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Abstract 

We establish a relationship between compositions of rotations with an 
angle that is an integer multiple of nπ2  about centers 110 ...,,, −nzzz  

and the discrete Fourier transform of ( ) ....,,, 110
n

nzzz C∈−  

Applications of a geometrical flavor are discussed, as well as a 
connection with quasi-random subsets of .nZ  

1. Introduction 

Let n be a positive integer and let ( ).2exp niπ=ω  The discrete Fourier 

transform nD  is the linear endomorphism of nC  which maps an n-tuple 

( ) n
nzzZ C∈= −10 ...,,  into the n-tuple ( ) ( ) ,ˆ...,,ˆˆ 10

n
nn zzZDZ C∈== −  

where 

∑
−

=

−ω=
1

0
ˆ

n

r

kr
rk zz  (1) 

for .1...,,1,0 −= nk  This is an invertible endomorphism. To invert it, 
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one can use the relation 

∑
−

=

ω=
1

0
ˆ1 n

r

kr
rk znz  (2) 

for .1...,,1,0 −= nk  Alternatively, the discrete Fourier transform can 
be viewed as a linear endomorphism of the finite dimensional Hilbert 

space ( )ZZ nL2  of complex functions defined on the ‘discrete circle’ .ZZ n  
An excellent presentation of the basic properties of the discrete Fourier 
transform can be found, for example, in the Chapter 2 of [10]. 

The discrete Fourier transform or, in its computationally-efficient 
version, the fast Fourier transform [2], [3] has numerous applications in 
areas such as fast multiplication of large integers [9], numerical methods 
in partial differential equations [6], numerical methods in difference 
equations [4], numerical optimization of integral equations [8], data 
compression, digital signal processing [7], spectral analysis, and many 
others. 

In the present paper we will derive, inspired by the Problem B4 in the 
2004 William Lowell Putnam Mathematical Competition, an interesting 
connection between the discrete Fourier transforms and plane geometry. 
It is known that the rotations together with the translations form (the 
group of) all orientation-preserving isometries, or rigid motions, of the 
Euclidean plane [5]. By using complex numbers we can write the 
equation of a plane rotation around the center ,0z  with (counterclockwise) 

angle θ as 

( ) ( ) .1 000 zezezzezw iii θθθ −+=−=−  (3) 

By using (3), a well known, but very important property of plane rotations 
can be derived: 

Theorem 1. If 110 ...,,, −nRRR  are n plane rotations with angles 

,...,,, 110 −θθθ n  respectively, then the composition 021 RRR nn −−  is 

either a rotation of angle ,110 −θ++θ+θ n  if ,2110 Zπ∉θ++θ+θ −n  

or a translation, if .2110 Zπ∈θ++θ+θ −n  
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2. Formulating the Main Problem 

We will now use Theorem 1 to formulate our main problem. Let 
110 ...,,, −nzzz  be n complex numbers, not necessarily distinct. Let us 

pick an integer k such that ,10 −≤≤ nk  and let 

k
n

kk RRR 110 ...,,, −  

be the rotations with nkπ2  around the centers ,...,,, 110 −nzzz  
respectively. According to Theorem 1, the composition 

kk
n

k
n RRR 021 −−  (4) 

is a plane translation. Let kt  be the complex number representing the 
translation vector associated to (4). We will be interested in the following 
problem: 

Problem 2. Find a meaningful algebraic relation between the n-tuple 
of centers ( )110 ...,,, −nzzz  and the n-tuple of translation vectors 

( )....,,, 110 −nttt  

Problem B4 in the 2004 William Lowell Putnam Mathematical 
Competition gives, with the above notations, 1+= mzm  for ≤≤ m0  

,1−n  and asks for .1t  

3. Discrete Fourier Transform and the Answer to 
the Main Problem 

In what follows we will show that in the transition from ( ...,,, 10 zz  
)1−nz  to ( ),...,,, 110 −nttt  the discrete Fourier transform plays an 

important role. Let ,2 nikk e π=ω=α  and let C∈z  be arbitrary. Let 0w  

be the complex point obtained after a rotation of z with nkπ2  around .0z  
Then, by (3), 

( ) .1 00 zzw α−+α=  

Next, we rotate 0w  with nkπ2  around 1z  and we will get ,1w  given by 
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( ) ,1 101 zww α−+α=  or 

( ) ( ) .11 10
2

1 zzzw α−+α−α+α=  

Further, rotating 1w  with nkπ2  around 2z  will lead to +α= 12 ww  
( ) ,1 2zα−  or 

( ) ( ) ( ) .111 210
23

2 zzzzw α−+α−α+α−α+α=  

By induction, it can be easily shown that, for ,10 −≤≤ nr  the complex 
point rw  obtained out of z after a composition of rotations with nkπ2  

around rzzz ...,,, 10  (in this order) is given by 

( ) ( ) ( ) .111 1
1

0
1

r
rrr

r zzzzw α−++α−α+α−α+α= −+  

Going through all the centers 10 ...,, −nzz  corresponds to ,1−= nr  so 

that the composition kk
n

k
n RRR 021 −−  will map z into 

( ) ( ) ( ) .111 11
2

0
1

1 −
−−

− α−++α−α+α−α+α= n
nnn

n zzzzw  (5) 

Since 1=αn  and ,kω=α  (5) represents a translation in the complex 
plane, with a vector represented by 

( ) ( ) ( ) ( )∑
−

=

−−
−

−− ωω−=++α+αα−=
1

0

1
11

2
0

1 .11
n

r

rnk
r

k
n

nn
k zzzzt  

By using the above relation together with ,1=ωn  and in conjunction 
with (1), we can rewrite kt  in terms of the discrete Fourier transform 

( ) ( )10 ˆ...,,ˆˆ
−== nn zzZDZ  of the vector of centers of rotation, =Z  

( ):...,,, 110 −nzzz  

( ) ( )∑
−

=

−−− −ω=ωωω−=
1

0
.ˆ11

n

r
k

kkr
r

kk
k zzt  (6) 

Thus, we can state our main result: 

Theorem 3. Let 110 ...,,, −nzzz  be complex numbers. For all k and r 

with ,0 k≤  ,1−≤ nr  let k
rR  be the rotation around rz  with .2 nkπ  
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Then for each k, the composition kk
n

k
n RRR 021 −−  is a translation by 

a vector represented by the complex number ( ) ,ˆ1 k
k

k zt −ω= −  where =ω  

( )niπ2exp  and ( )10 ˆ...,,ˆˆ
−= nzzZ  is the discrete Fourier transform of 

( )....,, 10 −= nzzZ  

The following examples illustrate Theorem 3 in some concrete cases. 

1. The case of n centers of rotation, equally spaced. Consider 
the special case 1+= rzr  for .10 −≤≤ nr  Then (6) becomes 

( ) ( ) ( )∑ ∑
−

= =

−−− ωω−=ω+−ω=
1

0 1
.111

n

r

n

r

krkkrk
k rrt  (7) 

From (7), and the identity 

( )
( )∑

= −

+−−
=

n

r

n
r

X
XXnXnXXrX

1
2

2

1
 

in which we set kX −ω=  with ,0≠k  we get 

( ) ( )
( )∑

=
−

−−
− =

−ω

ω−ωω−=ωω−=
n

r
k

kk
kkrk

k nnnrt
1

2

2

1
11  (8) 

for all .0≠k  Note that the case 0=k  always gives .00 =t  nt =1  is 
the answer to Problem B4 in the 2004 Putnam Exam. 

2. Centers of rotation are the vertices of a regular n-gon. Let us 
now assume that the centers of rotation are the vertices of the standard 
regular n-gon inscribed in the circle ,1=z  that is, 

r
rz ω=  (9) 

for .1...,,2,1,0 −= nr  Then 

 ( )∑
−

=

−

⎩
⎨
⎧

=

≠
=δ=ω=

1

0
1

1 .
1if,
1if,0

ˆ
n

r
k

kr
k kn

k
nz  (10) 

Thus, from (6) and (10) we get 

( ) .1 1k
k

k nt δ−ω= −  
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This has a nice geometrical meaning. Thus, for a fixed ,1≠k  if we apply 
to any complex point z, a sequence of rotations with angles nkπ2  about 

the centers 110 ...,,, −nzzz  (in this order) given by (9), we will get back to 
z. In the case ,1=k  however, the net effect of the sequence of rotations 
with angles nπ2  each about the centers ,...,,, 110 −nzzz  will be a 
translation of the form 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ π−⎟

⎠
⎞⎜

⎝
⎛ π⎟

⎠
⎞⎜

⎝
⎛ π−=−ω+= −

ninnniznzw sincossin211  (11) 

which is a point at a distance ⎟
⎠
⎞⎜

⎝
⎛ π

nn sin2  from z. Note that when ,∞→n  

the translation difference ,zw −  with w given by (11), approaches .2 iπ−  

3. Quasi-random subsets of .nZ  In this class of examples we will 
have only two distinct centers of rotation, 0 and 1. We can generate 
sequences 110 ...,,, −nzzz  of zeros and ones by using characteristic 

functions { }1,0: →χ nS Z  of subsets of :nS Z⊂  ( )rz Sr χ=  for =r  
.1...,,1,0 −n  In [1], a list of equivalent definitions of quasi-randomness 

for subsets of nS Z⊂  are provided. One of them is the ‘EXP’ criterion, 
which identifies quasi-randomness by using incomplete exponential sums 
over S with nontrivial additive characters. These need to be ‘small’ in 
order for S to be quasi-random: thus, according to the ‘EXP’ criterion, 
quasi-random subsets are precisely those satisfying 

( ) ( )∑
∈

=⎟
⎠
⎞⎜

⎝
⎛ πχ

nr
S non

irkr
Z

2exp  (12) 

for .1...,,2,1 −= nk  In the case of quasi-random subsets nS Z≠≠∅  

and sequences of centers of rotation { }1,0∈rz  defined by 1=rz  if 

Sr ∈  and 0=rz  if ,Sr ∉  (12) in conjunction with Theorem 3 implies 

that the translation vectors kt  are all ‘small’ when compared to n: 

( ) ( ) ( ) ( )∑
−

=

−− =⎟
⎠
⎞⎜

⎝
⎛ π−χ−ω=−ω=

1

0

2exp1ˆ1
n

r
S

k
k

k
k non

ikrrzt  

for all .1...,,1,0 −= nk  
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