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Abstract 

In this paper, we apply the homotopy-perturbation method (HPM) and 
obtain approximate analytical solutions of the coupled nonlinear 
Klein-Gordon-Schrödinger equations. The results show that HPM is very 
effective. 

1. Introduction 

It is well known that many phenomena in scientific fields can be 
described by nonlinear partial differential equations. The nonlinear 
models of real-life problems are still difficult to solve either numerically 
or theoretically. There has recently been much attention devoted to the 
search for better and more efficient solution methods for determining a 
solution, approximate or exact, analytical or numerical, to nonlinear 
models [2]. 
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Consider the coupled nonlinear Klein-Gordon-Schrödinger equations 

,02 =−+− vuutu xxt  (1) 

,0=++ uvviv xxt  (2) 

with an initial condition 

( ) ( )( ) ,sech60, 22 BxBxu =  

( ) ( )( ) ( ),tanhsech120, 22 BxBxcBxut =  

( ) ( )( ) ,sech30, 2 xieBxBxv α=  (3) 

where ,21≥B  c and α are arbitrary constants. Darwish and Fan [4] 
have been applied an algebraic method to obtain the explicit exact 
solutions for coupled Klein-Gordon-Schrödinger (KGS) equations. The 
Jacobi elliptic function expansion method has been proposed to obtain the 
solitary wave solutions for coupled KGS equations [5]. Bao and Yang [1] 
have presented efficient, unconditionally stable and accurate numerical 
methods for approximations of the Klein-Gordon-Schrödinger equations. 
Recently, Saha Ray [13] implemented the modified decomposition method 
for solving the coupled Klein-Gordon-Schrödinger equation. 

Another powerful analytical method is Homotopy-perturbation 
method (HPM), application of HPM in nonlinear problems has been 
presented by many researchers [3, 6-12, 14]. 

This paper investigates for the first time the applicability and 
effectiveness of HPM on coupled nonlinear Klein-Gordon-Schrödinger 
equations, the results prove that HPM is effective and simple than 
modified decomposition method because we do not need to calculate the 
Adomian polynomial. 

2. Solution Procedure 

First write system (1) and (2) in the operator form 

( ) ( ) ,0,11 =+ vuNuL  (4) 

( ) ( ) 0,22 =+ vuNvL  (5) 
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subject to the initial conditions (3), where tL
t

L
∂
∂=

∂

∂= 221 ,  and ,1N  

2N  are the nonlinear operators. We shall next present the solution 

approaches for (4) and (5) based on the HPM. 

2.1. Solution by HPM 

According to HPM, we construct a homotopy for (4) and (5) which 
satisfies the following relations: 

( ) ( ) ( ) ( )[ ] ,0,111011 =++− vuNpupLuLuL  (6) 

( ) ( ) ( ) ( )[ ] ,0,111022 =++− vuNpvpLvLvL  (7) 

where [ ]1,0∈p  is an embedding parameter and 21, vv  are initial 

approximateness satisfying the given conditions. It is obvious that when 
the perturbation parameter ,0=p  equations (6) and (7) become a linear 
system and when 1=p  we get the original nonlinear system. 

Let us take the initial approximations as follows: 
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2
2

10 ++++= upuppuuu  (8) 

.3
3

2
2

10 ++++= vpvppvvv  (9) 

Substituting equations (8) and (9) into equations (6) and (7) and 
arranging the coefficients of the same powers of p, we get 
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etc. We solve the above systems of equations for the unknowns iu  and iv  
...,,2,1,0=i  we obtain 

( ) ( )( ) ( )( ) ( ),tanhsech12sech6, 2222
0 BxBxctBBxBtxu −=  

( ) ( )( ) ,sech3, 2
0

xieBxBtxv α=  

( ) ( ) ( ( )( ) ( )( ) )
( )( )5
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Therefore, according to HPM the n-term approximations for the 
solutions of (6) and (7) can be expressed as 

( ) ( ) ( )∑
−

=
→

==φ
1

0
01

,,,lim,
n

k
pn txutxutx  (10) 

( ) ( ) ( )∑
−

=
→

==ϕ
1

0
01

,,,lim,
n

k
pn txvtxvtx  (11) 



JAFAR HUSNI AHMAD 386 

3. Numerical Results and Discussion 

In the present numerical experiment, equations (10) and (11) have 
been used to draw the graphs as shown in Figures (1)-(4), respectively. 

The numerical solutions of the coupled KGS equations (1)-(3) have 
been shown in Figures (1)-(4) with the help of four-term approximations 

4φ  and 4ϕ  for the series solutions of ( )txu ,  and ( ),, txv  respectively. In 

the present numerical computation we have assumed ,575.0=B  

214 2 −= Bc  and .2Bc−=α  Figures (1)-(4) have been drawn using 

the Maple software. 

4. Conclusions 

In this paper, the HPM was used for finding the solutions for the 
coupled KGS equations with initial conditions. The approximate 
solutions to the equations have been calculated by using the HPM 
without any need to a transformation techniques and linearization of the 
equations. Additionally, it does not need any discretization method to get 
numerical solutions. This method thus eliminates the difficulties and 
massive computation work. The HPM is straightforward, without 
restrictive assumptions and the components of the series solution can be 
easily computed using any mathematical symbolic package. Moreover, 
this method does not change the problem into a convenient one for the 
use of linear theory. It, therefore, provides more realistic series solutions 
that generally converge very rapidly in real physical problems. 
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(a) 

 
(b) 

Figure 1. (a) The HPM solution for ( ),, txu  (b) corresponding solution for 
( )txu ,  when .0=t  
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(a) 

 
(b) 

Figure 2. (a) The HPM solution for ( )( ),,Re txv  (b) corresponding solution 

for ( )( )txv ,Re  when .0=t  
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(a) 

 
(b) 

Figure 3. (a) The HPM solution for ( )( ),,Im txv  (b) corresponding 

solution for ( )( )txv ,Im  when .0=t  
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(a) 

 
(b) 

Figure 4. (a) The HPM solution for ( ) ,, txv  (b) corresponding solution 

for ( )txv ,  when .0=t  
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