A GENERALIZATION OF THE COMPOSITION OF THE DISTRIBUTIONS $x_+^{\lambda} \ln^m x_+$ AND x_+^{μ}

B. FISHER

Department of Mathematics University of Leicester Leicester, LE1 7RH, England e-mail: fbr@le.ac.uk

Abstract

Let F be a distribution and f be a locally summable function. The neutrix composition F(f), of F and f, is defined as the neutrix limit of the sequence $\{F_n(f)\}$, where $F_n(x) = F(x) * \delta_n(x)$ and $\{\delta_n(x)\}$ is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$. It is proved that the neutrix composition of the distributions $x_+^{\lambda} \ln^m x_+$ and x_+^{μ} exists and is equal to $\mu^m x_+^{\lambda\mu} \ln^m x_+$, for $\lambda < 0$, $\mu > 0$ and λ , $\lambda\mu \neq -1$, -2,

Introduction

In the following, we let \mathcal{D} be the space of infinitely differentiable functions with compact support, $\mathcal{D}[a,b]$ be the space of infinitely differentiable functions with support contained in the interval [a,b], \mathcal{D}' be the space of distributions defined on \mathcal{D} and $\mathcal{D}'[a,b]$ be the space of distributions defined on $\mathcal{D}[a,b]$.

2000 Mathematics Subject Classification: 46F10.

Keywords and phrases: distribution, delta-function, neutrix composition of distributions, neutrix, neutrix limit.

Received July 17, 2008

We define the locally summable function $x_+^{\lambda} \ln^m x_+$ for $\lambda > -1$ and m = 0, 1, 2, ... by

$$x_{+}^{\lambda} \ln^{m} x_{+} = \begin{cases} x^{\lambda} \ln^{m} x, & x > 0, \\ 0, & x < 0. \end{cases}$$

The distribution $x_+^{\lambda} \ln^m x_+$ is then defined inductively for $\lambda < -1$, $\lambda \neq -2, -3, \dots$ and $m = 0, 1, 2, \dots$, by the equation

$$(x_+^{\lambda} \ln^{m+1} x_+)' = \lambda x_+^{\lambda-1} \ln^{m+1} x_+ + (m+1)x_+^{\lambda-1} \ln^m x_+.$$

The distribution $x_{-}^{\lambda} \ln^{m} x_{-}$ is then defined for $\lambda \neq -1, -2, ...$ and m = 0, 1, 2, ... by

$$x_{-}^{\lambda} \ln^{m} x_{-} = (-x)_{+}^{\lambda} \ln^{m} (-x)_{+}$$

and the distribution $|x|^{\lambda} \ln^m |x|$ is defined for $\lambda \neq -1, -2, ...$ and m = 0, 1, 2, ... by

$$|x|^{\lambda} \ln^{m} |x| = x_{+}^{\lambda} \ln^{m} x_{+} + x_{-}^{\lambda} \ln^{m} x_{-}.$$

It follows that if *r* is a positive integer and $-r - 1 < \lambda < -r$, then

$$\langle x_{+}^{\lambda} \ln^{m} x_{+}, \, \varphi(x) \rangle = \int_{0}^{1} x^{\lambda} \ln^{m} x \left[\varphi(x) - \sum_{k=0}^{r-1} \frac{\varphi^{(k)}(0)}{k!} x^{k} \right] dx$$

$$+ \sum_{k=0}^{r-1} \frac{(-1)^{m} m! \, \varphi^{(k)}(0)}{k! \, (\lambda + k + 1)^{m+1}}, \tag{1}$$

for an arbitrary function φ in $\mathcal{D}[-1, 1]$.

We now let N be the neutrix, see [1], having domain N' the positive integers and range N'' the real numbers, with negligible functions which are finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n, \ln^r n : \lambda > 0, r = 1, 2, ...$$

and all functions which converge to zero in the usual sense as n tends to infinity.

Now let $\rho(x)$ be an infinitely differentiable function having the following properties:

- (i) $\rho(x) = 0 \text{ for } |x| \ge 1$,
- (ii) $\rho(x) \geq 0$,
- (iii) $\rho(x) = \rho(-x)$,
- (iv) $\int_{-1}^{1} \rho(x) dx = 1$.

Putting $\delta_n(x) = n\rho(nx)$ for n = 1, 2, ..., it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.

If now f is an arbitrary distribution in \mathcal{D}' , we define

$$f_n(x) = (f * \delta_n)(x) = \langle f(t), \delta_n(x - t) \rangle$$

for n = 1, 2, It follows that $\{f_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the distribution f(x).

The following definition was given in [2] and was originally called the *composition of distributions*.

Definition 1. Let F be a distribution in \mathcal{D}' and f be a locally summable function. We say that the neutrix composition F(f(x)) exists and is equal to h on the open interval (a, b), with $-\infty < a < b < \infty$, if

$$N - \lim_{n \to \infty} \int_{-\infty}^{\infty} F_n(f(x)) \varphi(x) dx = \langle h(x), \varphi(x) \rangle$$

for all φ in $\mathcal{D}[a, b]$, where $F_n(x) = F(x) * \delta_n(x)$ for n = 1, 2, ...

In particular, we say that the composition F(f(x)) exists and is equal to h on the open interval (a, b) if

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} F_n(f(x)) \varphi(x) dx = \langle h(x), \varphi(x) \rangle$$

for all φ in $\mathcal{D}[a, b]$.

Note that taking the neutrix limit of a sequence is equivalent to taking the normal limit of Hadamard's finite part of the sequence.

The following four theorems were proved in [4], [6], [3] and [5], respectively.

Theorem 1. The neutrix composition $(x_+^r)^{-1}$ exists and

$$(x_+^r)^{-1} = x_+^{-r} + (-1)^r \frac{2c(\rho) - r\phi(r-1)}{r!} \delta^{(r-1)}(x),$$

for r = 1, 2, ..., where

$$\phi(r) = \begin{cases} \sum_{i=1}^{r} 1/i, & i \geq 1, \\ 0, & i = 0. \end{cases}$$

Theorem 2. If $F_{\lambda, m}(x)$ denotes the distribution $x_+^{\lambda} \ln^m x_+$, then the neutrix composition $F_{\lambda, m}(x_+^{\mu})$ exists and

$$F_{\lambda_- m}(x_+^{\mu}) = \mu^m x_+^{\lambda \mu} \ln^m x_+$$

for $-1<\lambda<0,\,\mu>0$ and $\lambda\mu\neq-1,\,-2,\,\dots$

Theorem 3. The distribution $(x_+^{\mu})^{-1} \ln^m |x_+^{\mu}|$ exists and

$$(x_{+}^{\mu})^{-1} \ln^{m} |x_{+}^{\mu}| = \mu^{m} x_{+}^{-\mu} \ln^{m} x_{+},$$

for $\mu > 0$, $\mu \neq 1$, 2, ... and m = 1, 2, ...

In particular, $(x^{\mu}_{+})^{-1}$ exists and

$$(x_{\perp}^{\mu})^{-1} = \mu^m x_{\perp}^{-\mu},$$

for $\mu > 0$ and $\mu \neq 1, 2, ...$

Theorem 4. If $F_m(x)$ denotes the distribution $x^{-1} \ln^m |x|$, then the distribution $F_m(x^r)$ exists and

$$F_m(x^r) = r^m x^{-r} \ln|x|,$$

for m, r = 1, 2, ...

To prove the next theorem, we need the following lemmas which can easily be proved by induction.

Lemma 1.

$$\int_{-1}^{1} u^{i} \rho^{(s)}(u) du = \begin{cases} 0, & 0 \le i < r, \\ (-1)^{s} s!, & i = r, \end{cases}$$

for s = 0, 1, 2, ...

Lemma 2.

$$\int_{1}^{n} u^{\alpha} \ln^{r} v \, dv = \frac{(-1)^{r} r! \, (1 - n^{\alpha + 1})}{(\alpha + 1)^{r+1}} + \sum_{i=0}^{r-1} \frac{(-1)^{i} r! \, n^{\alpha + 1} \ln^{r-i} n}{(r - i)! \, (\alpha + 1)^{i+1}}$$

for r = 1, 2, ...

We now prove the following generalization of Theorem 2.

Theorem 5. If $F_{\lambda,m}(x)$ denotes the distribution $x_+^{\lambda} \ln^m x_+$, then the neutrix composition $F_{\lambda,m}(x_+^{\mu})$ exists and

$$F_{\lambda,m}(x_{+}^{\mu}) = \mu^{m} x_{+}^{\lambda \mu} \ln^{m} x_{+} \tag{2}$$

for $\lambda < 0$, $\mu > 0$ and λ , $\lambda \mu \neq -1$, -2,

In particular, the composition $F_{\lambda,m}(x_+^{\mu})$ exists if $1 + \lambda \mu > 0$.

Proof. We suppose that $1 - s > \lambda > -s$ for some positive integer s. We then put $G_{\lambda, m}(x) = (x_+^{\lambda + s} \ln^m x_+)^{(s)}$ and note that $G_{\lambda, m}(x)$ is of the form

$$G_{\lambda,m}(x) = \sum_{i=0}^{m} a_{\lambda,m,i} x_{+}^{\lambda} \ln^{i} x_{+}, \qquad (3)$$

where $a_{\lambda,m,i} = 0$ if i < m - s. Since $x_+^{\lambda} \ln^i x_+$ is an infinitely differentiable function on any closed interval not containing the origin, it follows that

$$F_{\lambda,i}(x_+^{\mu}) = \mu^i x_+^{\lambda\mu} \ln^i x_+$$

and thus

$$G_{\lambda, m}(x_+^{\mu}) = \sum_{i=0}^{m} a_{\lambda, m, i} \mu^i x_+^{\lambda \mu} \ln^i x_+$$
 (4)

on any closed interval not containing the origin.

Putting

$$\begin{split} G_{\lambda,m,n}(x) &= (x_+^{\lambda+s} \ln^m x_+)^{(s)} * \delta_n(x) \\ &= \int_{-1/n}^{1/n} ((x-t)_+^{\lambda+s} \ln^m (x-t)_+) \delta_n^{(s)}(t) dt \\ &= \begin{cases} \int_{-1/n}^{1/n} (x-t)^{\lambda+s} \ln^m (x-t) \delta_n^{(s)}(t) dt, & 1/n < x, \\ \int_{-1/n}^x (x-t)^{\lambda+s} \ln^m (x-t) \delta_n^{(s)}(t) dt, & -1/n \le x \le 1/n, \\ 0, & x < -1/n, \end{cases} \end{split}$$

we have

$$G_{\lambda,m,n}(x_{+}^{\mu}) = \begin{cases} \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda+s} \ln^{m}(x^{\mu} - t) \delta_{n}^{(s)}(t) dt, & 1/n < x^{\mu}, \\ \int_{-1/n}^{x^{\mu}} (x^{\mu} - t)^{\lambda+s} \ln^{m}(x^{\mu} - t) \delta_{n}^{(s)}(t) dt, & 0 \le x^{\mu} \le 1/n, \quad (5) \\ \int_{-1/n}^{0} (-t)^{\lambda+s} \ln^{m}(-t) \delta_{n}^{(s)}(t) dt, & x < 0. \end{cases}$$

Our problem now is to evaluate

$$\int_{-1}^{1} x^{k} G_{\lambda, m, n}(x_{+}^{\mu}) dx$$

$$= \int_{0}^{n^{-1/\mu}} x^{k} \int_{-1/n}^{x^{\mu}} (x^{\mu} - t)^{\lambda + s} \ln^{m}(x^{\mu} - t) \delta_{n}^{(s)}(t) dt dx$$

$$+ \int_{n^{-1/\mu}}^{1} x^{k} \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda + s} \ln^{m}(x^{\mu} - t) \delta_{n}^{(s)}(t) dt dx$$

$$+ \int_{-1}^{0} x^{k} \int_{-1/n}^{0} (-t)^{\lambda+s} \ln^{m}(-t) \delta_{n}^{(s)}(t) dt dx$$

$$= \frac{n^{-\lambda-(k+1)/\mu}}{\mu} \int_{0}^{1} v^{(k+1)/\mu-1} \int_{-1}^{v} (v-u)^{\lambda+s} [\ln(v-u) - \ln n]^{m} \rho^{(s)}(u) du dv$$

$$+ \frac{n^{-\lambda-(k+1)/\mu}}{\mu} \int_{-1}^{1} \rho^{(s)}(u) \int_{1}^{n} v^{(k+1)/\mu-1} (v-u)^{\lambda+s} [\ln(v-u) - \ln n]^{m} dv du$$

$$+ n^{-\lambda} \int_{-1}^{0} x^{k} \int_{-1}^{0} (-u)^{\lambda} \ln^{m}(-u) \rho^{(s)}(u) du dx$$

$$= I_{1} + I_{2} + I_{3}, \qquad (6)$$

where the substitutions u = nt and $v = nx^{\mu}$ have been made.

It follows immediately that

$$N - \lim_{n \to \infty} I_1 = N - \lim_{n \to \infty} I_3 = 0 \tag{7}$$

for k = 0, 1, 2, ...

Further,

$$I_{2} = \frac{n^{-\lambda - (k+1)/\mu}}{\mu} \int_{-1}^{1} \rho^{(s)}(u) \int_{1}^{n} v^{(k+1)/\mu - 1} (v - u)^{\lambda + s}$$

$$\times \left[\ln(1 - u/v) + \ln v - \ln n \right]^{m} dv du$$

$$= \frac{n^{-\lambda - (k+1)/\mu}}{\mu} \int_{-1}^{1} \rho^{(s)}(u) \int_{1}^{n} v^{(k+1)/\mu - 1} (v - u)^{\lambda + s}$$

$$\times \left[\ln(1 - u/v) + \ln v \right]^{m} dv du + E(\ln n)$$

$$= \frac{n^{-\lambda - (k+1)/\mu}}{\mu} \sum_{i=0}^{m} {m \choose i} \int_{-1}^{1} \rho^{(s)}(u) \int_{1}^{n} v^{(k+1)/\mu + \lambda + s - 1}$$

$$\times (1 - u/v)^{\lambda + s} \ln^{i}(1 - u/v) \ln^{m-i} v dv du + E(\ln n)$$

$$= \sum_{i=0}^{m} J_{i} + E(\ln n), \tag{8}$$

where $E(\ln n)$ denotes the terms containing powers of $\ln n$ and so are negligible and the term containing $\ln^m v$ is zero, since $\int_{-1}^1 \rho^{(s)}(u) du = 0$ for s = 1, 2, ... by Lemma 1.

We note that $(1 - u/v)^{\lambda+s} \ln^i (1 - u/v)$ can be expanded in the form

$$(1 - u/v)^{\lambda + s} \ln^{i}(1 - u/v) = \sum_{p=0}^{\infty} \frac{c_{\lambda, i, p} u^{p}}{v^{p}},$$

where $c_{\lambda,i,p} = 0$ for p = 0, 1, ..., i-1 and then

$$n^{-\lambda - (k+1)/\mu} \int_{-1}^{1} \rho^{(s)}(u) \int_{1}^{n} v^{(k+1)/\mu + \lambda + s - 1} (1 - u/v)^{\lambda + s}$$

$$\times \ln^{i}(1-u/v) \ln^{m-i} v dv du$$

$$= n^{-\lambda - (k+1)/\mu} \sum_{p=0}^{\infty} c_{\lambda,i,p} \int_{-1}^{1} u^{p} \rho^{(s)}(u) \int_{1}^{n} v^{(k+1)/\mu + \lambda + s - p - 1} \ln^{m-i} v dv du$$

$$=\sum_{p=0}^{\infty} \frac{c_{\lambda,i,p}(-1)^{m-i}(m-i)! \left[n^{s-p}-n^{-\lambda-(k+1)/\mu}\right]}{\left[(k+1)/\mu+\lambda+s-p\right]^{m-i+1}} \int_{-1}^{1} u^{p} \rho^{(s)}(u) du + E(\ln n)$$

on using Lemma 2.

It follows that

$$N - \lim_{n \to \infty} J_i = 0,$$
(9)

for i = s + 1, s + 2, ... and using Lemma 1, we have

$$N - \lim_{n \to \infty} J_i = \frac{c_{\lambda, i, s} (-1)^{m+s-i} (m-i)! \, s!}{\mu [(k+1)/\mu + \lambda]^{m-i+1}} \binom{m}{i}$$
 (10)

for i = 0, 1, 2, ..., s. It then follows from equations (7) to (10) that

$$N - \lim_{n \to \infty} I_2 = \sum_{i=0}^{m} \frac{c_{\lambda, i, s} (-1)^{m+s-i} \mu^{m-i} (m-i)! \, s!}{(k+1+\lambda \mu)^{m-i+1}} \binom{m}{i}$$
(11)

for k = 0, 1, 2, ...

It now follows from equations (6), (7) and (11) that

$$N - \lim_{n \to \infty} \int_{-1}^{1} x^{k} G_{\lambda, m, n}(x_{+}^{\mu}) dx = \sum_{i=0}^{m} \frac{c_{\lambda, i, s} (-1)^{m+s-i} \mu^{m-i} (m-i)! \, s!}{(k+1+\lambda \mu)^{m-i+1}} {m \choose i}$$

$$= \sum_{i=0}^{m} \frac{c_{\lambda, m-i, s} (-1)^{s-i} \mu^{i} i! \, s!}{(k+1+\lambda \mu)^{i+1}} {m \choose i}$$
(12)

for k = 0, 1, 2, ...

Note that in particular, if $1 + \lambda \mu > 0$, then the usual limits exist in equations (9) to (12).

We now consider the case k=r, where r is chosen so that $0<\lambda\mu+r+1<1$, and let ψ be an arbitrary continuous function. Then

$$\int_{0}^{n^{-1/\mu}} x^{r} \psi(x) G_{\lambda, m, n}(x_{+}^{\mu}) dx = \frac{n^{-\lambda - (r+1)/\mu}}{\mu} \int_{0}^{1} v^{(r+1)/\mu - 1} \int_{-1}^{v} \psi[(v/n)^{1/\mu}] \times (v - u)^{\lambda + s} [\ln(v - u) - \ln n]^{m} \rho^{(s)}(u) du dv$$

and it follows that

$$\lim_{n \to \infty} \int_{0}^{n^{-1/\mu}} x^{r} \psi(x) G_{m,\lambda,n}(x_{+}^{\mu})_{n} dx = 0.$$
 (13)

When $x \leq 0$, we have

$$\int_{-1}^{0} x^{r} \psi(x) G_{m,\lambda,n}(x_{+}^{\mu})_{n} dx$$

$$= n^{-\lambda} \int_{-1}^{0} x^{r} \psi(x) \int_{-1}^{0} (-u)^{\lambda+s} [\ln(v-u) - \ln n]^{m} \rho^{(s)}(u) du dx$$

and it follows that

$$N - \lim_{n \to \infty} \int_{-1}^{0} x^{r} \psi(x) G_{m,\lambda,n}(x_{+}^{\mu})_{n} dx = 0.$$
 (14)

When $x^{\mu} \ge 1/n$, we have

$$G_{\lambda,m,n}(x_{+}^{\mu}) = \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda+s} \ln^{m}(x^{\mu} - t) \delta_{n}^{(s)}(t) dt$$

$$= n^{s} x^{\mu(\lambda+s)} \int_{-1}^{1} \left(1 - \frac{u}{nx^{\mu}} \right)^{\lambda+s} \left[\ln x^{\mu} + \ln \left(1 - \frac{u}{nx^{\mu}} \right) \right]^{m} \rho^{(s)}(u) du$$

$$= x^{\mu(\lambda+s)} \sum_{i=0}^{m} \int_{-1}^{1} {m \choose i} \ln^{i} x^{\mu} \sum_{p=0}^{\infty} \frac{c_{\lambda,m-i,p} u^{p}}{n^{p-s} x^{\mu p}} \rho^{(s)}(u) du$$

$$= (-1)^{s} s! \sum_{i=0}^{m} {m \choose i} c_{\lambda,m-i,s} \mu^{i} x^{\lambda \mu} \ln^{i} x + O(n^{-1})$$

$$(15)$$

on using Lemma 1.

Letting *n* tend to infinity, it follows that

$$G_{\lambda, m}(x^{\mu}) = (-1)^{s} s! \sum_{i=0}^{m} {m \choose i} c_{\lambda, m-i, s} \mu^{i} x^{\lambda \mu} \ln^{i} x$$
 (16)

for x > 0.

Comparing equations (4) and (16), we see that

$$a_{\lambda, m, i} = (-1)^{s} s! \binom{m}{i} c_{\lambda, m-i, s}, \tag{17}$$

for i = 0, 1, 2, ..., m.

We also see from equation (15) that

$$\left| \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda+s} \ln^m (x^{\mu} - t) \delta_n^{(s)}(t) dt \right|$$

$$\leq s! \sum_{i=0}^m {m \choose i} |c_{\lambda, m-i, s} \mu^i x^{\lambda \mu} \ln^i x| + O(n^{-1}),$$

for $x^{\mu} \geq 1/n$.

If now $n^{-1/\mu} < \eta < 1$, then

$$\int_{n^{-1/\mu}}^{\eta} x^{r} \left| \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda + s} \ln^{m}(x^{\mu} - t) \delta_{n}^{(s)}(t) dt \right| dx$$

$$\leq s! \sum_{i=0}^{m} {m \choose i} \mu^{i} |c_{\lambda, m-i, s}| \int_{n^{-1/\mu}}^{\eta} [x^{\lambda \mu + r} | \ln^{i} x | + O(n^{-1})] dx$$

$$= O(\eta^{\lambda \mu + r + 1} | \ln^{m} \eta |) + \eta O(n^{-1}).$$

It follows that

$$\lim_{n \to \infty} \int_{n^{-1/\mu}}^{\eta} x^{r} \psi(x) \left| \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda + s} \ln^{m} (x^{\mu} - t) \delta_{n}^{(s)}(t) dt \right| dx$$

$$= O(\eta^{\lambda \mu + r + 1} |\ln^{m} \eta|). \tag{18}$$

Now let $\varphi(x)$ be an arbitrary function in $\mathcal{D}[-1, 1]$. By Taylor's Theorem we have

$$\varphi(x) = \sum_{k=0}^{r-1} \frac{x^k}{k!} \, \varphi^{(k)}(0) + \frac{x^r}{r!} \, \varphi^{(r)}(\xi x),$$

where $0 < \xi < 1$. Then

$$\langle G_{\lambda, m, n}(x_{+}^{\mu}), \varphi(x) \rangle = \int_{-1}^{1} G_{\lambda, m, n}(x_{+}^{\mu}) \varphi(x) dx$$

$$= \sum_{k=0}^{r-1} \frac{\varphi^{(k)}(0)}{k!} \int_{-1}^{1} x^{k} G_{\lambda, m, n}(x_{+}^{\mu}) dx$$

$$+ \int_{\eta}^{1} \frac{x^{r}}{r!} G_{\lambda, m, n}(x_{+}^{\mu}) \varphi^{(r)}(\xi x) dx$$

$$+ \int_{n^{-1/\mu}}^{\eta} \frac{x^{r}}{r!} G_{\lambda, m, n}(x_{+}^{\mu}) \varphi^{(r)}(\xi x) dx$$

$$+ \int_{0}^{n^{-1/\mu}} \frac{x^{r}}{r!} G_{\lambda, m, n}(x_{+}^{\mu}) \varphi^{(r)}(\xi x) dx$$

$$+ \int_{-1}^{0} \frac{x^{r}}{r!} G_{\lambda, m, n}(x_{+}^{\mu}) \varphi^{(r)}(\xi x) dx.$$

Using equations (1), (11) to (14), (16) and (17), it follows that

$$\begin{split} &N - \lim_{n \to \infty} \langle G_{\lambda, m, n}(x_{+}^{\mu}), \varphi(x) \rangle \\ &= \sum_{k=0}^{r-1} \sum_{i=0}^{m} \frac{(-1)^{s-i} c_{\lambda, m-i, s} \mu^{i} i! \, s! \, \varphi^{(k)}(0)}{(k+1+\lambda \mu)^{i+1} \, k!} \binom{m}{i} \\ &+ (-1)^{s} s! \sum_{i=0}^{m} \binom{m}{i} c_{\lambda, m-i, s} \mu^{i} \int_{\eta}^{1} \frac{x^{\lambda \mu + r} \ln^{i} x}{r!} \, \varphi^{(r)}(\xi x) \, dx + O(\eta^{\lambda \mu + r + 1} |\ln^{m} \eta|) \\ &= \sum_{k=0}^{r-1} \sum_{i=0}^{m} \frac{(-1)^{i} a_{\lambda, m, i} \mu^{i} i! \, \varphi^{(k)}(0)}{(k+1+\lambda \mu)^{i+1} \, k!} \\ &+ \sum_{i=0}^{m} a_{\lambda, m, i} \mu^{i} \int_{0}^{1} \frac{x^{\lambda \mu + r} \ln^{i} x}{r!} \, \varphi^{(r)}(\xi x) \, dx \\ &= \sum_{k=0}^{r-1} \sum_{i=0}^{m} \frac{(-1)^{i} a_{\lambda, m, i} \mu^{i} i! \, \varphi^{(k)}(0)}{(k+1+\lambda \mu)^{i+1} \, k!} \\ &+ \sum_{i=0}^{m} a_{\lambda, m, i} \mu^{i} \int_{0}^{1} x^{\lambda \mu} \ln^{i} x \left[\varphi(x) - \sum_{k=0}^{r-1} \frac{x^{k}}{k!} \, \varphi^{(k)}(0) \right] dx \\ &= \sum_{i=0}^{m} a_{\lambda, m, i} \mu^{i} \left\{ \int_{0}^{1} x^{\lambda \mu} \ln^{i} x \left[\varphi(x) - \sum_{k=0}^{r-1} \frac{x^{k}}{k!} \, \varphi^{(k)}(0) \right] dx + \frac{(-1)^{i} i! \, \varphi^{(k)}(0)}{(k+1+\lambda \mu)^{i+1} \, k!} \right\} \\ &= \sum_{i=0}^{m} a_{\lambda, m, i} \mu^{i} \langle x_{+}^{\lambda \mu} \ln^{i} x_{+}, \varphi(x) \rangle, \end{split}$$

since η can be made arbitrarily small. This proves the existence of $G_{\lambda,m}(x_+^{\mu})$ and

$$G_{\lambda, m}(x_{+}^{\mu}) = \sum_{i=0}^{m} a_{\lambda, m, i} \mu^{i} x_{+}^{\lambda \mu} \ln^{i} x_{+}$$
 (19)

on the interval [-1, 1] for m = 0, 1, 2, ... However, equation (3) (or (19)) clearly holds on any interval not containing the origin for $\lambda < 0, \mu > 0$ and $\lambda, \mu \neq -1, -2, ...$

In particular, when m = 0, we have

$$G_{\lambda 0}(x_{+}^{\mu}) = x_{+}^{\lambda \mu} = F_{\lambda 0}(x_{+}^{\mu})$$
 (20)

for $\lambda<0,\,\mu>0$ and $\lambda,\,\mu\neq-1,\,-2,\,...\,.$

Now suppose that

$$F_{\lambda_{-}i}(x_{+}^{\mu}) = \mu^{i} x_{+}^{\lambda \mu} \ln^{i} x_{+} \tag{21}$$

for $i=0,\,1,\,2,\,...,\,m-1$ for some $m,\,\lambda<0,\,\mu>0$ and $\lambda,\,\mu\neq-1,\,-2,\,...$. This is true by equation (20) when m=1.

Note that equation (3) can be written in the form

$$G_{\lambda,m}(x) = \sum_{i=0}^{m} a_{\lambda,m,i} F_{\lambda,i}(x). \tag{22}$$

Since $G_{\lambda,m}(x_+^{\mu})$ exists and $F_{\lambda,i}(x_+^{\mu})$ exists by our assumption for i=0,1,2,...,m-1, it follows from equation (22) that $F_{\lambda,i}(x_+^{\mu})$ exists and

$$G_{\lambda, m}(x_{+}^{\mu}) = \sum_{i=0}^{m-1} a_{\lambda, m, i} F_{\lambda, i}(x_{+}^{\mu}) + a_{\lambda, m, m} F_{\lambda, m}(x_{+}^{\mu})$$

$$= \sum_{i=0}^{m-1} a_{\lambda, m, i} \mu^{i} x_{+}^{\lambda \mu} \ln^{i} x_{+} + a_{\lambda, m, m} F_{\lambda, m}(x_{+}^{\mu})$$

$$= \sum_{i=0}^{m} a_{\lambda, m, i} \mu^{i} x_{+}^{\lambda \mu} \ln^{i} x_{+}$$

on using equations (19) and (21). It follows that

$$F_{\lambda, m}(x_+^{\mu}) = \mu^i x_+^{\lambda \mu} \ln^m x_+$$

and equation (2) follows by induction.

Since the usual limit exists in equation (12), it follows that the composition $F_{\lambda,m}(x_+^{\mu})$ exists, if $1 + \lambda \mu > 0$. This completes the proof of the theorem.

Replacing x by -x in Theorem 5, we get

Theorem 6. If $F_{\lambda,m}(x)$ denotes the distribution $x_-^{\lambda} \ln^m x_-$, then the neutrix composition $F_{\lambda,m}(x_-^{\mu})$ exists and

$$F_{\lambda m}(x_{-}^{\mu}) = \mu^{m} x_{-}^{\lambda \mu} \ln^{m} x_{-}$$
 (23)

for $\lambda < 0$, $\mu > 0$ and λ , $\lambda \mu \neq -1$, -2,

In particular, the composition $F_{\lambda,m}(x_-^{\mu})$ exists if $1 + \lambda \mu > 0$.

The proof of the next theorem is similar to the proof of Theorem 5 and is left as an exercise.

Theorem 7. If $F_{\lambda,m}(x)$ denotes the distribution $|x|^{\lambda} \ln^m |x|$, then the neutrix composition $F_{\lambda,m}(|x|^{\mu})$ exists and

$$F_{\lambda,m}(\mid x\mid^{\mu}) = \mu^{m} \mid x\mid^{\lambda\mu} \ln^{m} \mid x\mid$$
 (24)

for $\lambda < 0$, $\mu > 0$ and λ , $\lambda \mu \neq -1$, -2,

In particular, the composition $F_{\lambda,m}(|x|^{\mu})$ exists if $1 + \lambda \mu > 0$.

References

- J. G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math. 7 (1959), 291-398.
- [2] B. Fisher, On defining the change of variable in distributions, Rostock. Math. Kolloq. 28 (1985), 75-86.
- [3] B. Fisher, On the composition of the distributions $x^{-1} \ln |x|$ and x_{+}^{μ} , Far East J. Math. Sci. (FJMS) 29(2) (2008), 311-326.
- [4] B. Fisher and J. Nicholas, Some results on the composition of distributions, Novi Sad J. Math. 32(2) (2002), 87-94.
- [5] B. Fisher, I. Ege and E. Özça $\overline{\mathbf{g}}$, On the composition of the distributions $x^{-1} \ln^m |x|$ and x^r , Hacettepe J. Math. Stat. 37(1) (2008), 1-8.
- [6] B. Fisher, S. Orankitjaroen, T. Kraiweeradechachai, G. Sritantatana and K. Nonlaopon, On the composition of the distributions $x_+^{\lambda} \ln^m x_+$ and x_+^{μ} , East-West J. Math. 9(1) (2007), 29-79.
- [7] I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.