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Abstract

The object of this paper is the study of optimal control for nxn
cooperative parabolic systems through Neumann conditions. We first
prove the existence of solutions for these systems and then we discuss
the optimal control of boundary type for these systems. Our considered
systems involve parabolic operators with an infinite number of variables
and also with variable coefficients.

Introduction

Some optimal control problems for systems governed by parabolic
operators are introduced in [5, 12, 21]. These systems in the form

O y+A@y=finQ=R"x(T)
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where A(t) is a second order self-adjoint elliptic operator with an infinite
number of variables. The boundary control problems for such systems

governed by both elliptic and hyperbolic type operators defined on spaces
with an infinite number of variables are also discussed in [4, 6].

The corresponding distributed control problems are discussed, for
example in [10, 18, 19].

Some problems for non cooperative systems are presented in [22, 24].

Some applications for boundary control problems are introduced,
for example in [1, 11, 14] and for distributed control problems in [2, 16,
20, 23].

Using the theory of Lions [17], Brezanskii [3] and Gali et al. [8, 10],
Serag [21] studied the optimal control of distributed type for nxn
cooperative systems involving parabolic operators with an infinite
number of variables. Here, we consider the problem with control in the
boundary through Neumann conditions. We first prove the existence and
uniqueness of the state for n x n cooperative parabolic systems involving
parabolic operators with an infinite number of variables; then we find the
set of equations and inequalities that characterize the boundary control
for these systems. In section II, we introduce the problem through
homogeneous Neumann conditions and in section III, we study the
problem with non-homogeneous Neumann conditions.

I. Function spaces on R”

In this paper, we shall consider spaces of functions of infinitely many
variables (see [3-5]). For this purpose, we shall introduce the infinite

product R” = R' x R* x ., with elements (v =(x,)_, € R*, x, € R),
and we denote by dp(x) the product of measures dp(x) = p;(x;)dx;
® pg(xg)dxy ®---, defined on the o-hall of cylindrical sets in R”™

generated by the finite dimensional Borel sets, where (pg(t)),_; is a

sequence of weights such that

0 < ppt) e C*(RY), J.Rl pp(t)dt = 1.
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With respect to this measure and on R”™, with sufficiently smooth

boundary T, we construct the space L*(R™, dp(x)) of functions u(x)

which are measurable such that

, 1/2
" u "Lz(Roo’ dp(x)) = (J.Rw | ul dp(x)j < o0,

We shall set L2(R”™, dp(x)) = L2(R™).

? (R™) is a Hilbert space for the scalar product
(e )2y = [ i) dplx)

associated to the above norm. For functions which are continuously

differentiable up to the boundary I' of R™ and which vanish in a

neighborhood of «, we introduce the scalar product

(@ v) = D (D%u, D")2(p=), &)

| o<1

where D¢ is defined by

o0
a‘“‘

a _ _ }

D" = el ... xon ’ |OL| Zal
xl e xn e i:l

and the differentiation in the sense of generalized function, and after the
completion, we obtain the Sobolev space Wl(Rw). This space forms a
Hilbert space endowed with the scalar product defined in (1). The space
WY(R”) forms a positive space. We can construct negative space
W1(R™) with respect to the zero space L?(R™) and then we have the

following imbedding
WYR™) c L*(R™) = W H(R™).

Let L?(0, T; WY{(R™)) denote the space of measurable function

t — f(¢) on open interval (0, T') and the variable ¢ denotes the time.
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We assume that ¢t € (0, 7), T < © with Lebesgue measure dt on

(0, T') such that

1/2
2
O Lo,z whaey = ( I ||W1(Rm)dtj L

endowed with the scalar product

(f(©), 820, 7, wh(r*)) = _[ (F0), 8w (r=)dt,

(0,7)

which is a Hilbert space.

Analogously, we can define the spaces L?(0, T; L?>(R™)) = L*(Q) and
%0, T; W1(R™)), then we have a chain in the form

20, T; WH(R™)) c L*(0, T; I*(R™)) < L*(0, T; W(R™)),

where @ = R x (0, T') with boundary > = T x (0, T).

By Cartesian product, we have the following chain:

(L2, T; WHR™))" < (L0, T; L*(R™)" < (I7(0, T; WH(R™)".
II. Boundary Control for n x n Cooperative Homogeneous

Neumann Systems involving Parabolic Operators with an Infinite
Number of Variables

In this section, we find the necessary and sufficient condition for the
control to be optimal for the following n x n cooperative homogeneous

Neumann systems involving parabolic operators with an infinite number

of variables
dy;(x) N
S (AW)y; = Zlhij(x)yj +fi(x, ) in Q
j:
D)o 1<i<n, ™)
ov ¥

yi®, 0) = 3,i(x), x € R”, yg;(x) € L*(R”),




BOUNDARY CONTROL FOR COOPERATIVE SYSTEMS ... 139

where

(A@®)y(x) = Z W - kaock, Dy(x) + q(x, ) y(x)

o0

—Z Diy(x) + qlx, t) y(x), @)

k=1

Diy(x) =
Vpk(x/w axh

q(x, t) is a real valued function in x which is bounded and measurable on

\ka(xk9 y(x)

R” such that g(x,t)>c,0<c<1 and F =(fi, fo, ..., f,) 1s a given
function.

We assume that %;;(x) are bounded functions such that

hij(x) = 0 for all i # j, for all x, 3)
hij = hj; for all 1 < i, j < n. 4)

System (N) is called cooperative if (3) holds [7].

We have (see [21])

Theorem 1. For a given F = (f;, fo, ..., f,) € (IZ(0, T; WL(R™)))",
there exists a unique solution Y = (v, yo, ..., ¥,) € (L2(0, T; WL(R™)))"
for system (N).

Proof. We define on (L*(0, T; W}(R™)))" for each t a continuous
bilinear form n(t; Y, ®): (L2(0, T; WHR™)))* x (L2(0, T; WHR™)))* > R
by

Y=Y [ . D) Dii () dp(x)

i=1 k=1

* iznl“j.R‘” q(x, ) y;(x)d; (x)dp(x)

) ®)
i,j=1
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From (5), we have

(e Y, Y)—ZZJ | Dyyi() | dp<x>+2j a(x, 1)] 5;(x) [Pdplx)

i=1 k=1

ZI hij () y; (%) y (%) dp(x),
1,j=1

then

WY+ [ ) (o))
i,j=1

ZZI | Dyyi(x) [Pdp x)+ZJ. q(x, t)] y;(x) |Pdp(x

1=1 k=1
hence
;;IRwl Dyy;(x) [*dp(x) + ;JROO ax, )] 3:(x) [2dp(x)

=¥, 7)) j ) 300) Pty + D[ o)) (o)),
i1£]

From (3) and (4), we deduce that

S Do) Papta) Z [ ot 0] 3ie) Papta)

=1 k=1

<t Y, Y)mZ [ 1) Pty s 26D [ e o))

i<j

o 2
=t Y, Y)+ 01[2 I ;) "LZ(RDO)]
i-1

= n(t; Y, Y>+ch|| i) ©)

I2(R*)
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since

S

[Ms

J e Do) Pota) « D [ s, 0] ) Pt

~
Il
—_
>
1l
—_

NgE

- ) 2
I DR @) 7 e, * 21 EZLE] s

i=1 k=1
- N 2
: ;" DY) o + Y@L
+ cZ [ DAY G o e Zn DY@ s o

YOz gmyp + 2 DY ey

(- c)Z | DY () |

(L2(R™)"

= e Y 1 e+ € c>Z||DkY< O] P (O]

then from (6), we obtain

" Y, )+ o Y P > o Y ™

(LAR™)* (WHR™)"

Now, let ® — L(®) be a continuous linear form defined on (L?(0, T;
WH(B”))" by
n
L@) = 3 it 06:x) o),
i=1

then by Lax-Milgram lemma, there exists a unique solution

Y = (31, Y5 s ¥) € (L2(0, T; WH(R™)))" such that n(s; Y, ®) = L(®)

for all ® e (L2(0, T; WH(R™)))" and hence for system (N).
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Formulation of control problem for system (N)

The space (L?(X))" being the space of controls. For a control

w = (uy, ug, -y ) € (L}(T))", the state Y(w) = (y1(u), yo(@), - 72 w))

e (L2(0, T; W(R™)))" of the system is given by the solution of

ot

Oyi(x) | [_ D) + q(x, t)]yi(u) = Zhij(x)yj(u) +f; in @

k=1 j=1 (8

ayg—\(ft) =u;, yi(x, 0,u)=yp(x),x e R®,1<i<n
The observation equation is given by Z(u) = (z1(u), z3(w), ...., z,(w))

=Y() = (y1 (@), y2(), ..., y,(w)).

For a given Zy = (241, 242, - 2an) € (L2(Q))", the cost function is

given by

J(v) = ;II yi() - 24 | 2Q) +M ; v ||L2(Z)’ ©

where M is a positive constant.
The control problem then is to find inf J(v) over a closed convex
subset U,y of (L2(X))".

Since the cost function (9) can be written as (see [17]):

) = afv, v) = 2L0) + [ YO) - Za [ 00

where a(v, v) is a continuous coercive bilinear form and L(v) is a
continuous linear form on (L2(0, T; W (R™)))". Then using the general
theory of Lions [17], there exists a unique optimal control u € U,; such

that J(u) = inf J(v) for all v € U,y. Moreover, we have the following

theorem which gives the necessary and sufficient conditions of optimality:
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Theorem 2. Assume that (7) holds, the cost function is given by (9). A
necessary and sufficient condition for u = (uy, usg, ..., u,) € (L2(X))" to be

an optimal control is that the following equations and inequalities are
satisfied:

- = (10)

6pl_(u) =0, pi(x,T,u)=0,x e R” forall1<i<n
ov s
(P(w) + Mu, v —u) 2z 20 Vv = (v1, Vg, -, Uy) € Ugg (11)

together with (8), where P(u) = (p;(u), po(u), ..., p,(w)) is the adjoint

state.

Proof. Since

n P L
(Ps BY)(LQ(Q))n = ZJ(O T)[ D i (U) ZDkyL + Q(x t)yl Zhljy]] dt.
=1 ’ Z(Rw)

Using Green’s formula

_ i]’(o ., “—azgt(u) , yi(u)J + [—i Dip;, yi(u)J
= 2(R”)

k=1 1(R*)

+(q(x, 1) s ¥ (W) 2y ~ {Z hijpj, yi(u)] - (pi(w), w)p2(ry |dt.
j=1 I*(R”)
Hence from (4), we have

B'P(u) = B*{p1(), pa(w), ... pr(w)}

{ apl(u) [ ZDk(I)+q(x t)}pl(u) Zhlj(x)pj(u)

Jj=1
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—5172(“) ( Z 2(1) + q(x, t)]pz(u)—zhw(@l’j(”)’
k=1

Jj=1

“enle) [ Di(1) + qlx, ”} pa) =) hn,-<x>pj<u>}
k=1 j=1

Then the adjoint equation al;gu)JrB*P(u):Y(u)—Zd can be

written as the first equation in (10).

The optimal control u = (1, ug, ..., u,) € (L*(X))" is characterized

by (see [17])
n
ZJ’(u)(vi —u;) >0 Yu= (v, Vg, .., 0,) e Uy
i=1

which is equivalent to
n
Z(yi(u) = 2qi, ¥i(v) = ¥i(W)2@) + M(w;, v —u;)p2(x) = 0.
This inequality can be written as
n
Zj(o ) (i (@) = 24> (V) = yi(W)2(r=)dt + M(w;, v; —u;)p2(s) 2 0
-1

from (10)

Zj(o T[ iz { 2 DRI+ ol t)]pl

— Zhijpj, yi(U)— yl(u)J dt + M(ui, v; — ui)LQ(Z) > 0.
= *(R")

Using Green’s formula, we obtain

y pi(u), y D I)+qx t) hlj yz(v) yl(u) dt
(0,T)
=1 ’ k=1

L*(R”)



BOUNDARY CONTROL FOR COOPERATIVE SYSTEMS ... 145

_IQT{@%@’”@_%@ﬂ dt

I2(r)

0(y;(v) - yi(w))
" J(O, T)(pi(u)’ Tng(r)dt + M(u;, v; — ui)LZ(Z) > 0.

Using (8)

Z;j(o’ 7) (pi(u), U; — ui)Lz(r)dt + M(ui, v; — ui)Lz(z) >0

which is equivalent to

(P(u) + Mu, U — LL)(LZ(Z))H > 0.

II1. Non-homogeneous Neumann Problems

In this section, we study the boundary control for the following n x n

cooperative systems through non-homogeneous Neumann conditions:

83’(;535) + [—Z Dl%(f) +q(x, t)in = Zhij(x)yj + fi(x, t) in @
k=1 =

Ay;(x)

= =g, 1<i<n, D)

h3

yi(.’XJ, 0) = yO,i(x)7 X € ROO? yO,i(x) € LZ(ROO )’

where g; € Wfl/z(Z) forall1 <i < n.

With the same bilinear form defined in (5), we shall prove the
following theorem which gives the existence and uniqueness of the state
for system (D).

Theorem 3. For a given F = (i, fo, ..., f,) € (L2(0, T; W L1(R™)))",

there exists a unique solution Y = (y1, ¥g, ..., ¥,) € (L2(0, T; WY(R™)))"

for system (D).
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Proof. Let ® — L(®) be a continuous linear form defined on

(L%(0, T; WH(R™))" by
L@) = 37 [ il Obdode+ [ gibid . (12

for all @ = (¢1> ¢2> ey (I)n) € (L2(07 T; Wl(Rw)))nr g = (gb 8925 o gn)
e W)
Since (7) holds, by Lax-Milgram lemma, there exists a unique
element Y = (y1, yg, ..., ) € (L2(0, T; WY(R™)))" such that
n(t; Y, ®) = L(®) for all @ e (L2(0, T; WHR™)))". (13)

Hence Y is a solution of
o0 n
(—Z DE(I) + q(x, t)}yi = Zhij(x)yj + fi(x,t)in @ for all 1 < i < n,
k=1 =

this equation satisfies the Neumann condition. Multiplying both sides by

@ = (¢1, ¢, ..., O,) € (LZ(O, T; WHR™)))" and integrating over @, we get

Zn: i J.Q (-DR(I) + q(x, 1)) y;0;dpdt

i=1 k=1

- Zn: IQ hij(x)y j¢;dpdt = lznl: IQ f:b;dpdt.

ij=1
From (13)

n

> [ CORD)+at )it

0
1 k=

~.
Il
—_

n

- leQ hij(x)y;0;dpdt = n(t; Y, @)~ JZ gidd 2.

~.
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Using Green’s formula, we obtain
n oy;
. - b - . _ ..
n(t; Y, @) i_El J.Z = 6, d> =nt; Y, @) IZ g;0,d 2.

Hence

oy

z ov

gi . Vi=1,2 .1

Formulation of control problem for system (D)

The space (W_l/ 2(X))" is the space of controls. The state

Y() = (n (@), y2(u), oy 72 @) € (L2(0, T; WHR™))" of the system is

given by the solution of

8yé§u) + (_Z DE(I) + q(x, t)]yi(u) = Zhij(x)yj(u)+ f,in @

- = (14)
@Vaisu) = g +u;, ¥i(x, 0, u) = y9,;(x), x e R",1<i<n.

b

The observation equation is given by Z(u) = (z;(u), z9(w), ..., z,(1))
=Y(@) = (1), yo), ... yu(w).

For a given Z; = (241, 242, - 2an) € (L2(Q))", the cost function is

given by

JI(v) = Zl‘,u 3i®) = zai [y o + M_Z_lj (05, v -V (15)

where M is a positive constant.
The control problem then is to find inf J(v) over a closed convex

subset U,y of (W_l/ 2(2))". Then as in Section II, there exists a unique
optimal control u e U,y such that J(u) = infJ(v) for all v e Ug,,.

Moreover, we have
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Theorem 4. The necessary and sufficient condition for u = (u;, ug,

vy Uy) € (Wfl/Z(Z))n to be an optimal control is that the following

equations and inequalities are satisfied (10) and

(P(u), [ u)(L2(Z))n + M(u, v — u)(W—l/Q(Z))n >0
Yo = (vg, Vg, «oy Uy) € Ugy (16)

together with (14).

Proof: As in Section II, the adjoint equation is given by
—op; (1
i) , { > Din) + gt t)]pl ()~ Z i (6)p;0) = () - 245 in @

The optimal control u = (u;, uy, ..., u,) € (W_l/ 2(2))" is characterized
by (see [17])

n
ZJ’(u)(vi —u;) 20 Vv = (v, vy, ..., U,) € Uyy,
i,
which is equivalent to
n
Z(yi(u) = 2gi, ¥i() = ¥iW)2Q) + M(u;, v — w;)y-v2(x) 2 0,
this inequality can be written as
n
Zj(o 7 (vi(@) = 245, yi(v) = yi(u))LZ(Rw)dt + M(u;, v; - ui)W—l/Q(z) =0,
i-1°

from (10)
5ol

- Z hijpj, ¥i(v) - yi(u)J dt + M(u;, v; - w;)y12(5) 2 0.
= IA(R”)

Pi [—Z D(I) + qx, t)]pl
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Using Green’s formula, we obtain

3 (u g_w.‘z x_n” ()= v (u
;J.(O,T) piw) | 5 ;Dk(I)W( 1) ;hu yi(v) = y;(w) dt

I2(R®)

_I(O,T)((%g—\(ft)’yi(v)_yi(u)j dt

I2(r)
N J(o, ., (pi(u), a(yi(v)a; yi(u))j

Using (14)

L2(r)dt + M(u;, v; - ui)W‘l/Z(Z) > 0.

Z;J(O, ) (pi(u), v; — ui)L2(r)dt + M(ui, v; — ui)W_1/2(z) >0,

which is equivalent to
(P(u), U— u)(L2(z))n + M(u, U — u)(W—l/Z(Z))n >0,
therefore, we have proved.

Acknowledgement

The author would like to express her gratitude to Professor
H. M. Serag, Mathematics Department, Faculty of Science, Al-Azhar
University for suggesting the problem and critically reading the

manuscript.

References

[1] G. M. Bahaa, Boundary control for cooperative parabolic systems governed by

Schrodinger operator, Differential Equations and Control Processes 1 (2006), 79-88.

[2] G. M. Bahaa, Optimal control problems of parabolic equations with an infinite
number of variables and with equality constraints, IMA J. Math. Control Inf. 25(1)
(2008), 37-48.

[8] JU. M. Berezanskii, Self-adjointness of elliptic operator with an infinite number of
variables, Ukrain. Math. Z. 27(6) (1975), 729-742.

[4] H. A. El-Saify, Boundary control problem with an infinite number of variables, Inter.
J. Mathematics and Mathematical Science 28(1) (2001), 57-62.



150

(5]

(6]

(7

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(18]

(16]

[17]

(18]

(19]

A. H. QAMLO

H. A. El-Saify, Boundary control for the parabolic operator with an infinite number
of variables, Functional-Differential Systems and Related topics (3) (1983), 79-82.

H. A. El-Saify, Boundary control for the hyperbolic operator with an infinite number
of variables, J. Institute Mathematics and Computer Science (Computer Science
Series) 1(2) (1990), 47-51.

J. Fieckinger Pelle and H. M. Serag, Semi linear cooperative elliptic systems on R",

Rend. Mat. Appl. (Roma) 15(1) (1995), 89-108.

I. M. Gali and H. A. El Saify, Optimal control of a system governed by a self adjoint
elliptic operator with an infinite number of variables, Proceedings of the Second
International Conference on Functional Differential Systems and Related Topics,
Blazejewko, Poland, 1981, pp. 126-133.

I. M. Gali and H. A. El-Saify, Optimal control of a system governed by hyperbolic
operator with an infinite number of variables, J. Math. Anal. Appl. 85(1) (1982),
24-30.

I. M. Gali and H. M. Serag, Optimal control of cooperative elliptic systems defined on
R", J. Egypt. Math. Soc. (3) (1995), 33-39.

M. H. Hassan and H. M. Serag, Boundary control of quasi static problem with
viscous boundary conditions, Indian J. Pure and Appl. Math. 31(7) (2000), 767-772.

W. Kotarski, Optimal control of a system governed by a parabolic equation with an
infinite number of variables, J. Optimization Theory and Applications (60) (1989),
33-41.

W. Kotarski, Optimal control of a system governed by a parabolic equation with an
infinite number of variables and time delay, J. Optimization Theory and

Applications (63) (1989), 91-101.

W. Kotarski and H. A. El-Saify, Optimality of the boundary control problem for
n x n parabolic lag system, J. Math. Anal. Appl. (319) (2006), 61-73.

W. Kotarski, H. A. El-Saify and G. Bahaa, Optimal control of parabolic equation with
an infinite number of variables for non standard functional and time delay, IMA J.

Mathematical Control and Information 19(4) (2002), 461-476.

W. Kotarski, H. A. El-Saify and M. A. Shehata, Time optimal control of parabolic lag
system with infinite variables, J. Egyptian Mathematical Society 15 (2007).

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,
Springer-Verlag, Band 170 (1971).

H. M. Serag, On optimal control for elliptic systems with variable coefficients, Rev.
Mat. Appl. 19 (1998), 37-41.

H. M. Serag, Distributed control for cooperative systems governed by Schrodinger
operator, J. Discrete Math. Sci. Cryptography 3(3-4) (2000), 227-234.



(20]

(21]

(22]

(23]

(24]

BOUNDARY CONTROL FOR COOPERATIVE SYSTEMS ... 151

H. M. Serag, Optimal control of systems involving Schrodinger operators, Inter. dJ.
Control and Intelligent Systems, Canada 32(3) (2004), 154-157.

H. M. Serag, Distributed control for cooperative systems involving parabolic
operators with an infinite number of variables, IMA J. of Math. Control and Inf. 24
(2007), 149-161.

H. M. Serag and A. H. Qamlo, Boundary control for non-cooperative elliptic systems,
Advances in Modeling and Analysis 38(3) (2001), 31-42.

H. M. Serag and A. H. Qamlo, On elliptic systems involving Schrodinger operators,
Mediterranean J. Measurement and Control, United Kingdom 1(2) (2005), 91-96.

H. M. Serag and A. H. Qamlo, Maximum principle and existence of solutions for non
necessarily cooperative systems involving Schrodinger operators, Math. Slovaca
58(5) (2008), 567-580.



