,s),\,r)),\,r)\leq f^{-1}(\mu^c).$$

Hence

$$\begin{split} f^{-1}(\mathbf{\mu}) &= (f^{-1}(\mathbf{\mu}^c))^c \leq (\mathcal{T}_i\text{-}\mathrm{Cl}(f^{-1}(\mathcal{U}_i\text{-}\mathrm{Cl}(\mathcal{U}_j\text{-}\mathrm{Int}(\mathbf{\mu}^c,\,s),\,r)),\,r))^c \\ &= \mathcal{T}_i\text{-}\mathrm{Int}(f^{-1}(\mathcal{U}_i\text{-}\mathrm{Int}(\mathcal{U}_j\text{-}\mathrm{Cl}(\mathbf{\mu},\,s),\,r)),\,r) \\ &= \mathcal{T}_i\text{-}\mathrm{Int}(f^{-1}(\mathbf{\mu}),\,r) \\ &\leq f^{-1}(\mathbf{\mu}). \end{split}$$

Thus $f^{-1}(\mu) = \mathcal{T}_i$ -Int $(f^{-1}(\mu), r)$ and hence $f^{-1}(\mu)$ is a \mathcal{T}_i -fuzzy r-open set of X. Therefore f is a fuzzy pairwise almost (r, s)-continuous mapping. \square

Theorem 3.7. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping and $r,s\in I_0$. Then f is a fuzzy pairwise almost (r,s)-open mapping if and only if $f(\mathcal{T}_i\text{-Int}(\rho,r))\leq \mathcal{U}_i\text{-Int}(f(\rho),r)$ for each $(\mathcal{T}_j,\mathcal{T}_i)$ -fuzzy (s,r)-semiclosed set ρ of X.

Proof. Let f be a fuzzy pairwise almost (r, s)-open mapping and ρ be a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy (s, r)-semiclosed set of X. Then

$$\mathcal{T}_i$$
-Int $(\rho, r) \leq \mathcal{T}_i$ -Int $(\mathcal{T}_i$ -Cl $(\rho, s), r) \leq \rho$.

Note that \mathcal{T}_j -Cl(ρ , s) is a \mathcal{T}_j -fuzzy s-closed set of X. By Theorem 3.4(1), \mathcal{T}_i -Int(\mathcal{T}_j -Cl(ρ , s), r) is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular open set of X. Since f is a fuzzy pairwise almost (r, s)-open mapping, $f(\mathcal{T}_i$ -Int(\mathcal{T}_j -Cl(ρ , s), r)) is a \mathcal{U}_i -fuzzy r-open set of Y. Thus we have

$$\begin{split} f(\mathcal{T}_i\text{-}\mathrm{Int}(\rho,\,r)) &\leq f(\mathcal{T}_i\text{-}\mathrm{Int}(\mathcal{T}_j\text{-}\mathrm{Cl}(\rho,\,s),\,r)) \\ &= \,\mathcal{U}_i\text{-}\mathrm{Int}(f(\mathcal{T}_i\text{-}\mathrm{Int}(\mathcal{T}_j\text{-}\mathrm{Cl}(\rho,\,s),\,r)),\,r) \\ &\leq \,\mathcal{U}_i\text{-}\mathrm{Int}(f(\rho),\,r). \end{split}$$

Conversely, let ρ be a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-regular open set of X. Then ρ is \mathcal{T}_i -fuzzy r-open and hence \mathcal{T}_i -Int $(\rho, r) = \rho$. Since \mathcal{T}_i -Int $(\mathcal{T}_j$ -Cl $(\rho, s), r)$ = ρ , ρ is a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy (s, r)-semiclosed set of X. So,

$$f(\rho) = f(\mathcal{T}_i \operatorname{-Int}(\rho, r)) \le \mathcal{U}_i \operatorname{-Int}(f(\rho), r) \le f(\rho).$$

Thus $f(\rho) = \mathcal{U}_i$ -Int $(f(\rho), r)$ and hence $f(\rho)$ is a \mathcal{U}_i -fuzzy r-open set of Y. Therefore f is a pairwise almost (r, s)-continuous mapping.

References

- [1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: Fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [4] A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin 63 (1989), 45-66.
- [5] E. P. Lee, Pairwise semicontinuous mappings in smooth bitopological spaces, J. Fuzzy Logic and Intelligent Systems 12 (2002), 268-274.
- [6] E. P. Lee, Preopen sets in smooth bitopological spaces, Comm. Korean Math. Soc. 18 (2003), 521-532.
- [7] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- [8] S. Sampath Kumar, Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitopological spaces, Fuzzy Sets and Systems 64 (1994), 421-426.
- [9] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.