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Abstract 

The reliability optimization of a distributed system is generally an NP-

hard problem. The reliability of a k-node set with capacity constraint is 
defined as the probability that a subset of the set of processing elements 
in system is connected and possesses sufficient node capacity. In this 
work, a particle swarm optimization is presented to reduce the 
computational time and the absolute error from the exact solution for 

obtaining the reliability of a k-node set with capacity constraint. The 

method uses an efficient objective function to evaluate the chosen nodes 

when a particle derives its k-node set process. Reliability computation is 
performed only once, thereby spending less time to compute the 
reliability. Moreover, the absolute error of proposed algorithm from 

exact solution is smaller than that of k-tree reduction method. 
Computational results demonstrate that the proposed algorithm is a 
more efficient solution for a large distributed system than conventional 
ones. 

1. Introduction 

Particle swarm optimization (PSO) was first introduced by Kennedy 
and Eberhart as an optimization technique for continuous space problems 

in 1995 [4]. It is a kind of evolutionary computation technique motivated 
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by the behavior of organisms such as bird flocking. Because of its simple 

and easy implementation, PSO has been widely applied to optimization 
problems which have been tackled by other evolutionary computation 

techniques such as genetic algorithms and evolutionary programming. 

The economic benefits of resource sharing primarily enlarge for the 
importance of distributed system (DS). A DS focuses on providing 
efficient communication among various nodes, thereby increasing their 

reliability and making their service available to more users [12]. 
Designing such systems must consider system reliability, which heavily 

relies on the topological layout of the communication links [10]. The 
network reliability problem with respect to a network with a general 

structure is NP-hard [13]. Efficient algorithms easily implemented on a 
computer are needed to analyze the reliability of large networks. In 

addition, such algorithms should yield good appoximations of the 
reliability when the networks are so large that the computational time 

becomes prohibitive. 

This work largely focuses on how to compute nearly maximum system 

reliability subject to the capacity constraint. In the k-tree reduction 

method (KM) [1], the starting node is the first node .1ν  To select other 

adequate nodes in a sequential manner depends on the maximum product 

of reliability by capacity of the k-node set with another node until the 
capacity constraint is satisfied. The number of reliability computation is 

still large. In addition, the above product heavily relies on the total 

capacity of each node but only slightly depends on the k-node set 

reliability; therefore, it barely derives the optimal solution. 

This paper presents a particle swarm optimization to obtain an 

adequate k-node set. Then SYREL [3] is applied to compute the 
reliability. For a large DS on various DS topologies, our results 

demonstrate that the proposed algorithm is more reliable and efficient 
than conventional algorithms, the exact method (EM) [2] and the KM in 

terms of execution time. 

2. Problem Description 

Bi-directional communication channels operate between processing 
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elements. A DS can be modeled by a simple undirected graph ( ),, EVG =  

where V denotes a set of processing elements and E represents a set of 
communication links.  

A k-node set reliability problem can be characterized as follows: 

Given 

Topology of a DS. 

The reliability of each communication link. 

The capacity of each node. 

A set of data files. 

Assumption 

Each node is perfectly reliable. 

Each link is either in the working (ON) state or failed (OFF) state. 

Constraint 

The total capacity of data files to be allocated. 

Goal 

To select a specified set K of nodes in a DS to allocate data files, by 
doing so, 

k-node set reliability is adequate under constraints. 

A set, K, of nodes can be derived from the given vertices set V (the 

total number of vertices )nV =  that constitutes a DS in that k-node set 

kG  reliability ( )kGR  is adequate and the total capacity satisfies the 

capacity constraint .minC  The main problem can be mathematically 

stated as follows: 

Object: Maximize ( )kGR  

subject to ( )∑
∈ν

≥ν
ks G

s Cc min  

where ( )sc ν  is the capacity of the sth node. 
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Obviously, the problem for a large DS, as in a metropolitan area 

network, requires a large execution time. 

3. PSO for k-node Set Reliability 

In this section, we present a PSO algorithm to maximize system 
reliability. 

3.1. The concept of proposed algorithm 

The EM, an optimal solution, requires excessive execution time in a 

large DS and cannot effectively reduce the problem space. Occasionally, 
an application requires an efficient algorithm to compute the reliability 

due to its resource considerations. In these circumstances, achieving 
optimal reliability may not be desired. Instead, an effective algorithm 

with an approximate reliability is highly attractive. In fact, most DS are 
large and an increasing number of nodes causes exponential growth of 

the execution time for a solution. Although able to reduce computational 
time, the KM has much difficulty in deriving the optimal solution. 
Therefore, this work presents a PSO algorithm to reduce the total 

execution time to achieve the optimal k-node set reliability of DS. 

The reliability of a set of selected nodes depends on their links and 

the link reliability. For any node, the degree ( )sd ν  of that node sν  affects 

the number of paths of the information can be transferred from others’ 

nodes. The following formula is used to compute the weight of node sν  

where dsq ,  denotes the probability of failure of link ., dse  

 ( )
( )

∏
ν

=

−=ν
s

z

d

z
kss qw

1
, .1  (1) 

In the network, two nodes may contain many paths between them. A 
path’s length is between one and .1−n  To reduce the computational 

time, we consider the path in which the length is not greater than two. 

The following formula is used to evaluate the weight of link dse ,  which 

the probability of success is ., dsp  The dsy ,  denotes the number in which 

the length of a path between sν  and dν  is two. 
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 ( ) ( ( ))∏
=

−−=
ds

zz

y

z
dkksdsds ppqew

,

1
,,,, .11  (2) 

In the same manner, if no direct link exists between sν  and ,dν  but 

there are at least two paths whose length is two between them ds,(ϕ  

denotes the number of those paths), the following formula is used to 

evaluate the weight of ., dsε  

 ( ) ( ( ))∏
ϕ

=

−−=ε
ds

zz
z

dkksds ppw
,

1
,,, .11  (3) 

In each set of nodes, if the number of members of a set is ,k  the 

following formula can be used to compute its weight value. 

( ) ( ) ( ) ( )[ ]21
,

,
, ,

,, −




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


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
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


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





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kjiGe Ge
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
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



×−ν+ ∑
∈ν

kknw
ks G

s  (4) 

The penalty function of selected set is defined as follows. 

 ( )

( )

( ) ( )









<νν−

≥ν
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∑∑
∑

∈ν∈ν
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.if

if0

minmin
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ksks

ks

G
s

G
s

G
s

k
CccC

Cc

G  (5) 

In a PSO system, a swarm of individuals (called particles) fly through 
the search space. Mendes et al. [8] discusses the complete information 

about the particle swarm optimization. In the standard PSO algorithm, 

all particles have their position, velocity, and fitness values. Let ps denote 

the swarm population size, [ ]t
ps

ttt XXXX ...,,, 21=  represents population 
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during t iteration. Then each particle in the swarm population has a 

current position [ ]t
ni

t
i

t
i

t
i xxxX ,2,1, ...,,,=  in the n-dimension space as a 

candidate solution, a current velocity [ ]t
ni

t
i

t
i

t
i ,2,1, ...,,, ψψψ=Ψ  which a 

constant maxΨ  (often set to 4) is used to limit the range of ,,
t

jiψ  i.e., 

[ ]maxmax, , ΨΨ−∈ψt
ji  for avoiding the particle to converge to local optima, 

a particle best position [ ],...,,, ,2,1,
t

ni
t
i

t
i

t
ipbest ρρρ=  and a global best 

position [ ]t
n

ttt ggggbest ...,,, 21=  of the swarm population until current 

iteration. 

The current velocity of the jth dimension of the ith particle is updated 
as follows: 

 ( ) ( ),1
,

1
22

1
,

1
,11

1
,

1
,

−−−−−− −+−ρ+ψµ=ψ t
ji

t
j

t
ji

t
ji

t
ji

tt
ji xgrcxrc  (6) 

where 1c  and 2c  are acceleration coefficients which were often set to be 

2.0 according to past experience and 1r  and 2r  are uniform random 

numbers between [ ].1,0  Thus, the particle flies through potential solutions 

toward t
ipbest  and tgbest  in a navigated way while still exploring new 

areas by the stochastic mechanism to escape from local optimal. Since 1c  

expresses how much the particle trusts its own past experience, it is 

called the cognitive parameter, and since 2c  expresses how much it trusts 

the swarm, it is called the social parameter. The inertia weight 1−µt  

which is a parameter to control the impact of the previous velocities on 
the current velocity. The inertial weight can be dynamically varied by 

applying an annealing scheme for the µ-setting of the PSO, where µ 

decreases from 9.0=µ  to 4.0=µ  over the whole run. In general the 

inertia weight tµ  is set according to the following equation [11]. 

 ( ),1
itermax

minmax
max −×

µ−µ
−µ=µ tt  (7) 

where maxµ  and minµ  are both numbers called initial weight and final 
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weight respectively. In addition, maxiter  is the maximum number of 

iterations, and t is the current iteration. 

In the above discussion, PSO is restricted in real number space. 
However, many optimization problems are set in a space featuring 

discrete or qualitative distinctions between variables. Discrete PSO 
essentially differs from the original PSO in two characteristics. First, the 

particle is composed of the binary variable. Second, the velocity must be 
transformed into the change of probability, which is the chance of the 

binary variable taking the value. Thus, in the discrete binary version [5-
7, 9], a particle moves in a state space restricted to zero and one on each 

dimension, where each ji,ψ  represents the probability of bit jix ,  taking 

the value 1. Thus, the step for updating ji,ψ  remains unchanged as 

shown in Eq. (6), except that ji,ρ  and jg  are integers in { }1,0  in binary 

case. The resulted changes in position are defined as follows: 

 ( ) ( ( )),exp11 ,,
t

ji
t

jisig ψ−+=ψ  (8) 

 
( )
( )





ψ>

ψ≤
=

,if0

if1

,

,
, t

ji

t
jit

ji
sigr

sigr
x  (9) 

where ( )t
jisig ,ψ  is a sigmoid function and r is a uniform random number 

between [ ].1,0  

If ,6=V  then the solution representation of a particle iX  is as 

follows. 

 

Figure 1. Definition of particle. 

Assuming that the fitness function ( )⋅f  is to be maximized, the fitness 

value of particle position can be evaluated by the weight of k-node set as 
follows. 
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 ( ) ( ) ( ) ( ).kkk GGwGfpositionf ∇−==  (10) 

The particle best position of each particle is updated using the 
following equation. 
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Finally, the global best position found so far in the swarm population 

is obtained for psi ≤≤1  as 

 
( )

( ) ( )
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



>=

−

−

otherwise.
maxif

maxargwhere

1

1

t

tt
i

t
i

t
i

t

gbest

gbestfpbestf
pbestfpbest

gbest  (12) 

3.2. The proposed algorithm 

The particle swarm optimization algorithm to maximize k-node set 
reliability in a DS under capacity constraint presents as follows. 

Algorithm PSODSR 

Step 1. Read a DS topology ( ),, EVG =  jip ,  of each link ,ije  ( )sc ν  of 

each node sν  and capacity constraint .minC  

Step 2. Evaluate the weight ( )sw ν  of each node sν  using Eq. (1). 

Step 3. Evaluate the weight ( )dsew ,  of each link dse ,  using Eq. (2). 

Step 4. Evaluate the weight ( )dsw ,ε  of each pair node ds,ε  using Eq. 

(3).  

Step 5. Initial ps particles with random positions [ ...,,, 0
2

0
1

0 XXX =  

].0
psX  Generate velocities ,0

, jiψ  psi ...,,2,1=  and ,...,,2,1 nj =  where 

0
, jiψ  is uniform random numbers between [ ].1,0  

Step 6. For each particle 

(a) Evaluate the weight ( )kGw  of selected set using Eq. (4). 
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(b) Evaluate the value ( )kG∇  of penalty function of selected set using 

Eq. (5). 

(c) Evaluate fitness value using Eq. (10). 

Step 7. Update individual and global best position according to Eq. 
(11) and Eq. (12), respectively. 

Step 8. Update velocity: update the ith particle velocity using Eq. (6) 

restricted by maximum and minimum threshold maxΨ  and .maxΨ−  

Step 9. Update position: update the ith particle position using Eq. 

(9). 

Step 10. Update tµ  according to Eq. (7). 

Step 11. Repeat Step 6 to 10 until a given maximum number of 

iterations maxiter  is achieved. 

Step 12. Compute ( )kGR  using SYREL, output the k-node set kG  and 

its reliability. 

4. Comparison and Discussion 

Table 1 presents the data on the results obtained using different 

methods for various DS topologies. In contrast to the EM and the KM, the 
number of reliability computations (NRC) grew rapidly when the DS 
topology size is increased. 

Although capable of yielding the optimal solution, conventional 

techniques such as EM cannot effectively reduce the reliability count. An 
application occasionally requires an efficient algorithm to compute 

reliability owing to resource considerations. Under this circumstance, 
deriving the optimal reliability may not be feasible. Instead, an efficient 

algorithm yielding approximate reliability is preferred. Although the KM 
can reduce computational time in a moderate DS, the error from an exact 

solution is relatively high. 
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Table 1. Comparison with other methods 

size Exhaustive method EM KM PSODSR 

N e Max_Rel k-node set NRC NRC NRC absolute error NRC absolute error 

6 9 0.9950069 1,3,5 64 20 9 0.0280687  1 0 

7 11 0.9967785 1,2,3 128 35 11 0.0200188 1 0 

8 11 0.9974378 4,6 256 44 13 0.0361958 1 0 

10 13 0.9347952 1,7,8,9,10 1024 255 24 0.2155169 1 0 

10 19 0.9995282 1,5,6 1024 150 17 0.0019527 1 0 

11 17 0.9974023 1,10,11 2048 135 19 0.0120129 1 0 

12 18 0.9858263 3,4,5,6 4096 538 30 0.0299250 1 0 

12 21 0.9990777 1,3,5,6 4096 537 30 0.0056617 1 0.0006069 

13 20 0.9978402 4,6 8192 246 45 0.0189070 1 0 

19 31 0.9979870 6,8,9 524288 2369 37 0.0856661 1 0 

The complexity of EM is ( )neO 22 ×  [2], where e denotes the number 

of edges and n represents the number of nodes. The complexity of the KM 

is ( )22 nO e ×  [1]. In the PSODSR, in the worst case, the complexity of 

evaluating the weight of each node is ( )eO  and each link is ( ),neO ×  

deriving an adequate k-node set is ( ),itermax_×× npsO  and computing 

the reliability of the k-node set using SYREL is ( )2mO  [3]. Therefore, the 

complexity of the PSODSR is ( ( ) ( )),,itermax_max 2mOnpsO ××  where 

m represents the number of paths of a selected k-node set [3]. 

In our simulation case, the reliability count for the PSODSR is 

exactly one. The exact solution can be obtained high hit rate, in which the 
average error from exact solution is very slight. In a few cases, an 

adequate node which has arrived for selected node set through many 
paths and the length of a great number of those paths exceeds two, the 

node may be lost when using our formula for computing link’s weight. 
Notably, the PSODSR cannot obtain the exact solution. 

5. Conclusions 

DS provides a cost-effective means of enhancing a computer system’s 

performance in areas such as throughput, fault-tolerance, and reliability 
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optimization. Consequently, the reliability optimization of a DS has 

become a critical issue. When some data files are allocated into DS, a 

specified set, K, of nodes in a DS must be selected to allocate the data 

files such that k-node set reliability is adequate under constraints. 

We presented a PSODSR to obtain a k-node set with sub-optimal 

reliability. The PSODSR is based on not only a simple method to compute 
each node’s weight and each link’s weight, but also an efficient and 

effective objective function to evaluate the weight of node sets. The 
reliability computation in our algorithm is only exactly one. 

The algorithm is compared with the EM and the KM for various 

topologies. According to that comparison, the PSODSR is more efficient in 
terms of execution time for a large DS. When the proposed method fails to 

provide an exact solution, the error from the exact solution is only slight. 
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