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Abstract 

This paper deals with bifurcations and spurious solutions using 
numerical methods. The mechanism by which the presence of spurious 
numerical solutions degrades the numerical approximation of an 
attractor of the underlying system in higher dimensions is studied. 

1. Introduction  

It is well known that a numerical method does not always produce 
the same asymptotic behaviour as the underlying differential equation 
for fixed values of the time-step. The asymptotic behaviour of a 
dynamical system is given by its ω-limit sets. For a numerical method to 
reproduce the correct asymptotic behaviour of a dynamical system, it is 
essential that the limit-t∆ω  sets of the numerical method be close to the 

corresponding limit-ω  sets of the differential equation. If the limit sets of 

the underlying system and its numerical approximation are different, 
then clearly so will be the dynamics of the two systems. 
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The simplest limit-ω  sets are fixed points. Iserles [6] showed that 
Runge-Kutta and linear multistep retain all the equilibria of 

( ) ( ) dyyyfy R∈== 00,  (1.1) 

as fixed points. However, some Runge-Kutta methods (but not linear 
multistep methods), may generate additional fixed points which do not 
correspond to equilibria of the given dynamical system. These additional 
fixed points are referred to as spurious fixed points and are introduced by 
temporal discretization studied in Iserles [6] and analyzed further in 
Hairer, Iserles and Sanz-Serna [4], where it was shown that any explicit 
Runge-Kutta method other than Forward Euler can produce spurious 
fixed points. 

If the numerical approximation produces spurious fixed points, then 
the asymptotic behaviour of the numerical solution will differ from the 
asymptotic behaviour of the underlying system, at least for certain initial 
conditions. Some numerical methods including Runge-Kutta methods 
also admit spurious period two solutions. 

Let us give an example of how a spurious solution can occur using a 
Runge-Kutta method 
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to approximate a differential equation. We compare the set of steady 
states ε of the general IVP (1.1) with the set of fixed points t∆ε  of its 
numerical approximation. 

Example 1.1. Let the differential equation 

,0,
1 2 >ρ
+

ρ−=
y

yy  (1.4) 

be approximated by the two stage first order explicit Runge-Kutta 
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method 

( ).,1 nnnn yxtfyy ∆+=+  (1.5) 

The problem allows a single genuine equilibrium solution { },0=ε  

whereas for the numerical method it follows that ∗
+ == yyy nn 1  if 

( ( )).∗∗∗∗ ∆+∆+= ytfytfyy  
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where the two additional fixed points of the numerical method are 
spurious fixed points. 

Remark. Note in Example 1.1 if we linearize about the fixed point of 
(1.4), then we find that ρ=∆ 1t  is the linear stability limit of the method 

and so the bifurcation occurs from the linear stability limit. 

The linear stability function ( )zR  as well as the set S given by 

( ) ( ) s
T zAIzbzR I11 −−+=  (1.7) 

and 
( ){ }1: ≤∈= zRzS C  (1.8) 

respectively are important tools in the analysis of the so-called spurious 
solutions of (1.3) which do not correspond to solutions of the underlying 
system. 

The spurious fixed points in Example 1.1 can be shown to be stable; 
thus, there will be a basin of attraction and for such initial conditions, 
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the numerical method produces incorrect asymptotic behaviour. 
Moreover, since such numerical solutions are often smooth, they may not 
be recognized at first sight as spurious. 

In general, if the spurious solutions are stable, then they may attract 
a large set of initial conditions, and hence the numerical approximation is 
no longer an “approximation” to the underlying system over long time 
intervals. 

Furthermore, several authors [5-8] claim that unstable spurious 
solutions are also undesirable because the unstable manifold of the 
spurious solution is often connected to infinity, allowing unbounded 
numerical solutions and preventing the numerical solution from having 
an attractor. If this happens, then the structure of the underlying system 
will be lost. However, this claim is usually illustrated by means of 
one-dimensional examples. We will also illustrate this claim by 
considering a one-dimensional example and investigate the validity of 
this claim in higher dimensions by studying the Lorenz equations. 

Remark. In general, if the numerical method admits spurious fixed 
points or period two solutions, then the limit-ω  sets of the underlying 

system and the numerical approximation will not correspond and for 
certain initial conditions, the numerical solution will display false 
asymptotic behaviour. 

In this work, we will study the mechanism by which the presence of 
spurious numerical solutions degrades the numerical approximation of 
an attractor of the underlying system. We consider a one-dimensional 
example, where it is shown that the unstable manifold of the spurious 
solution is connected to infinity, thus allowing unbounded numerical 
solutions and preventing the numerical solution from having an attractor. 

We will then extend our analysis to a three-dimensional problem. 
This will provide the basis for our study of the mechanism by which 
spurious solutions generated by Runge-Kutta methods and which 
bifurcates at the linear stability limit result in the destruction of the 
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attractor. In particular, we study the behaviour of the numerical 
approximation generated by an explicit second order Runge-Kutta 
method to the Lorenz equations 
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with parameter values chosen such that .38,10 ==σ b  Initially, we 

consider the case .8=r  We will show that for step-sizes close to the 
linear stability limit, the unstable manifold of the spurious fixed point is 
not connected to infinity. However, for larger step-sizes, this unstable 
manifold is connected to infinity and there are numerical solutions in an 
unstable manifold of the origin which go close to the spurious solution 
and then follow its unstable manifold to infinity. Hence, the presence of a 
spurious solution with its unstable manifold connected to infinity 
destroys the numerical attractor. 

2. Fixed Point Bifurcation for a Runge-Kutta Method 

Often spurious solutions bifurcate from the linear stability limit (see 
Example 2.1 and [1, 2]). This should not be a surprise since a stable fixed 
point loses its stability at the linear stability limit and we should expect 
bifurcation to occur. It should be noted that spurious solutions can persist 
for arbitrarily small step-sizes t∆  and hence incorrect asymptotic 
behaviour of the dynamical system can occur at step-sizes used in 
practical implementation. 

We are interested in the mechanism by which the presence of 
spurious numerical solutions degrades the numerical approximation to 
an attractor of the underlying system. 

Example 2.1. Consider the initial value problem 

( ) ( ) ,0,3 R∈+−= yyyy  (2.1) 

where a numerical approximation is obtained using the Runge’s second 
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order method 
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From (2.2) for a fixed point of the Runge’s method 

( ) .02 =Yf  (2.3) 

Thus, if 1+= nn yy  is a fixed point of the numerical method (2.2), 

then 2Y  is a fixed point of the dynamical system (2.1). One possibility is 

that ,21 Yyy nn == +  however, it is also possible for spurious fixed points 
to occur as we will now demonstrate. The origin is the only fixed point of 
(2.1), { },0=ε  since ( ) ,00 =f  and f is strictly monotonic in y. Thus, 

( ) ,02 =Yf  if and only if .02 =Y  Hence, if the numerical approximation 

(2.2) admits a spurious solution with ,1
∗

+ == yyy nn  then we must have 

02 =Y  and hence 
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12120 2 ytyyftyY  
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Now, 0=∗y  is not a surprise because 0 is also a fixed point of the 
dynamical system (2.1), so must be a fixed point for the method. For 

,21
2

ty ∆+−=∗  we obtain the solution we have already if .2=∆t  
Bifurcation occurs at this step-size, where spurious solutions bifurcate 
from the trivial solution and for 2<∆t  yields additional spurious 
solutions. In this example, the bifurcation where the spurious solution 
bifurcates is known as a pitchfork bifurcation (see [9]) because of the 
shape of the graph, e.g., Figure 1. In Figure 1, the set of fixed points and 
spurious fixed point solutions for the initial value problem (2.1) are 
plotted. As ,0→∆t  then the spurious solution tends to infinity. 
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Figure 1. Spurious solutions for the one dimensional Problem (2.1). 

Note that in Example 2.1, spurious solutions are generated in 
spurious bifurcations at the linear stability limit of the numerical method 
at the genuine fixed point. In general, as in the example, these spurious 
solutions may exist for t∆  arbitrarily small but as 0→∆t  they become 
unbounded (see [5] for further details and the references therein). 

Now, we consider a three-dimensional problem. Let the Lorenz 
equations be defined by (1.9), and let us investigate the behaviour of the 
numerical approximation generated again by an explicit second order 
Runge-Kutta method given by (2.2). The parameter values are chosen 
such that 38,10 ==σ b  and initially we will consider .8=r  With this 

choice of parameters, the fixed points of the system given by 

{ ( ) ( ( ) ( ) )}1,1,1:,0,0,0:0 −−±−±=ε=ε=ε −+ rrbrb  
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and linearising (1.9) about the origin, we obtain the following eigenvalues 
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with the corresponding eigenvectors as calculated in MATLAB 

,512.41 =λ      ( ) ,0823.0567.01
Tv −−=  

,667.22 −=λ    ( ) ,1002
Tv =  

,512.153 −=λ  ( ) .0483.0876.03
Tv −=  (2.4) 

Spurious fixed points will bifurcate from the origin at the linear 
stability limit in each of the directions corresponding to a negative 
eigenvalue. Since ,023 <λ<λ  the bifurcation in the 3v  direction occurs 
at a smaller step-size ( )12892.0~2 3 −λ−=∆t  than the 2v  bifurcation 
( ),44321.0~2 2 −λ−=∆t  hence it is the 3λ  bifurcation in which we will 
be interested. 

For Runge’s method (2.2) at a fixed point, we have nn yy =+1  and so 
(2.3) is satisfied. Hence, 2Y  must be a fixed point of the dynamical 
system. Thus, if ny  is a fixed point of Runge’s method, then 

( ),22 nn yftyY ∆+=  

where 2Y  is a fixed point of the dynamical system. 

Now, we are interested in the branch of spurious solutions which 
bifurcate from the origin at the linear stability limit. At the linear 
stability limit, the spurious fixed point coincides with the fixed point of 
the dynamical system and so ( ).0,0,0211 ==== + YYyy nn  As we 
follow this branch of spurious solutions by varying 11, Yyyt nn ==∆ +  
will vary continuously with .t∆  But, since ( )0,0,02 =Y  at the 
bifurcation point and by (2.3), ( ) 02 =Yf  for all ,t∆  it follows that 

( )0,0,02 =Y  for all ,t∆  since ( )0,0,0  is an isolated fixed point of the 

dynamical system. Thus, if ( )∗∗∗∗ = 321 ,, yyyy  is a fixed point of (2.2), then 
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and 
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Since we are looking for bifurcations at the origin, then at 

( ) ( )0,0,0,,1289.0704017011 321 =≈+−=∆ ∗∗∗ yyyt  and we obtain a 
spurious fixed point which bifurcates from the origin. Note that these 
solutions exist only for ,704017011 +−≥∆t  since for 

,704017011 +−<∆t  then .021135 2 <−∆+∆ tt  Finally, it should 

also be noted that as ( ) ∞→∆→∆ ∗ tyt 1,51  and so the spurious solution 
becomes unbounded. 

3. Numerical Investigation of the Effect of the Spurious 
Solution on a Numerical Method 

In this section, we present some numerical simulations. These results 
provide the basis for a study of the mechanism by which the spurious 
solutions generated using Runge’s method (2.2) and which bifurcate at 
the linear stability limit result in the destruction of the attractor. We are 
particularly interested in whether the unstable manifold of the spurious 
solutions are unbounded and whether this destroys the numerical 
attractors. 

We will see that a numerical approximation to the attractor persists 
for step-sizes above the linear stability limit at which the spurious fixed 
points exist, because the unstable manifolds of these spurious fixed 
points are connected to the genuine non-zero fixed points of the Lorenz 
equations (1.9). However, for larger step-sizes, the unstable manifolds of 
the spurious solutions are connected to infinity as is the (numerical) 
unstable manifolds of the fixed point at the origin. Thus, there is no 
numerical attractor. 
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Note that there is a one-dimensional unstable manifold at the origin 
for the Lorenz equations (1.9), and if we use a step-size larger than the 
bifurcation point ( ),1289.0>∆t  the numerical approximation has a 
two-dimensional unstable manifold, whose linear unstable manifold is 
the span of 1v  (the linear unstable manifold of the origin for the Lorenz 

equations) and 3v  (which becomes unstable in the bifurcation at the 
linear stability limit) and hence is a plane (see [3]). 

We use Runge’s method (2.2) with step-sizes 146.0,132.0,13.0=∆t  
and initial condition 

( ) ( )( ),sincos 310 θ+θε= vvy  (3.1) 

where 1v  and 3v  are the eigenvectors defined in (2.4). Provided we 

multiply (3.1) by a small number ε, then we are close to the origin, hence 
the linear unstable manifold is close to the actual unstable manifold. 
Therefore, the initial conditions considered are close to the numerical 
unstable manifold of the origin. 

Now, using MATLAB in Figure 2(i) for step-size ,13.0=∆t  the 
spurious solutions are represented by the two circles and the unstable 
manifold of one of the spurious fixed points are plotted as dash dotted 
line. In both directions, the unstable manifolds of the spurious fixed point 
converge to the two non-zero genuine fixed points of the Lorenz equations 
(1.9). 

Next, we consider orbits of the numerical unstable manifold of the 
origin (dotted and solid lines). For initial condition close to the origin, in 
the direction of the 1v  eigenvector which is in the linear unstable 
manifold of the origin for the Lorenz equations and also in the linear 
unstable manifold for its numerical approximation, the numerical 
solution (dotted line) converges to the genuine non-zero fixed points of 
the Lorenz equations. Furthermore, taking an initial condition in the 
direction of the 3v  eigenvector which is in the linear stable manifold of 
the origin for the Lorenz equations (1.9) but which is in the linear 
unstable manifold for its numerical approximation, we see that the 
numerical solution (solid line) also converges to the genuine non-zero 
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fixed points and it does not provide a chaotic behaviour; moreover, this 
solution remains close to the previous solution throughout. 

In Figure 2(ii), the spurious solutions for a slightly larger step-size 
132.0=∆t  are represented again by the two circles, and the unstable 

manifolds of one of the spurious fixed points are plotted as dash dotted 
line in the graph. In one direction, the part of the unstable manifold 
travelling to the right at the spurious solution on the graph converges to 
the right hand non-zero fixed point. The unstable manifold travelling to 
the left of the spurious solution passes relatively close to the other non-
zero genuine fixed point but then its x and y coordinate change sign and 
it converges to the same non-zero genuine fixed point as the other half. 

Now, let us consider the numerical unstable manifold at the origin 
(dotted and solid lines). Note that the numerical unstable manifold from 
the origin is a two-dimensional set. As before, for initial conditions close 
to the origin in the direction of the 1v  eigenvector, we see similar 
behaviour as to the case of ;13.0=∆t  that the numerical solution (dotted 
line) is similar to the exact solution of the Lorenz equations and converge 
to a genuine non-zero fixed point. However, for initial conditions close to 
the origin in the direction of the 3v  eigenvector which is in the linear 
stable manifold of the origin for the dynamical system (1.9) but which is 
in the linear unstable manifold for its numerical approximation, the 
numerical solution (solid line) goes far away from the origin, and rather 
than converging to the non-zero fixed point on the side of the origin to 
which it initially travels, the x, y variables actually change sign and the 
numerical solution converges to the other genuine non-zero fixed point of 
the Lorenz equations. 

Finally, in Figure 2(iii), we increase the step-size again .146.0=∆t  
The spurious solutions are represented by the two circles, and the 
unstable manifold of one of the spurious fixed points are plotted as dash 
dotted line in the graph. In one direction, the part of the unstable 
manifold travelling to the right at the spurious solution on the graph 
converges to the right hand non-zero fixed point. However, the unstable 
manifold travelling to the left of the spurious solution becomes 
unbounded. 
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Figure 2. Numerical simulation of the Lorenz equations with 
(i) ,13.0=∆t  (ii) 132.0=∆t  and (iii) .146.0=∆t  
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Now, we consider the numerical unstable manifold at the origin 
(dotted and solid lines). As before, for initial conditions close to the origin 
in the direction of the 1v  eigenvector, we see similar behaviour as to the 

case of 13.0=∆t  and ;132.0=∆t  that the numerical solution (dotted 
line) is similar to the exact solution of the Lorenz equations and converge 
to a genuine non-zero fixed point. Then for initial condition close to the 
origin and close to the direction of the 3v  eigenvector which is in the 

linear stable manifold of the origin for the dynamical system (1.9) but 
which is in the linear unstable manifold for its numerical approximation, 
we find numerical solutions (solid lines) which go close to the spurious 
fixed point in such a way that the spurious fixed point becomes a saddle 
focus. Then follow its unstable manifold of the spurious fixed point in 
either directions. Thus, if we start near the fixed point at the origin, we 
get orbits that tend to infinity at the same time as the dynamics from the 
spurious solution does. 

4. Conclusion 

We investigated the mechanism by which the presence of spurious 
numerical solutions degrades the numerical approximation of an 
attractor of the underlying system. In particular, we studied the 
behaviour of the numerical approximation generated by an explicit 
second order Runge-Kutta method to the Lorenz equations (1.9) with 
parameter values chosen such that 38,10 ==σ b  and initially will 

consider .8=r  

We have seen that the spurious solution bifurcates at a certain 
step-size .1289.0≈∆t  Above that step-size and close to it, we see the 
numerical solution is not greatly affected by the presence of the spurious 
solution. Then the numerical attractor is destroyed in a secondary 
bifurcation at which the unstable manifold of the spurious solution is 
connected to infinity. Hence, there are numerical solutions in the 
unstable manifold of the origin which pass close to the spurious solution 
and then follow its unstable manifold to infinity. So, the presence of a 
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spurious solution with its unstable manifold connected to infinity 
destroys the numerical attractor, although there is a range of step-size 
values close to the linear stability limit for which we have the presence of 
a spurious solution but we still have a numerical attractor. 
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