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Abstract 

In this paper we consider the following problem: 
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where Ω is a smooth bounded domain in ,Nℜ  ,1 Np <<  λ is real 

parameter and ( )xa  changes sign. We show that a continuum of positive 

solutions bifurcates out from the principal eigenvalue 1λ  of the problem 
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1. Introduction 

In this paper we consider the following problem: 
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 (1.1) 

where Nℜ⊆Ω  is a smooth bounded domain, ,1>p  ,ℜ∈λ  =∆ up  

( )uu p ∇∇ −2div  is the p-Laplacian operator and ( )xa  may change sign 

on Ω. Here we say a function ( )xa  changes sign if the measures of the 

sets ( ){ }0; >Ω∈ xax  and ( ){ }0; <Ω∈ xax  are both positive. 

We are mainly concerned with the existence of positive solutions to 
(1.1) for λ in certain range. 

A host of literature exists for this type of problems when 2=p  and 

( ) ( ) ( )uuxauxf −λ±=λ 1,,  (see [7]). In this setting, (1.1) is a reaction 

diffusion equation, where the real parameter 0>λ  corresponds to the 

reciprocal of the diffusion coefficient and the unknown function u 
represents a relative frequency. 

The bifurcation problem of type (1.1) has received extensive attention 
recently, and we refer to [1, 4] and [5, 6] for details. 

The study of existence of positive solutions of the p-Laplacian sees 
great increase in number of papers published. We mention [9, 2, 3]                     
to name a few. Loosely speaking, most references mentioned use 
variational methods, and as such, only the case where (in essence) 
( ) ,0<xa  0>λ  and ( ) 0,, >λ uxf  was studied thoroughly, and their 

methods break down when ( )xa  changes sign. 

We show, however, that, when ( )xa  changes sign, the variational 

method proves the existence of a positive solution for a special range of λ 
in the case p-Laplacian. 

Our method relies on the eigencurve theory developed in [2, 3]. It 

turns out that the sign of the integral ∫Ω a  plays an important role for 

the range of λ for which (1.1) has a positive solution. 
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In the next section we prove our main results via a series of theorems. 

2. Some Existence Results 

We study the existence of positive solutions and bifurcation of the 

problem 
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 (2.1) 

We first introduce some basic assumptions and notations which we will 

need in this paper. 

We assume first that ,1>p  ( )xa  is a smooth weight function which 

changes sign on Ω. We study the influence of the function ( )xa  on the 

existence of positive solutions of (2.1). 

Consider the eigenvalue problem 
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where we treat the eigenvalue µ associated with a positive eigenfunction 

as a function of λ. 

By taking 

( )



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
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λ 1,; ,1 pppp uWuuauS  

it can be shown that ( ) λ=λµ Sinf  and that an eigenfunction corresponding 

to ( )λµ  does not change sign on Ω. Thus, clearly, λ is a principal 

eigenvalue of the problem 
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if and only if ( ) .0=λµ  
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Now we can establish the following proposition. 

Proposition 1. Assume that ( ).Ω∈ ∞La  Then ( )λµ  is a continuous 

and concave function of λ and ( ) .00 =µ  If ( ) ,0>xa  then ( )λµ  is 

decreasing, and if ( ) ,0<xa  then ( )λµ  is increasing. Assume, now, that 

( )xa  changes sign in Ω: 

  (i) If ( )∫Ω < ,0dxxa  then there exists a unique 01 >λ+  such that 

( ) 01 =λµ +  and ( ) 0>λµ  for ( ).,0 1
+λ∈λ  

 (ii) ( )∫ Ω = ,0dxxa  then ( ) 00 =µ  and ( ) 0<λµ  if .0≠λ  

(iii) If ( )∫ Ω > ,0dxxa  then there exists a unique 01 <λ−  such that 

( ) 01 =λµ −  and ( ) 0>λµ  for ( ( ) )0,01
−λ∈λ  (see [2, 3, 8]). 

Remark 1. It follows from this proposition that when ( )xa  changes 

sign and ( )∫ Ω < ,0xa  the eigenvalue problem 

( ) ( )

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
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has a positive eigenvalue +λ1  associated with a positive eigenfunction. 

Remark 2. It is easy to see that if −λ1  and +λ1  exist, then ( ) 0>λµ  for 

all ( )., 11
+− λλ∈λ  With these constructions, we have 

Theorem 1. Assume that ( )xa  changes sign and ( )∫ Ω ≠ .0xa  Then 

for any λ strictly between −λ1  and ,1
+λ  the relation 

( ) ppp uauu

1

: 






 λ−∇= ∫Ωλ  

defines an equivalent norm on ( ).,1 ΩpW  
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Proof. We first prove that λu  is a norm and then show the 

equivalence property. It is easy to see that λu  is induced by the 

bilinear form 

( )∫Ω
−−

λ λ−∇∇∇= ., 22 uvuavuuvu pp  

Since λ is strictly between −λ1  and ,1
+λ  it follows that 

( ) ( )∫ ∫Ω Ω
>λµ≥λ−∇= 0, ppp uuauuu  

for all ( ) 0,1 −Ω∈ pWu  and so λvu,  induces a norm of the form .λu  

To see the equivalence of the norms, suppose the contrary. Then there 

exists ( )Ω∈ p
n Wu ,1  such that 1=nu  and 

( )∫Ω →λ−∇ .0dxuau p
n

p
n  

The variational characterization of ( )λµ  gives 

( ) ∫Ωλ λµ≥ .p
nn uu  

Since ,11
+− λ<λ<λ  it follows that ( ) 0>λµ  so 0→nu  in ( ).ΩpL  This 

implies ∫Ω → 0p
nua  and since 

( ) ,0lim =




 λ−∇∫Ω∞→
p

n
p

nn
uau  

we have ∫Ω →∇ .0p
nu  This contradicts the fact that 1=nu  and so 

the theorem is proved. � 

Now we can state our main results. 

We define the functional λI  and J on the space ( )ΩpW ,1  by 

( ) ( )∫Ωλ λ−∇= pp uau
p

uI 1  and ( ) ∫Ω
γ+

γ+
= .1 pua

p
uJ  
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Note that ( ) ( )uJuI λ+λ  is the natural energy functional associated with 

the problem (2.1), that is bounded neither above nor below. 

We set 

{ ( ) ( )( ) }1,;,1 −=′λΩ∈= uuJWuM p  

( ) .1;,1







 −=λΩ∈= ∫Ω

γ+pp uaWu  

Since ( )xa  is a sign changing function, there exists an open subset B of   

Ω such that ( ) 0<xa  on B. Then taking ( )Ω∈ pWu ,1  with ,Supp Bu ⊆  

we get .∅≠M  

Moreover, as ( )Ωγ+pL  may be embedded compactly in ( ),,1 ΩpW  M is 

weakly closed in ( ).,1 ΩpW  

Now using the homogeneity of (2.1), a solution of the equation (2.1) 

can also be obtained by solving a constrained minimization problem for 

the functional 

( ) ( )∫Ω λλ =λ−∇= ppp u
p

uauuF 1  

on the ( ),,1 ΩpW  restricted to the set M. 

It is easy to see that λF  is sequentially weakly lower semicontinuous 

and Theorem 1 shows that λF  is coercive. It follows (see [10, Theorem 

1.2]) that λF  is bounded from below on M and attains its infimum on M. 

Suppose that λF  assumes its infimum at .Mu ∈λ  Then Mu ∈λ  

and ( ) ( ).λλλλ = uFuF  Thus we may assume that 0≥λu  on Ω. 

By the Lagrange multiplier rule there exists a parameter ℜ∈u  such 

that 

( )( ) ( )( )vuJvuF ,, ′µ=′λ  
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for all ( ),,1 Ω∈ pWv  i.e., 

( )∫ ∫Ω Ω
λ

−γ+
λλ

−
λλ

−
λ µλ+λ−∇∇∇ ,222 vuuavuuavuu ppp  

for all ( ).,1 Ω∈ pWv  

Setting ,λ= uv  above gives 

( )∫ ∫Ω Ω

γ+
λλλ =µλ+λ−∇ ,0dxuauau ppp  

i.e., 

( )∫Ω
γ+

λλλ γ+µ=µλ−= .puau pp  

Since Mu ∈λ  cannot vanish identically, 0>λλu  and so .0>µ  

Scaling with a suitable power of µ, we obtain a weak solution λ
γ−µ= uu

1
 

( )Ω∈ pW ,1  of (2.1) in the sense that 

( ) ∫∫ Ω

−γ+γ
−γ+−

Ω

−−γ
−−

=λµµ+




 λ−∇∇∇µ ,02
1

22
1

uvuauvuavuu p
p

pp
p

 

i.e., 

( )∫Ω
−γ+−− =λ+λ−∇∇∇ 0222 uvuauvuavuu ppp  

for all ( ).,1 Ω∈ pWv  

It follows from standard regularity arguments that ( )Ω∈ 2Cu  is a 

classical solution satisfying the appropriate boundary condition, and 

finally by the maximum principle 0>u  on Ω. 

So we have proved the following. 

Theorem 2. Assume that ( )xa  changes sign and ( )∫Ω ≠ .0xa  Then 

for any nonzero λ strictly between −λ1  and ,1
+λ  the problem (2.1) has a 

positive solution, provided that .0≠λ  
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Remark 3. Using a similar argument, Theorem 2 can also be 

obtained for the case, where ( ) ( ) 2,, −γ+λ−=λ puxauxf  by considering the 

same functional λI  constrained to the set { ( ) ( )( )uuJWuM p ,;,1 ′λΩ∈=  

}.1=  

 In this case the Lagrange multiplier 0<µ  and the change of 

variable ( ) λ
γµ− u1  is required. 
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