Far East Journal of Dynamical Systems
Volume 11, Issue 1, 2009, Pages 57-64
Published online: February 23, 2009
This paper is available online at http://www.pphmj.com © 2009 Pushpa Publishing House

EXISTENCE OF POSITIVE SOLUTIONS OF SOME QUASILINEAR ELLIPTIC EQUATION

S. KHADEMLOO and G. A. AFROUZI

Department of Basic Sciences
Babol (Noushirvani) University of Technology
Babol, Iran
e-mail: s.khademloo@umz.ac.ir
Department of Mathematics
Faculty of Basic Sciences
Mazandaran University
Babolsar, Iran
e-mail: afrouzi@umz.ac.ir

Abstract

In this paper we consider the following problem: $$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda a(x) u(x)|u|^{p-2}\left(1-|u|^{\gamma}\right), & x \in \Omega, \\ \partial u / \partial n=0, & x \in \partial \Omega,\end{cases}
$$

where Ω is a smooth bounded domain in $\mathfrak{R}^{N}, 1<p<N, \lambda$ is real parameter and $\alpha(x)$ changes sign. We show that a continuum of positive solutions bifurcates out from the principal eigenvalue λ_{1} of the problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda a(x) u(x)|u|^{p-2}, & x \in \Omega, \\ \partial u / \partial n=0, & x \in \partial \Omega\end{cases}
$$

2000 Mathematics Subject Classification: 35-xx.

Keywords and phrases: the p-Laplacian, indefinite weight function, variational method, Neumann boundary value problem.

Received August 6, 2008

1. Introduction

In this paper we consider the following problem:

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u|u|^{p-2}+f(\lambda, x, u), & x \in \Omega \tag{1.1}\\ \frac{\partial u}{\partial n}=0, & x \in \partial \Omega\end{cases}
$$

where $\Omega \subseteq \mathfrak{R}^{N}$ is a smooth bounded domain, $p>1, \lambda \in \mathfrak{R}, \quad \Delta_{p} u=$ $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator and $a(x)$ may change sign on Ω. Here we say a function $a(x)$ changes sign if the measures of the sets $\{x \in \Omega ; a(x)>0\}$ and $\{x \in \Omega ; a(x)<0\}$ are both positive.

We are mainly concerned with the existence of positive solutions to (1.1) for λ in certain range.

A host of literature exists for this type of problems when $p=2$ and $f(\lambda, x, u)= \pm \lambda \alpha(x) u(1-u)$ (see [7]). In this setting, (1.1) is a reaction diffusion equation, where the real parameter $\lambda>0$ corresponds to the reciprocal of the diffusion coefficient and the unknown function u represents a relative frequency.

The bifurcation problem of type (1.1) has received extensive attention recently, and we refer to $[1,4]$ and $[5,6]$ for details.

The study of existence of positive solutions of the p-Laplacian sees great increase in number of papers published. We mention [9, 2, 3] to name a few. Loosely speaking, most references mentioned use variational methods, and as such, only the case where (in essence) $a(x)<0, \lambda>0$ and $f(|\lambda|, x,|u|)>0$ was studied thoroughly, and their methods break down when $a(x)$ changes sign.

We show, however, that, when $a(x)$ changes sign, the variational method proves the existence of a positive solution for a special range of λ in the case p-Laplacian.

Our method relies on the eigencurve theory developed in [2, 3]. It turns out that the sign of the integral $\int_{\Omega} a$ plays an important role for the range of λ for which (1.1) has a positive solution.

In the next section we prove our main results via a series of theorems.

2. Some Existence Results

We study the existence of positive solutions and bifurcation of the problem

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u|u|^{p-2}\left(1+|u|^{\gamma}\right), & x \in \Omega \tag{2.1}\\ \frac{\partial u}{\partial n}=0, & x \in \partial \Omega\end{cases}
$$

We first introduce some basic assumptions and notations which we will need in this paper.

We assume first that $p>1, a(x)$ is a smooth weight function which changes sign on Ω. We study the influence of the function $\alpha(x)$ on the existence of positive solutions of (2.1).

Consider the eigenvalue problem

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u|u|^{p-2}+\mu u|u|^{p-2}, & x \in \Omega \tag{2.2}\\ \frac{\partial u}{\partial n}=0, & x \in \partial \Omega\end{cases}
$$

where we treat the eigenvalue μ associated with a positive eigenfunction as a function of λ.

By taking

$$
S_{\lambda}=\left\{\int_{\Omega}|\nabla u|^{p}-\lambda \int_{\Omega} a|u|^{p} ; u \in W^{1, p}(\Omega), \int_{\Omega}|u|^{p}=1\right\}
$$

it can be shown that $\mu(\lambda)=\inf S_{\lambda}$ and that an eigenfunction corresponding to $\mu(\lambda)$ does not change sign on Ω. Thus, clearly, λ is a principal eigenvalue of the problem

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u|u|^{p-2}, & x \in \Omega \tag{2.3}\\ \frac{\partial u}{\partial n}=0, & x \in \partial \Omega\end{cases}
$$

if and only if $\mu(\lambda)=0$.

Now we can establish the following proposition.
Proposition 1. Assume that $a \in L^{\infty}(\Omega)$. Then $\mu(\lambda)$ is a continuous and concave function of λ and $\mu(0)=0$. If $a(x)>0$, then $\mu(\lambda)$ is decreasing, and if $a(x)<0$, then $\mu(\lambda)$ is increasing. Assume, now, that $a(x)$ changes sign in Ω :
(i) If $\int_{\Omega} a(x) d x<0$, then there exists a unique $\lambda_{1}^{+}>0$ such that $\mu\left(\lambda_{1}^{+}\right)=0$ and $\mu(\lambda)>0$ for $\lambda \in\left(0, \lambda_{1}^{+}\right)$.
(ii) $\int_{\Omega} a(x) d x=0$, then $\mu(0)=0$ and $\mu(\lambda)<0$ if $\lambda \neq 0$.
(iii) If $\int_{\Omega} a(x) d x>0$, then there exists a unique $\lambda_{1}^{-}<0$ such that $\mu\left(\lambda_{1}^{-}\right)=0$ and $\mu(\lambda)>0$ for $\lambda \in\left(\lambda_{1}^{-}(0), 0\right)($ see $[2,3,8])$.

Remark 1. It follows from this proposition that when $a(x)$ changes sign and $\int_{\Omega} a(x)<0$, the eigenvalue problem

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u(x)|u|^{p-2}, & x \in \Omega \\ \partial u / \partial n=0, & x \in \partial \Omega\end{cases}
$$

has a positive eigenvalue λ_{1}^{+}associated with a positive eigenfunction.
Remark 2. It is easy to see that if λ_{1}^{-}and λ_{1}^{+}exist, then $\mu(\lambda)>0$ for all $\lambda \in\left(\lambda_{1}^{-}, \lambda_{1}^{+}\right)$. With these constructions, we have

Theorem 1. Assume that $a(x)$ changes sign and $\int_{\Omega} a(x) \neq 0$. Then for any λ strictly between λ_{1}^{-}and λ_{1}^{+}, the relation

$$
\|u\|_{\lambda}:=\left(\int_{\Omega}\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)\right)^{\frac{1}{p}}
$$

defines an equivalent norm on $W^{1, p}(\Omega)$.

Proof. We first prove that $\|u\|_{\lambda}$ is a norm and then show the equivalence property. It is easy to see that $\|u\|_{\lambda}$ is induced by the bilinear form

$$
\langle u, v\rangle_{\lambda}=\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \nabla v-\lambda a|u|^{p-2} u v\right)
$$

Since λ is strictly between λ_{1}^{-}and λ_{1}^{+}, it follows that

$$
\langle u, u\rangle=\int_{\Omega}\left(|\nabla u|^{p}-\lambda a|u|^{p}\right) \geq \mu(\lambda) \int_{\Omega}|u|^{p}>0
$$

for all $u \in W^{1, p}(\Omega)-0$ and so $\langle u, v\rangle_{\lambda}$ induces a norm of the form $\|u\|_{\lambda}$.
To see the equivalence of the norms, suppose the contrary. Then there exists $u_{n} \in W^{1, p}(\Omega)$ such that $\left\|u_{n}\right\|=1$ and

$$
\int_{\Omega}\left(\left|\nabla u_{n}\right|^{p}-\lambda a\left|u_{n}\right|^{p}\right) d x \rightarrow 0
$$

The variational characterization of $\mu(\lambda)$ gives

$$
\left\|u_{n}\right\|_{\lambda} \geq \mu(\lambda) \int_{\Omega}\left|u_{n}\right|^{p}
$$

Since $\lambda_{1}^{-}<\lambda<\lambda_{1}^{+}$, it follows that $\mu(\lambda)>0$ so $u_{n} \rightarrow 0$ in $L^{p}(\Omega)$. This implies $\int_{\Omega} a\left|u_{n}\right|^{p} \rightarrow 0$ and since

$$
\lim _{n \rightarrow \infty}\left[\int_{\Omega}\left(\left|\nabla u_{n}\right|^{p}-\lambda a\left|u_{n}\right|^{p}\right)\right]=0
$$

we have $\int_{\Omega}\left|\nabla u_{n}\right|^{p} \rightarrow 0$. This contradicts the fact that $\left\|u_{n}\right\|=1$ and so the theorem is proved.

Now we can state our main results.
We define the functional I_{λ} and J on the space $W^{1, p}(\Omega)$ by

$$
I_{\lambda}(u)=\frac{1}{p} \int_{\Omega}\left(|\nabla u|^{p}-\lambda a|u|^{p}\right) \text { and } J(u)=\frac{1}{p+\gamma} \int_{\Omega} a|u|^{p+\gamma} .
$$

Note that $I_{\lambda}(u)+\lambda_{J} J(u)$ is the natural energy functional associated with the problem (2.1), that is bounded neither above nor below.

We set

$$
\begin{aligned}
M & =\left\{u \in W^{1, p}(\Omega) ;\left(\lambda J^{\prime}(u), u\right)=-1\right\} \\
& =\left\{u \in W^{1, p}(\Omega) ; \lambda \int_{\Omega} a|u|^{p+\gamma}=-1\right\} .
\end{aligned}
$$

Since $a(x)$ is a sign changing function, there exists an open subset B of Ω such that $a(x)<0$ on B. Then taking $u \in W^{1, p}(\Omega)$ with $\operatorname{Supp} u \subseteq B$, we get $M \neq \varnothing$.

Moreover, as $L^{p+\gamma}(\Omega)$ may be embedded compactly in $W^{1, p}(\Omega), M$ is weakly closed in $W^{1, p}(\Omega)$.

Now using the homogeneity of (2.1), a solution of the equation (2.1) can also be obtained by solving a constrained minimization problem for the functional

$$
F_{\lambda}(u)=\int_{\Omega}\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)=\frac{1}{p}\|u\|_{\lambda}^{p}
$$

on the $W^{1, p}(\Omega)$, restricted to the set M.
It is easy to see that F_{λ} is sequentially weakly lower semicontinuous and Theorem 1 shows that F_{λ} is coercive. It follows (see [10, Theorem 1.2]) that F_{λ} is bounded from below on M and attains its infimum on M.

Suppose that F_{λ} assumes its infimum at $u_{\lambda} \in M$. Then $\left|u_{\lambda}\right| \in M$ and $F_{\lambda}\left(u_{\lambda}\right)=F_{\lambda}\left(\left|u_{\lambda}\right|\right)$. Thus we may assume that $u_{\lambda} \geq 0$ on Ω.

By the Lagrange multiplier rule there exists a parameter $u \in \mathfrak{R}$ such that

$$
\left(F_{\lambda}^{\prime}(u), v\right)=\mu\left(J^{\prime}(u), v\right)
$$

for all $v \in W^{1, p}(\Omega)$, i.e.,

$$
\int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p-2} \nabla u_{\lambda} \nabla v-\lambda a\left|u_{\lambda}\right|^{p-2} u_{\lambda} v\right)+\mu \lambda \int_{\Omega} a\left|u_{\lambda}\right|^{p+\gamma-2} u_{\lambda} v,
$$

for all $v \in W^{1, p}(\Omega)$.
Setting $v=u_{\lambda}$, above gives

$$
\int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p}-\lambda a\left|u_{\lambda}\right|^{p}\right)+\mu \lambda \int_{\Omega} a\left|u_{\lambda}\right|^{p+\gamma} d x=0,
$$

i.e.,

$$
\left\|u_{\lambda}\right\|_{\lambda}^{p}=-\mu \lambda \int_{\Omega} a\left|u_{\lambda}\right|^{p+\gamma}=\mu(p+\gamma) .
$$

Since $u_{\lambda} \in M$ cannot vanish identically, $\left\|u_{\lambda}\right\|_{\lambda}>0$ and so $\mu>0$. Scaling with a suitable power of μ, we obtain a weak solution $u=\mu^{\gamma^{-1}} u_{\lambda}$ $\in W^{1, p}(\Omega)$ of (2.1) in the sense that

$$
\mu^{-\frac{p-1}{\gamma}}\left[\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \nabla v-\lambda a|u|^{p-2} u v\right)\right]+\mu \mu^{-\frac{p+\gamma-1}{\gamma}} \lambda \int_{\Omega} a|u|^{p+\gamma-2} u v=0,
$$

i.e.,

$$
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \nabla v-\lambda a|u|^{p-2} u v+\lambda a|u|^{p+\gamma-2} u v\right)=0
$$

for all $v \in W^{1, p}(\Omega)$.
It follows from standard regularity arguments that $u \in C^{2}(\Omega)$ is a classical solution satisfying the appropriate boundary condition, and finally by the maximum principle $u>0$ on Ω.

So we have proved the following.
Theorem 2. Assume that $\alpha(x)$ changes sign and $\int_{\Omega} \alpha(x) \neq 0$. Then for any nonzero λ strictly between λ_{1}^{-}and λ_{1}^{+}, the problem (2.1) has a positive solution, provided that $\lambda \neq 0$.

Remark 3. Using a similar argument, Theorem 2 can also be obtained for the case, where $f(\lambda, x, u)=-\lambda a(x)|u|^{p+\gamma-2}$ by considering the same functional I_{λ} constrained to the set $M=\left\{u \in W^{1, p}(\Omega) ;\left(\lambda J^{\prime}(u), u\right)\right.$ $=1\}$.

In this case the Lagrange multiplier $\mu<0$ and the change of variable $(-\mu)^{1 / \gamma} u_{\lambda}$ is required.

References

[1] P. A. Binding and Y. X. Huang, Bifurcation from eigencurves of the p-Laplacian, Differential Integral Equations 8 (1995), 415-428.
[2] P. A. Binding and Y. X. Huang, Two parameter problems for the p-Laplacian, Proc. First Int. Cong. Nonl. Analysts, V. Lakshmikantham, ed., Walter de Gruyter, New York, 1996, pp. 891-900.
[3] P. A. Binding and Y. X. Huang, The principal eigencurve for the p-Laplacian, Differential Integral Equations 8 (1995), 405-414.
[4] M. A. Del Pino and R. Manasevich, Global bifurcation from the eigenvalue of the p-Laplacian, J. Differential Equations 92 (1991), 226-251.
[5] P. Drábek, On the global bifurcation for a class of degenerate equations, Ann. Mat. Pure Appl. (4) 159 (1991), 1-16.
[6] P. Drábek, Solvability and bifurcations of nonlinear equations, Pitman Research Notes in Mathematics Series, 264, Longman, Harlow, 1992.
[7] W. H. Fleming, A selection-migration model in population genetics, J. Math. Biol. 2 (1975), 219-233.
[8] Y. X. Huang, On eigenvalue problems for the p-Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990), 177-184.
[9] Y. Kabeya, On some quasilinear elliptic problems involving critical Sobolev exponents, Funkcial. Ekvac. 36 (1993), 385-404.
[10] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelburg, 1996.

