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Abstract 

The Mady model for the choice between two medical treatments is 
studied, with the additional assumption that there is a time lag between 
the administration of the treatments and the availability of the 
responses. Two simple procedures are suggested for dealing with 
patients who arrive during the waiting period, caused by the lag, 
between the trial and treatment stages of the model. The relative 
performance of the procedures in the Bayesian framework is discussed 
when the responses to the treatments are exponentially distributed. 

Introduction 

The Mady model for clinical trials is appropriate in certain situations 
where two competing treatments for the same disease are being compared 
(Mady [7], Hardwick et al. [5], Langenberg and Srinivasan [6], Colton [4], 
Anscombe [1] and Armitage [2]). The central assumption in the model is 
that there exists a known finite patient horizon, N, representing the total 
number of patients who will ever be receiving one of the two treatments 
under study. A decision rule, according to the simplest version of the 
model, consists of the “trial stage” when n patients are assigned to each of 
the two treatments, leading to the choice of one of the treatments as the 
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better, and the “treatment stage” when the remaining nN 2−  patients 
receive the treatment so chosen. Then the problem of clinical trials is the 
determination of optimal decision rules (i.e., optimal n), optimality being 
defined in terms of appropriate loss functions. For the sake of 
definiteness we shall assume, along with Mady [7], that the response to 
treatment ,2,1, =ii  is exponentially distributed with unknown mean 
( )iθ1  and that its quality is characterized by ( ),1 iθ  so that the treatment 
with the larger mean is considered the better. Also, let the treatment 
with the larger observed sample mean be chosen as the better at the end 
of the trial stage. 

In the context of clinical trials it is reasonable to suppose that the 
only loss is the ethical loss incurred in treating a patient with the inferior 
treatment. Optimality may therefore be defined in terms of the expected 
regret, R, which represents the difference between the total expected 
response if one were to treat all the N patients with the better treatment 
and the expected response achieved by following a decision rule. In our 
case it turns out that ( )11 θ  and ( )21 θ  enter R only through the true 
difference between the treatments, .11 21 θ−θ=δ  Under the Bayesian 
formulation, Mady [7] assumed that the prior distribution of ( )iθ1  is 
gamma with parameters ( )0,2 λ=α  and she determined the optimal 
value of n [i.e., the one which minimizes the Bayes average regret, )](RE  
for given specifications of the parameters of the model. 

An important assumption implicit in the Mady model is that the 
response to the treatments is instantaneous, or that there is no time lag 
between the treatment of the patients during the trial stage and the 
availability of all the treatment results. In practice, however, the 
response to the treatments is often delayed, causing a ‘waiting period’ 
between the two stages, and an accumulation of new patients who have to 
be treated before the beginning of the treatment stage. The allocation of 
treatments to these patients is an important issue, especially when their 
number is large relative to N (see Mendoza and Iglewicz [8], Nomachi [9] 
and Choi and Clark [3] for some work with delayed observations in 
sequential analysis). 

Our purpose is to incorporate the assumption of delayed response into 
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the Mady model and examine some Bayes optimal procedures for dealing 
with the patients who arrive during the waiting period. Now, the nature 
of the delay could, in general, be quite complicated. For instance, as 
happens naturally when the response is survival time, the delay might 
not only be dependent on the treatment given, but be a variable for each 
treatment. However, to make the analysis manageable and to be specific, 
we shall assume that 

(i) patients arrive sequentially, one per unit time, and are to be 
assigned to one of the two treatments, and 

(ii) there is a delay of T time units (T is taken to be an even integer 
for convenience) in obtaining the response to either treatment. 

Two procedures for treating the T patients who arrive during the 
waiting period will now be investigated. 

Results 

For the two procedures described below, the trial stage consists of the 
first 2n patients to arrive, with n patients assigned to each of the two 
treatments randomly within pairs, the treatment stage consists of the 

TnN −− 2  patients arriving after the waiting period, who are given the 
treatment with the larger sample mean based on the observations made 
during the trial stage. The treatment allocations during the waiting 
period are as follows: 

Procedure 1. The patients are assigned randomly within pairs, as 
they arrive, to the two treatments, 2T  to each. 

Procedure 2. All the T patients are assigned to that treatment with 
the larger sample mean based on 2Tn −  available observations on each 
treatment from the trial stage. 

Note that Procedure 2 is meaningful only when ,21≥n  while there 
are no such restrictions placed on Procedure 1. Also, when 0=T  both 
procedures lead to Mady’s decision rule with the delay outlined in the 
Introduction omitted. We shall now derive the Bayes optimal value of n 
for the two procedures. 
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In Procedure 1, let P denote the probability that the inferior 
treatment (i.e., treatment 2 if ,0<δ  and treatment 1 if )0≥δ  is chosen 
as the better on the basis of the n observations on each treatment 
available at the end of the waiting period, that is, 

 ( ) 21212,2 , θ<θθθ= nnFP  

( ) ,,1 12212,2 θ<θθθ−= nnF  

where F denotes the Fisher cumulative distribution function with 
( )nn 2,2  degrees of freedom. The expected regret function for Procedure 1 
can then be given by 

( )[ ],2121 PtptpNR −−++δ=  (1) 

where Nnp =  and .NTt =  

Averaging 1R  over the prior distribution of iθ  (recall that iθ  follows 
gamma with parameters )),,2( 0λ=α  we get 

( ) ( ) ( ) ( )[ ].122122011 +−−++λ== NptptpNRER  (2) 

The value of p which minimizes the right hand side of (2), that is, the 
optimal p for Procedure 1, will be denoted by 1p  and is easily seen to be 

( ) ( )
[ ( )]

.
1112

1
11 tN

ttpp
−++

−==  (3) 

The optimal average regret denoted by ,1
∗R  is obtained by substituting 

1pp =  in (2). 

In Procedure 2, let 1P  and 2P  denote the probabilities of choosing the 
inferior treatment based, respectively, on the 2Tn −  observations 
available on each of the two treatments at the end of the trial stage and 
the n such observations available at the end of the waiting period. 
Clearly, then 

( ) ( )( ) 212122,221 , θ<θθθ= −− TnTnFP  

 ( ) ( )( ) 122122,22 ,1 θ<θθθ−= −− TnTnF  
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and 
( ) 21212,22 , θ<θθθ= nnFP  

 ( ) .,1 12212,2 θ<θθθ−= nnF  

The expected regret function for Procedure 2 is given by 

( )[ ]212 21 PtptPpNR −−++δ=  (4) 

and the Bayes average regret is 

( ) ( ) ( )[ ] ( ) ( ){ }.122112222022 +−−++−+λ== NptptpNtpNRER  

 (5) 

The optimal value of p, say ,2p  is obtained by minimizing 2R  with respect 

to p. We shall denote the average regret corresponding to 2pp =  by .2
∗R  

It can be shown from (5) that 2p  satisfies 

( ) ( )[ ]22
2

2 1212 +−+ tpNNp  

( ) ( )[ ] ( )[ ] .121112 2
2

2
2 +−+−++= tpNtNNpNt  (6) 

We have not been able to derive a closed form expression for ,2p  only 
numerical solutions for various values of N and t are obtained. 

Comparing (1) and (4), we see that if ,2tp >  then 12 RR <  for all δ. 

Consequently we have ∗∗ < 12 RR  provided that .21 tp >  Now, it is clear 
from (3) that ( )tp1  is a decreasing function of t, this, plus the fact that 

( ) ,001 >p  shows that there exists a value of 0>∗t  which is such that 

( ) 21 ttp >  for ∗< tt  and ( ) 21 ttp <  for ∗> tt  [ ∗t  is the solution to 
( ) ].21 ttp =  We have thus shown that, for any given N, Procedure 2 is 

superior to Procedure 1 for all values of t less than ,∗t  where ∗t  depends 
on N. 

Numerical results on the relative performance of the two procedures 
are presented in Table 1 for selected values of N and t. Note that under 
Procedure 2, since 2Tn ≥  and ,2 NTn ≤+  we have ( ),21≤t  hence we 
have included t values only up to ( ).21  
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Table 1. Relative performance of the two procedures∗ 

N t 1p  2p  1R′  2R′  I 

100 .00 .0452 .0452 .1810 .1810 0 
 .01 .0450 .0453 .1900 .1811 5 
 .05 .0440 .0483 .2260 .1855 22 
 .07 .0435 .0536 .2439 .1922 27 
 .09 .0430 .0616 .2618 .2031 29 
 .10 .0427 .0663 .2708 .2099 29 
 .20 .0400 .1190 .3600 .3023 19 
 .30 .0371 .1732 .4485 .4095 10 
 .45 .0324 .0330 .5797 .1177 80 

200 .00 .0329 .0329 .1318 .1318 0 
 .01 .0328 .0330 .1411 .1319 7 
 .05 .0321 .0378 .1782 .1380 29 
 .07 .0317 .0458 .1967 .1482 33 
 .09 .0313 .0556 .2153 .1628 32 
 .10 .0311 .0607 .2245 .1711 31 
 .20 .0292 .0301 .3169 .1095 65 
 .30 .0272 .0240 .4087 .3779 8 
 .45 .0238 .2452 .5359 .0897 83 

400 .00 .0238 .0238 .0951 .0951 0 
 .01 .0237 .0239 .1046 .0952 10 
 .05 .0231 .0320 .1426 .1049 36 
 .07 .0229 .0417 .1616 .1191 36 
 .09 .0226 .0521 .1805 .1366 32 
 .10 .0225 .0238 .1900 .0851 55 
 .20 .0211 .0214 .2846 .0814 71 
 .30 .0197 .1626 .3788 .3551 7 
 .45 .0173 .0174 .5193 .0666 87 

∗ 02 λ=′ ∗
ii RR  and ( )121 RRI ′′−=  denotes the percent increase in 1R′  over .2R′  
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The most striking feature in the table is the uniform superiority of 
Procedure 2, this adds confirmation to our conjecture. The percentage 

increase I in ∗
1R  over ,2

∗R  given in the last column, shows that this 
superiority could be quite pronounced. The values of I indicate that the 
reduction in regret afforded by Procedure 2 is strongly dependent upon 
the patient horizon and the delay. Therefore, in any given application the 
value of I for the specific N and t involved should be taken into 
consideration before the choice between the two procedures is attempted. 
Then the improvement in performance of Procedure 2 should be weighed 
against the operational simplicity of Procedure 1. In addition, any 
realistic comparison of the two procedures should take into account 
another important aspect: the duration of the trial phase. The table 
indicates that Procedure 1 has the definite advantage of a shorter trial 
stage for all N and t. Note also that the percentage increase in 2p  over 

1p  increases with t for any fixed N. Both of these properties can be shown 
to be true in general since 2p  is an increasing function of t, and 1p  is 
already known to decrease with t and 21 pp =  when .0=t  

Finally, let us note some asymptotic (large N) properties of 1p  and 
,2p  which would also be helpful in making the choice between the two 

procedures. With t held constant, if we let ,∞→N  then 01 →p  and 
.02 →p  The first result follows immediately from (3), the second is 

deduced from (6). Using these results along with (2) and (5), we can show 
that, for fixed t as ,∞→N  012 λ∗R  converges to t and 022 λ∗R  converges 
to zero. 
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