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Abstract

Elementwise characterization of the intersection of maximal (minimal
prime) ideals containing an idempotent (regular element) is given. Using
these facts, we generalize several important results such as Nakayama’s

Lemma and Krull’s intersection Theorem.

1. Introduction

Throughout this paper, R is a commutative ring with identity. We let
e € R be an idempotent element and as the notations in (1) and (2) we

suppose that M, is the intersection of all maximal ideals containing e
and P, is the intersection of all minimal prime ideals containing e. It is

clear that M, = J(R), the Jacobson radical of R and P, = rad(R), the
prime radical of R. Furthermore, M, = J(%) and P, = rad(%).

Whenever a € R is a regular element, i.e., if there exists some ¢ € R

2

such that a = a“c, then e = ac 1s an idempotent element. In this case

clearly M, = M, and P, = P,. Thus any argument concerning the
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intersection of maximal (minimal prime) ideals containing a regular
element may be restricted to those of containing an idempotent element.

We denote by C(X), the ring of all continuous real valued functions
on a completely regular Hausdorff space X. In C(X), M r and Py for any
arbitrary f € C(X) are characterized in [1] and [2].

2. Elementwise Characterizations

In this section we will give elementwise characterizations of M, and

P,. Some applications are also given in this section.

Proposition 2.1. Let e be an idempotent element and M,(P,) be the
intersection of all maximal (minimal prime) ideals containing e in R.

Then

(@ M, ={beR:1-r(1-e)b isunitfor every r € R}.
b)) P, ={be R:(1-¢e)b" =0 for some n € N}.

Proof. (a) Let 1—r(1 —e)b be unit for every r € R, but b ¢ M,.

Then there exists a maximal ideal M such that ee M and b ¢ M.
Hence M + (b) = R and so there is 1y € R for which 1 =m +ryb for

some m € M. But 1-ryb+ rgeb = m + ryeb implies that m + rypeb € M
and hence 1-ry(1-e)b e M, which is a contradiction. Conversely
suppose that b € M, and there exists r; € R such that 1 —ry(1-e)b is
a nonunit. Hence, there exists a maximal ideal M such that
1-rp(1—e)b e M. Now e =e implies that e(l-e)=0e M. Thus
either ec M or 1-ee M. If 1-e € M, then 1 € M, a contradiction
and if e € M, then b € M and therefore ry(1 —e)b € M. This implies
that 1 € M, a contradiction.

(b) Let P be a minimal prime ideal containing e, b €¢ R and there

exists n € N such that (1 -e)b" = 0. But 1 —e ¢ P, then b" € P. Now
b € P implies that b € P,. On the other hand, suppose that b € P, and
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(1-e)p” 20 for all neN, then S={1-¢e)b":neN} is a
multiplicatively closed set in R and 0 ¢ S. Hence there exists a minimal
prime ideal P such that P (1S = &. Now if e € P, then b € P and hence
(1-e)b e P. But (1-e)b e S, a contradiction. If e ¢ P, then 1-e € P
implies that (1 — e)b € P, a contradiction, for (1 —e)b € S.

Corollary 2.2. (a) J(R)={b e R:1-rb isunit forall r € R}.

() rad(R) = {b € R:b" =0 for some n € N}.
Proof. Take e = 0 in Proposition 2.1.

In any Artinian ring R, it is well known that M, = J(R) is a
nilpotent ideal, see Theorem 41.8 in [4]. We generalize this fact for M,.

Corollary 2.3. In any Artinian ring R, M = (e) for some n € N.

Proof. Evident.

Proposition 2.4. Let I be an ideal of the ring R. Then I < M, if and

only if each element of the coset 1+ (1 — e)I is unit.

Proof. We begin by assuming that I ¢ M, and that there is some
element x € I for which 1+ (1 - e)x is nonunit and get a contradiction.
Therefore, the element 1+ (1 — ¢)x must belong to some maximal ideal
M. By Proposition 2.1, 1 — (1 — e)x is unit for any r € R. Letting r = -1,
the element 1+ (1 —e)x is unit, which is impossible by our assumption.
Conversely, suppose that I ¢ M,, then there exists a maximal ideal M
such that e € M but I ¢ M. Taking x € I - M, we have M + (x) = R

for M i1s maximal. Thus, 1 = m + rx for some m € M and r € R. But

l-rx+rex=m+rexe M, ie, 1+(1-e)(-rx)e M and we have
1+(Q-e)(-rx)el+(1-e)I for x € I. Now 1+ (1 —e)(- rx) is unit, by
our hypothesis a contradiction.

Corollary 2.5. If x € M, is an idempotent element of the ring R, then

X = ex.
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Proof. Since x € M,, by Proposition 2.1, the element 1 - (1 — e)x is

unit. Thus there exists se R such that (I1-x+ex)s=1 and

2

multiplying both sides by e we have es — esx + e“sx = e. This implies that

es = e. Now we have x = x.1 = x(1 — x + ex)s = ex’s = esx = ex.
Corollary 2.6. If I is a nilideal of R, then (1-e)I < M,.

Proof. Suppose that x € (1 —e)I, then there is y € I for which
x=(0-e)y. Hence 1-r(1-e)x =1-r(1-e)y for every r € R. But

r(1 —e)y € I implies that (r(1 -e)y)" =0 for some n € N. Therefore,
1-r(1-e)y is unit for every r € R. Now by Proposition 2.1, we have

y € M, and hence x € M,.

Proposition 2.7. If x and y are two idempotent elements of the ring R
such that x — y € P,, then x — y = e(x — ).

Proof. By the formula ((x —y)—e(x — y))(1 - (x + y) + e(x + y)) = 0,
it is enough to show that 1 —(x + y)+ e(x + y) is a unit element of R.
Now one may write 1—(x +y)+e(x +y) in the form (1 - 2x + 2ex) +
(x —y)(1 -e). Since x -y e P,, by Proposition 2.1, (x - y)(1-e) is a

nilpotent element. On the other hand, 1 — 2x + 2ex 1s unit, for
(1 - 2x + 2ex)? =1 - 2x + 2ex — 2x + 4x2 — dex? + 2ex — dex® + 4e2x? = 1.

Now 1-—(x + y)+e(x +y) is the sum of a nilpotent element and a unit

element, which will be necessarily a unit element in R.
3. Generalizations

In this section using Proposition 2.1, we generalize several important
results, such as Nakayama’s Lemma and Krull’s intersection Theorem.

First we need the following lemma.

Lemma 3.1. Let I and J be two ideals of the ring R and I be finitely

generated. If IJ = I, then there exists an element r € J such that
@1-r)I =(0).
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Proof. See Lemma in [3, p. 242].

The proof of the following corollary is similar to that of Lemma in [3,
p. 242].

Corollary 3.2. Let K be a finitely generated R-module and I be an
ideal of R. If K = K1, then there exists an element r € I such that
(1-r)K =(0).

Proposition 3.3 (Nakayama’s Lemma, generalized). Let K be a
finitely generated R-module, I be an ideal of Rand I ¢ M,. If K = K1,
then there exists an element r € M, such that K = reK.

Proof. By Corollary 3.2, there exists some r e I such that
(1-r)K =(0). Thus (1-r)K +reK =reK and hence (1-r+re)K
=reK. But I ¢ M, implies that r € M,. By Proposition 2.1, the
element 1 —r(1 —e)¢ is unit for every ¢ € R. Let ¢t =1. Therefore, there
exists s € R such that (1-r+re)s =1. Thus (1 -r + re)sK = resK and
consequently K = resK. But es = e implies that K = reK.

Lemma 3.4 (Generalized Krull’s intersection Theorem). Let I be an
ideal of the Noetherian ring R. If I < M,, then there exists r € M, such

that N I" =re(N5 I™).
Proof. Let A =(,_;I". Then we have A = IA. By Proposition 3.3,
there exists r € M, for which, A = reA, i.e., N1 I" =re(N;,_1 I").

Corollary 3.5. Let K be a finitely generated R-module, N be an
R-submodule of K and I c M,. If N+ IK = K, then there exists

re M, suchthat K = N + reK.

K N + IK K "
Proof. We have [ (W) = ( N ) = (Wj By Proposition 3.3, there
exists r € M, such that ~) =N/ This implies that K = N + reK.

Let I be an ideal in R and e € R be an idempotent element. Then
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clearly e + I is an idempotent element of the residue class ring ? We

assume that M, ;(P,.,) is the intersection of all maximal (minimal

prime) ideals containing e + I in ? Then M, ; and (P,,;) may be

represented in terms of M, and P,.

Corollary 3.6. Let I be an ideal and e be an idempotent element in R.

M, +1

(a) Me+] 2 eI .

O If I = M,, then M,,; = MeI+ L
P, +1

©) Peus 2 47—

A If I < P,, then P,,; = PQ;I.

Proof. Evident.

Proposition 3.7. UP = {r e R:rb e P, for some b ¢ P,}, where P
runs through the set of minimal prime ideals containing e.

Proof. Suppose that r € UP. Hence r € P for some minimal prime
ideal P containing e. Hence r"b =0 for some b¢ P and n e N,
consequently b ¢ P, but rb € P,. On the other hand, let r € R, rb € P,
and b ¢ P,. Then there exists a minimal prime ideal P containing e such
that b ¢ P. Also by Proposition 2.1, (1-¢)(rb)" =0 for some n € N. Thus
(1-e)(rb)" € P. But neither 1—e ¢ P nor b" ¢ P. This implies that

r"" € P sor e P and hence r € UP.

We conclude the article by a result concerning the ring of power
series. For details of the ring, see [3] and [4].

Proposition 3.8. Let e be an idempotent element in R and M, be the
intersection of all maximal ideals containing e in R[[x]]. Then

M, = (M,, x).



ON THE INTERSECTION OF MAXIMAL (MINIMAL PRIME) ... 365

Proof. Suppose that f e (M,, x) and M is a maximal ideal in
R[[x]] containing e. Hence there exists a maximal ideal M in R
containing e such that M = (M, x). But f(x) =0+ xg(x) for some
be M, and g € R[[x]]. Since b € M and xg(x) € (x), f(x)e (M, x).
Thus f € M and so f € M,. On the other hand, let f € M, and M be a
maximal ideal in R containing e. Then (M, x) is a maximal ideal in
R[[x]] containing e. Therefore, f € (M, x) and hence f(x)= b + xg(x)
for some b € M and g € R[[x]]. Take x = 0, then f(0) = b € M implies
that f(0) € M, and finally we have f(x) € (M,, x).
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