

EXISTENCE OF POSITIVE SOLUTIONS OF SOME QUASILINEAR ELLIPTIC EQUATION

S. KHADEMLOO and G. A. AFROUZI

Department of Basic Sciences
Babol (Noushirvani) University of Technology
Babol, Iran
e-mail: s.khademloo@umz.ac.ir

Department of Mathematics Faculty of Basic Sciences Mazandaran University Babolsar, Iran

e-mail: afrouzi@umz.ac.ir

Abstract

In this paper we consider the following problem:

$$\begin{cases} -\mathrm{div}(\mid \nabla u\mid ^{p-2}\nabla u) = \lambda a(x)u(x)\mid u\mid ^{p-2}(1-\mid u\mid ^{\gamma}), & x\in\Omega,\\ \partial u/\partial n=0, & x\in\partial\Omega. \end{cases}$$

where Ω is a smooth bounded domain in \Re^N , $1 , <math>\lambda$ is real parameter and a(x) changes sign. We show that a continuum of positive solutions bifurcates out from the principal eigenvalue λ_1 of the problem

$$\begin{cases} -\text{div}(|\nabla u|^{p-2}\nabla u) = \lambda a(x)u(x)|u|^{p-2}, & x \in \Omega, \\ \partial u/\partial n = 0, & x \in \partial \Omega \end{cases}$$

2000 Mathematics Subject Classification: 35-xx.

Keywords and phrases: the p-Laplacian, indefinite weight function, variational method, Neumann boundary value problem.

Received August 6, 2008

1. Introduction

In this paper we consider the following problem:

$$\begin{cases} -\Delta_{p} u = \lambda a(x) u |u|^{p-2} + f(\lambda, x, u), & x \in \Omega, \\ \frac{\partial u}{\partial n} = 0, & x \in \partial \Omega, \end{cases}$$
 (1.1)

where $\Omega \subseteq \Re^N$ is a smooth bounded domain, p > 1, $\lambda \in \Re$, $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator and a(x) may change sign on Ω . Here we say a function a(x) changes sign if the measures of the sets $\{x \in \Omega; \ a(x) > 0\}$ and $\{x \in \Omega; \ a(x) < 0\}$ are both positive.

We are mainly concerned with the existence of positive solutions to (1.1) for λ in certain range.

A host of literature exists for this type of problems when p=2 and $f(\lambda, x, u) = \pm \lambda a(x)u(1-u)$ (see [7]). In this setting, (1.1) is a reaction diffusion equation, where the real parameter $\lambda > 0$ corresponds to the reciprocal of the diffusion coefficient and the unknown function u represents a relative frequency.

The bifurcation problem of type (1.1) has received extensive attention recently, and we refer to [1, 4] and [5, 6] for details.

The study of existence of positive solutions of the p-Laplacian sees great increase in number of papers published. We mention [9, 2, 3] to name a few. Loosely speaking, most references mentioned use variational methods, and as such, only the case where (in essence) a(x) < 0, $\lambda > 0$ and $f(|\lambda|, x, |u|) > 0$ was studied thoroughly, and their methods break down when a(x) changes sign.

We show, however, that, when a(x) changes sign, the variational method proves the existence of a positive solution for a special range of λ in the case p-Laplacian.

Our method relies on the eigencurve theory developed in [2, 3]. It turns out that the sign of the integral $\int_{\Omega} a$ plays an important role for the range of λ for which (1.1) has a positive solution.

In the next section we prove our main results via a series of theorems.

2. Some Existence Results

We study the existence of positive solutions and bifurcation of the problem

$$\begin{cases} -\Delta_{p} u = \lambda a(x) u |u|^{p-2} (1 + |u|^{\gamma}), & x \in \Omega, \\ \frac{\partial u}{\partial n} = 0, & x \in \partial \Omega. \end{cases}$$
(2.1)

We first introduce some basic assumptions and notations which we will need in this paper.

We assume first that p > 1, a(x) is a smooth weight function which changes sign on Ω . We study the influence of the function a(x) on the existence of positive solutions of (2.1).

Consider the eigenvalue problem

$$\begin{cases} -\Delta_{p}u = \lambda a(x)u|u|^{p-2} + \mu u|u|^{p-2}, & x \in \Omega, \\ \frac{\partial u}{\partial n} = 0, & x \in \partial\Omega, \end{cases}$$
 (2.2)

where we treat the eigenvalue μ associated with a positive eigenfunction as a function of λ .

By taking

$$S_{\lambda} = \left\{ \int_{\Omega} |\nabla u|^p - \lambda \int_{\Omega} a|u|^p; u \in W^{1,p}(\Omega), \int_{\Omega} |u|^p = 1 \right\}$$

it can be shown that $\mu(\lambda) = \inf S_{\lambda}$ and that an eigenfunction corresponding to $\mu(\lambda)$ does not change sign on Ω . Thus, clearly, λ is a principal eigenvalue of the problem

$$\begin{cases} -\Delta_{p}u = \lambda a(x)u |u|^{p-2}, & x \in \Omega, \\ \frac{\partial u}{\partial n} = 0, & x \in \partial\Omega, \end{cases}$$
 (2.3)

if and only if $\mu(\lambda) = 0$.

Now we can establish the following proposition.

Proposition 1. Assume that $a \in L^{\infty}(\Omega)$. Then $\mu(\lambda)$ is a continuous and concave function of λ and $\mu(0) = 0$. If a(x) > 0, then $\mu(\lambda)$ is decreasing, and if a(x) < 0, then $\mu(\lambda)$ is increasing. Assume, now, that a(x) changes sign in Ω :

- (i) If $\int_{\Omega} a(x)dx < 0$, then there exists a unique $\lambda_1^+ > 0$ such that $\mu(\lambda_1^+) = 0$ and $\mu(\lambda) > 0$ for $\lambda \in (0, \lambda_1^+)$.
 - (ii) $\int_{\Omega} a(x)dx = 0$, then $\mu(0) = 0$ and $\mu(\lambda) < 0$ if $\lambda \neq 0$.
- (iii) If $\int_{\Omega} a(x)dx > 0$, then there exists a unique $\lambda_1^- < 0$ such that $\mu(\lambda_1^-) = 0$ and $\mu(\lambda) > 0$ for $\lambda \in (\lambda_1^-(0), 0)$ (see [2, 3, 8]).

Remark 1. It follows from this proposition that when a(x) changes sign and $\int_{\Omega} a(x) < 0$, the eigenvalue problem

$$\begin{cases} -\Delta_p u = \lambda a(x) u(x) |u|^{p-2}, & x \in \Omega, \\ \partial u / \partial n = 0, & x \in \partial \Omega, \end{cases}$$

has a positive eigenvalue λ_1^+ associated with a positive eigenfunction.

Remark 2. It is easy to see that if λ_1^- and λ_1^+ exist, then $\mu(\lambda) > 0$ for all $\lambda \in (\lambda_1^-, \lambda_1^+)$. With these constructions, we have

Theorem 1. Assume that a(x) changes sign and $\int_{\Omega} a(x) \neq 0$. Then for any λ strictly between λ_1^- and λ_1^+ , the relation

$$\|u\|_{\lambda} := \left(\int_{\Omega} \left(|\nabla u|^p - \lambda a|u|^p\right)\right)^{\frac{1}{p}}$$

defines an equivalent norm on $W^{1,p}(\Omega)$.

Proof. We first prove that $\|u\|_{\lambda}$ is a norm and then show the equivalence property. It is easy to see that $\|u\|_{\lambda}$ is induced by the bilinear form

$$\langle u, v \rangle_{\lambda} = \int_{\Omega} (|\nabla u|^{p-2} \nabla u \nabla v - \lambda a |u|^{p-2} uv).$$

Since λ is strictly between λ_1^- and λ_1^+ , it follows that

$$\langle u, u \rangle = \int_{\Omega} (|\nabla u|^p - \lambda a|u|^p) \ge \mu(\lambda) \int_{\Omega} |u|^p > 0$$

for all $u \in W^{1,p}(\Omega) - 0$ and so $\langle u, v \rangle_{\lambda}$ induces a norm of the form $\|u\|_{\lambda}$.

To see the equivalence of the norms, suppose the contrary. Then there exists $u_n \in W^{1,\,p}(\Omega)$ such that $\parallel u_n \parallel = 1$ and

$$\int_{\Omega} (|\nabla u_n|^p - \lambda a |u_n|^p) dx \to 0.$$

The variational characterization of $\mu(\lambda)$ gives

$$\|u_n\|_{\lambda} \geq \mu(\lambda) \int_{\Omega} |u_n|^p.$$

Since $\lambda_1^- < \lambda < \lambda_1^+$, it follows that $\mu(\lambda) > 0$ so $u_n \to 0$ in $L^p(\Omega)$. This implies $\int_{\Omega} a|u_n|^p \to 0$ and since

$$\lim_{n\to\infty} \left[\int_{\Omega} (|\nabla u_n|^p - \lambda a|u_n|^p) \right] = 0,$$

we have $\int_{\Omega} |\nabla u_n|^p \to 0$. This contradicts the fact that $||u_n|| = 1$ and so the theorem is proved.

Now we can state our main results.

We define the functional I_{λ} and J on the space $W^{1,p}(\Omega)$ by

$$I_{\lambda}(u) = \frac{1}{p} \int_{\Omega} \left(|\nabla u|^p - \lambda a |u|^p \right) \text{ and } J(u) = \frac{1}{p+\gamma} \int_{\Omega} a |u|^{p+\gamma}.$$

Note that $I_{\lambda}(u) + \lambda J(u)$ is the natural energy functional associated with the problem (2.1), that is bounded neither above nor below.

We set

$$\begin{split} M &= \{ u \in W^{1, \, p}(\Omega); \, (\lambda J'(u), \, u) = -1 \} \\ &= \left\{ u \in W^{1, \, p}(\Omega); \, \lambda \int_{\Omega} a |\, u\,|^{p + \gamma} \, = -1 \right\}. \end{split}$$

Since a(x) is a sign changing function, there exists an open subset B of Ω such that a(x) < 0 on B. Then taking $u \in W^{1,p}(\Omega)$ with $\mathrm{Supp}\, u \subseteq B$, we get $M \neq \emptyset$.

Moreover, as $L^{p+\gamma}(\Omega)$ may be embedded compactly in $W^{1,p}(\Omega)$, M is weakly closed in $W^{1,p}(\Omega)$.

Now using the homogeneity of (2.1), a solution of the equation (2.1) can also be obtained by solving a constrained minimization problem for the functional

$$F_{\lambda}(u) = \int_{\Omega} (|\nabla u|^p - \lambda a |u|^p) = \frac{1}{p} ||u||_{\lambda}^p$$

on the $W^{1,p}(\Omega)$, restricted to the set M.

It is easy to see that F_{λ} is sequentially weakly lower semicontinuous and Theorem 1 shows that F_{λ} is coercive. It follows (see [10, Theorem 1.2]) that F_{λ} is bounded from below on M and attains its infimum on M.

Suppose that F_{λ} assumes its infimum at $u_{\lambda} \in M$. Then $|u_{\lambda}| \in M$ and $F_{\lambda}(u_{\lambda}) = F_{\lambda}(|u_{\lambda}|)$. Thus we may assume that $u_{\lambda} \geq 0$ on Ω .

By the Lagrange multiplier rule there exists a parameter $u \in \Re$ such that

$$(F'_{\lambda}(u), v) = \mu(J'(u), v)$$

for all $v \in W^{1, p}(\Omega)$, i.e.,

$$\int_{\Omega} (|\nabla u_{\lambda}|^{p-2} \nabla u_{\lambda} \nabla v - \lambda a|u_{\lambda}|^{p-2} u_{\lambda} v) + \mu \lambda \int_{\Omega} a|u_{\lambda}|^{p+\gamma-2} u_{\lambda} v,$$

for all $v \in W^{1, p}(\Omega)$.

Setting $v = u_{\lambda}$, above gives

$$\int_{\Omega} (|\nabla u_{\lambda}|^{p} - \lambda a|u_{\lambda}|^{p}) + \mu \lambda \int_{\Omega} a|u_{\lambda}|^{p+\gamma} dx = 0,$$

i.e.,

$$\|u_{\lambda}\|_{\lambda}^{p} = -\mu\lambda\int_{\Omega}a|u_{\lambda}|^{p+\gamma} = \mu(p+\gamma).$$

Since $u_{\lambda} \in M$ cannot vanish identically, $\|u_{\lambda}\|_{\lambda} > 0$ and so $\mu > 0$. Scaling with a suitable power of μ , we obtain a weak solution $u = \mu^{\gamma^{-1}} u_{\lambda}$ $\in W^{1, p}(\Omega)$ of (2.1) in the sense that

$$\mu^{-\frac{p-1}{\gamma}} \left[\int_{\Omega} (|\nabla u|^{p-2} \nabla u \nabla v - \lambda a|u|^{p-2} uv) \right] + \mu \mu^{-\frac{p+\gamma-1}{\gamma}} \lambda \int_{\Omega} a|u|^{p+\gamma-2} uv = 0,$$

i.e.,

$$\int_{\Omega} \left(\left| \nabla u \right|^{p-2} \nabla u \nabla v - \lambda a \right| u \left|^{p-2} u v + \lambda a \right| u \left|^{p+\gamma-2} u v \right) = 0$$

for all $v \in W^{1, p}(\Omega)$.

It follows from standard regularity arguments that $u \in C^2(\Omega)$ is a classical solution satisfying the appropriate boundary condition, and finally by the maximum principle u > 0 on Ω .

So we have proved the following.

Theorem 2. Assume that a(x) changes sign and $\int_{\Omega} a(x) \neq 0$. Then for any nonzero λ strictly between λ_1^- and λ_1^+ , the problem (2.1) has a positive solution, provided that $\lambda \neq 0$.

Remark 3. Using a similar argument, Theorem 2 can also be obtained for the case, where $f(\lambda, x, u) = -\lambda a(x) |u|^{p+\gamma-2}$ by considering the same functional I_{λ} constrained to the set $M = \{u \in W^{1,p}(\Omega); (\lambda J'(u), u) = 1\}.$

In this case the Lagrange multiplier $\mu < 0$ and the change of variable $(-\mu)^{1/\gamma}u_{\lambda}$ is required.

References

- [1] P. A. Binding and Y. X. Huang, Bifurcation from eigencurves of the *p*-Laplacian, Differential Integral Equations 8 (1995), 415-428.
- [2] P. A. Binding and Y. X. Huang, Two parameter problems for the p-Laplacian, Proc. First Int. Cong. Nonl. Analysts, V. Lakshmikantham, ed., Walter de Gruyter, New York, 1996, pp. 891-900.
- [3] P. A. Binding and Y. X. Huang, The principal eigencurve for the *p*-Laplacian, Differential Integral Equations 8 (1995), 405-414.
- [4] M. A. Del Pino and R. Manasevich, Global bifurcation from the eigenvalue of the p-Laplacian, J. Differential Equations 92 (1991), 226-251.
- [5] P. Drábek, On the global bifurcation for a class of degenerate equations, Ann. Mat. Pure Appl. (4) 159 (1991), 1-16.
- [6] P. Drábek, Solvability and bifurcations of nonlinear equations, Pitman Research Notes in Mathematics Series, 264, Longman, Harlow, 1992.
- [7] W. H. Fleming, A selection-migration model in population genetics, J. Math. Biol. 2 (1975), 219-233.
- [8] Y. X. Huang, On eigenvalue problems for the p-Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990), 177-184.
- [9] Y. Kabeya, On some quasilinear elliptic problems involving critical Sobolev exponents, Funkcial. Ekvac. 36 (1993), 385-404.
- [10] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelburg, 1996.