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Abstract 

In this paper, we consider the question of the existence of periodic 
solutions of nonlinear impulsive differential equations monitored by the 
strongly nonlinear evolution equations ( ) ( )( ) ( )( ) ,,, txtgtxtAtx =+  

.0 Tt <<  Here, ∗VHV   is an evolution triple, ∗→× VVIA :  

is a uniformly monotone operator and ∗→× VHIg :  is a 

Caratheodary mapping. 

1. Introduction 

In recent years, impulsive periodic systems have attracted much 
attention since many evolution processes are subject to short term 
impulsive perturbations. In this paper, we consider the following periodic 
boundary value problem of an impulsive differential equation 

( ) ( )( ) ( )( ) ,0,,,, TttttxtgtxtAtx i <<≠=+  (1a) 
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( ) ( ) ( )( ) ,...,,2,1, nitxFtxtx iiii ==−+  (1b) 

( ) ( ),0 Txx =  (1c) 

where ,0 210 Ttttt n <<<<<=  A is a nonlinear monotone 

operator, g is a nonlinear nonmonotone perturbation in a Banach space, 

( ) ( ) ( ) ( ) ( ) nitxtxtxtxtx iiiii ...,,2,1, =−≡−=∆ +−+  and iF ’s are some 
operators. The impulsive condition (1b) represents the jump in the state x 
at time ;it  with iF  determining the size of the jump at time it  (for the 

definitions of the operators A, g and iF  will be given in Section 2). Some 
interesting examples of impulsive periodic systems can be found in the 
modelling of nanoelectronic devices (see for instance [6, p. 307]). 

Impulsive evolution equations with an unbounded linear operator A 
of the form 

( ) ( ) ( )( ) ,,0,, ittttxtgtAtx ≠>=+  

( ) ( )( ) ,...,,2,1, nitxFtx iii ==∆  

( ) ( ),0 Txx =  

have been considered by Hinpang [3]. The questions of the existence and 
regularity of solutions have been discussed. However, these questions 
still open when the operator A is nonlinear. 

The purpose of this paper is to study the existence of periodic 
solutions of the strongly nonlinear impulsive evolution equations on 
( )T,0  and we will apply these results to impulsive control of periodic 
systems. 

2. System Descriptions 

The mathematical setting of our problem is the following. Let H be a 
real separable Hilbert space, V be a dense subspace of H having the 
structure of a reflexive Banach space, with the continuous embedding 

,∗VHV   where ∗V  is the topological dual space of V. The system 
model considered here is based on this evolution triple. Let the 
embedding HV   be compact. 
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Let yx,  denote the pairing of an element ∗∈ Vx  and an element 
.Vy ∈  If ,, Hyx ∈  then ( ),,, yxyx =  where ( )yx,  is the scalar 

product on H. The norm in any Banach space X will be denoted by .X⋅  

Let ( )TI ,0≡  be a finite subinterval of the real line and [ ].,0 TI ≡  
Let 1, ≥qp  be such that 111 =+ qp  where .2 +∞<≤ p  For p and q 
satisfying the preceding conditions, it follows from reflexivity of V that 
both ( )VILp ,  and ( )∗VILq ,  are reflexive Banach spaces and the 

pairing between ( )VILp ,  and ( )∗VILq ,  is denoted by .,  

Define 

( ) ( ) { ( ) ( )}∗∈∈== VILxVILxxTWIW qppqpq ,,,:,0  

and 
( ) ( ) ( ),,, ∗+= VLLVLLIW qppq

xxx  

where x  denotes the derivative of x in the generalized sense. Furnished 
with the norm ( ),IWpq

⋅  the space ( ( ) ( ) )IWpq pq
IW ⋅,  becomes a 

Banach space which is clearly reflexive and separable. Moreover, the 
embedding ( ) ( )HICIWpq ,  is continuous. Let us assume further that 

there is an embedding constant 10 <η<  such that 

[ ] ( )., IWHIC pq
xx η≤  If the embedding HV   is compact, the 

embedding ( ) ( )HILIW ppq ,  is also compact (see [7], Problem 23.13 

(b)). 

For a partition Tttt n <<<<< 210  on ( ),,0 T  we define the set 
( ) { ( ) ,...,,2,1,,,0 1 nittWxTPW iipqpq =∈= +  where }.,0 10 Ttt n == +  

Moreover, for each ( ),,0 TPWx pq∈  we define ( )TPWpq
x ,0  

( )∑ = +
= n

i ttW iipq
x1 , .

1
 As a result, the space ( ( ) ( ) )TPWpq pq

TPW ,0,,0 ⋅  

becomes a Banach space. Let [ ]( ) { xxHTPC :,,0 =  is a map from [ ]T,0  
into H such that x is continuous at every point ,itt ≠  left continuous at 

,itt =  and possesses the right-hand limit ( )+itx  for }....,,2,1 ni =  
Equipped with the supremum norm topology, it is a Banach space. 
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Definition 1. By a (classical) solution x of problem (1), we mean a 
function ( ) [ ]( )HTPCTPWx pq ,,0,0 ∩∈  such that ( ) ( )Txx =0  and 

( ) ( )( )iii txFtx =∆  for ni ...,,2,1=  which satisfies 

( ) ( ) ( ) vxtgvxtAvtx ,,,,, =+  

for all Vv ∈  and µ-a.e. on I, where µ is the Lebesgue measure on I. 

We need the following hypothesis on the data of problem (1). 

(A) ∗→× VVIA :  is an operator such that 

(1) ( )xtAt ,  is weakly measurable, i.e., the function ( ) vxtAt ,,  

is µ-measurable on I for all ., Vvx ∈  

(2) For each ,It ∈  the operator ( ) ∗→ VVtA :  is uniformly 

monotone and hemicontinuous, that is, there is a constant 01 ≥c  such 

that 

( ) ( ) p
VxxcxxxtAxtA 2112121 ,,, −≥−−  

for all ,, 21 Vxx ∈  and the map ( ) yszxtAs ,, +  is continuous on 

[0, 1] for all .,, Vzyx ∈  

(3) Growth condition: There exists a constant 02 >c  and a 

nonnegative function ( ) ( )ILa q∈⋅1  such that 

( ) 1
2, −≤∗

p
VV xcxtA  

for all ., ItVx ∈∈  

(4) Coerciveness: There exists a constant 03 >c  such that 

( ) p
VxcxxtA 3,, ≥  

for all ., ItVx ∈∈  

Without loss of generality, we can assume that ( ) 00, =tA  for all 

.It ∈  
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(G) ∗→× VHIg :  is an operator such that 

(1) ( )xtgt ,  is weakly measurable. 

(2) ( )xtg ,  is Hölder continuous with respect to x with exponent 

10 ≤α<  in H and uniformly in t. That is, there is a constant L such 
that 

( ) ( ) α−≤− ∗ HV xxLxtgxtg 2121 ,,  

for all Hxx ∈21,  and .It ∈  This assumption implies that the map 

( )xtgx ,  is continuous. 

(3) There exists a constant 04 >c  such that 

( ) 1
4, −<∗

k
HV xcxtg  

for all ,, ItVx ∈∈  where pk <≤1  is constant. 

(F) HHFi →:  is locally Lipschitz continuous on H, i.e., for any 

,0>ρ  there exists a constant ( )ρiL  such that 

( ) ( ) ( ) HiHii xxLxFxF 2121 −ρ≤−  

for all ( )....,,2,1, 21 nixx HH =ρ<  

It is sometimes convenient to rewrite system (1) into an operator 

equation. To do this, we set ( )VILX p ,=  and hence ( )., ∗∗ = VILX q  

Moreover, we set 

( ) ( ) ( )( ),, txtAtxA =  

( ) ( ) ( )( ),, txtgtxG =  (2) 

for all Xx ∈  and for all ( ).,0 Tt ∈  Then the original problem (1) is 

equivalent to the following operator equation (see [7, Theorem 30.A]): 
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( ),xGAxx =+  

( ) ( ),0 Txx =  

( ) ( )( ),iii txFtx =∆  (3) 

for ni ...,,2,1=  and .0 21 Tttt n <<<<<  

Remark. It follows from Theorem 30.A of Zeidler [7] that equation 

(3) defines an operator ∗→ XXA :  such that A is uniformly monotone, 
hemicontinuous, coercive, bounded and satisfied 

1−γ≤∗
p
XX xAx  

for some constants 0>γ  and for all .Xx ∈  Moreover, by using 
hypothesis (G)(3) and using the same technique as in Theorem 30.A, one 

can show that the operator ( ) ∗→ XHILG p ,:  is also bounded and 

satisfies 

( ) ( )
1

,
−δ≤∗

k
HILX p

uuG  

for some constants 0>δ  and for all ( )., HILu p∈  

3. Existence of a Periodic Solution 

In order to get a periodic solution of equation (1) in the space 
( ),IPWpq  we firstly consider the following Cauchy problem: 

( ) ( )( ) ( )( ),,, txtgtxtAtx =+  

( ) ,0 0 Hxx ∈=  

( ) ( )( ),iii txFtx =∆  (4) 

where ni ...,,2,1=  and .0 21 Tttt n <<<<<  By a solution of 
system (4), we mean a function ( )tx  as defined in Definition 1 except that 
( )tx  must satisfy the initial condition ( ) .0 0xx =  

Lemma 1. Under assumptions (A), (F) and (G), system (4) has a 
unique solution ( ) [ ]( )HTPCTPWx pq ,,0,0 ∩∈  and the solution depends 

continuously on the initial condition. 
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Proof. The existence of the solution of system (4) follows from [5] 
Theorem B. We can use hypothesis G(2) in proving the solution’s 
uniqueness. To see this, suppose that system (4) has two solutions 

( ) [ ]( ).,,0,0, 21 HTPCTPWxx pq ∩∈  Then it follows from the integration 

by parts formula and monotonicity of ( )xtA ,  that 

( ) ( ) ( ) ( ) 2
21

2
21 00 HH xxtxtx −−−  

( ) ( ) ( ) ( )∫ −∗−−=
t

VV dssxsxsxsx
0

2121 ,2  

( ) ( ) ( ) ( )∫ −∗−−=
t

VV dssxsxsxsx
0

2121 ,2  

( )( ) ( )( ) ( ) ( )∫ −∗−−+
t

VV dssxsxsxsgsxsg
0

2121 ,,,2  

( )( ) ( )( ) ( ) ( )∫ −∗−−≤
t

VV dssxsxsxsgsxsg
0

2121 ,,,2  

( )( ) ( )( ) ( ) ( )∫ −−≤ ∗
t

VV dssxsxsxsgsxsg
0

2121 ,,2  

( ) ( ) ( ) ( )∫ −−≤
t

VH dssxsxsxsxL
0

21212  

( ) ( )∫ −≤
t

H dssxsxLc
0

2
21 ,2  

for some positive constant c. By Gronwall’s lemma, we get 

( ) ( ) ( ) ( ) ( ).00 022
21

2
21

−−≤− tLc
HH exxtxtx  (5) 

Note that we can derive the uniqueness result for system (4) by 
simply setting ( ) ( )00 21 xx =  and using equation (5). Furthermore, 

equation (5) also implies that the solution of system (4) depends 
continuously on the initial condition. This proves Lemma 1. 
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Definition 2. For each ,Hy ∈  we write ( )ytx ,0;  to mean the 

solution of equation (4) corresponding to the initial condition ( ) .0 yx =  

Corollary to Lemma 1. The map ( )ytxy ,0;→  is well defined and 

is continuous from H into H. 

Proof. The proof follows immediately from Theorem 1. 

Lemma 2. Assume that 2=p  and .1=k  Let 0>r  and .0 Hx ∈  If 

,0 rx ≤  then [ ]( ) ,, rx HIC ≤  where x is the solution of (4) corresponding 

to the initial condition .0x  

Proof. Let x be the solution of (4) corresponding to the initial 
condition ( ) .0 0xx =  Then ( ).IWx pq∈  Let ( )VILX p ,=  and 

( ),, ∗∗ = VILX q  it follows from equation (3) that 

( ) ( ) .,,, xxGxxAxx =+  

Since A is coercive (Hypothesis (A)), 

( ) .,,3 xxxxGxc p
X −≤  

Using integration by part, Hölder’s inequality and Hypothesis (G); we 
get 

p
Xxc3  

( ) [ ( ) ( ) ]22 02
1, HH xTxxxG −−≤  

( ) ( )
pT p

V

qT q
V

txdtxtg
1

0

1

0
, 
















≤ ∫∫ ∗  

[ ( ) ( ) ]22 02
1

HH xTx −−  

( )( ) ( ) ( ) 2
1

0
4 02

1
HX

qT q
H xxdttxc +








≤ ∫  
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( ) ( ) 2
,4 02

1
HXHIL xxxc

q
+≤  

( ) ( ) ( ( ) ( ) [ ])407p.,7,,02
1 2

,5 HILVILxxxc qpHXVILp
∵+≤  

( ) ,02
1 22

5 HX xxc +≤  

for some constants .05 >c  We finally get ( ) .02
12

53 xxcxc X
p
X +≤  

Substituting ,2=p  we get 

( ) ( ) .02
1 22

53 HX xxcc ≤−  

By choosing some suitable constants 3c  and ,5c  we can assume that 

.153 ≥− cc  

Hence 

( ) ( ) ( ) .02
101 22

53
2

HHX xxccx ≤
−

≤  (6) 

It follows from equation (6) that if ( ) ,0 rx ≤  then ( )rx X 21≤  

for each fixed .0>r  Next, we shall estimate .x  Let .X∈φ  Then it 
follows from equation (3) that 

( ) ( ) .,,, φ=φ+φ xGxAx  

Applying Hölder’s inequality, we get 

( ) ( ) ( ) .XXXX xGxAx φ+φ≤φ ∗∗  

By using Remark at the end of Section 2, we have 

( ) ( ( ) ) .1
,

1
X

k
HIL

p
X p

xxx φδ+γ≤φ −−  (7) 

Then by substituting ,2=p  1=k  into (7) and by choosing sufficiently 
small γ and δ, we get 

.4
1

2
1 rrxx X ≤δ+






γ≤δ+γ≤  (8) 
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Hence for a given ,0>r  we get from equations (6) and (8) that 

( ) .4
1

2
1 rrrxxx XXIWpq

<+≤+= ∗  

Finally, we note that the embedding ( ) [ ]HICIWpq ,  is continuous; 

then 

[ ] ( )., IWHIC pq
xx η≤  

Since we assume that the embedding constant ,10 <η<  

[ ] ., rx HIC ≤  

The assertion follows: 

Theorem 1. Let conditions (A), (F) and (G) hold. Then equation (1) 
has a T-periodic solution if and only if there exists Hx ∈0  such that 

( ) ( ).00 xxTx ==  (9) 

Proof. The necessary condition is obvious. 

Sufficiency: Consider the following Cauchy problem: 

( ) ( )( ) ( )( ),,, txtgtxtAtx =+  

( ) ,0 0xx =  

( ) ( )( ) ....,,2,1, nitxFtx iii ==∆  (10) 

It follows from Lemma 1 that system (10) has a solution on [ ].,0 T  

Since condition (9) is satisfied, this solution must be a T-periodic 
impulsive solution. 

Lemma 3 (Bohl-Brower fixed point theorem). Let B be a non-empty 

compact convex subset of mR  and let the operator BBU →:  be 
continuous. Then U has a fixed point .Bx ∈  

We are now ready to prove the existence of a periodic solution of 

system (1) in the special case that .mRH =  
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Theorem 2. Let the following conditions hold: 

1. Conditions (A), (F) and (G) are met. 

2. Assumptions of Lemma 2 are met. 

Then equation (2) has a T-periodic solution ( )TPWx pq ,0∈  

[ ]( ).,,0 HTCP∩  

Proof. Let ( ]Tst ,0, ∈  be such that Tts ≤≤  and ,Hy ∈  and 

( )ystx ,;  be the solution equation (3) for which ( ) yyssx =+ ,;  ( .,e.i  the 

initial condition is ( ) ).ysx =+  We define the operator ( ) HHstU →:,  

by the formula ( ) ( ).,;, ystxystU =  It follows from Lemma 1 that the 

operator ( )stU ,  is defined uniquely for each .Hy ∈  Let ( ) ( )ytxtx ,0;≡  
be the solution of (3) corresponding to the initial condition 

( ) .0 mRyx ∈=  Let 0>t  be a positive real number and let 

( ) ( ( ) ≡= rclBrclBD ,0,0  closure of the ball in mR  centered at the origin 

and of radius )r  which is a compact subset of .mR  Define an operator 

( ) mRDTUU →= :0,  as follows: 

( ) ( ).,0; yTxyU =  

By Lemma 1, the solution of (2) is unique and hence the operator U is 
well defined and continuous. It follows from Lemma 2 that the operator 

.: DDU →  Hence, Lemma 3 implies that there is a point Dx ∈0  such 
that 

( ) ( ) ( ) .,0;or0, 0000 xxTxxxTU ==  

Hence ( ) ( )Txxx == 00  and by Theorem 1, system (2) has a periodic 
solution. 

4. Control of Impulsive Periodic Systems 

In this section, we study the existence of admissible control pairs. We 
model the control space by a separable reflexive Banach space E. By 

( ) ( ( )),EPEP fcf  we denote a class of nonempty closed (closed and convex) 
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subsets of E. Recall that (see for example [4]) a multifunction 
( )EPI f→Γ :  is said to be graph measurable if 

( ) ( ) ( ){ } ( ) ( ),:, EBIBtUvEIvtUGr ×∈∈×∈=  

where ( )IB  and ( )EB  are the Borel σ-fields of I and E respectively. For 

,2 +∞<≤ q  we define the admissible space adU  to be the set of all 

( ) selections-, EILq  of ( ),⋅Γ  i.e., 

{ ( ) ( ) ( ) },on.e.a-:, IttuEILuU qad µΓ∈∈=  

where µ is the Lebesgue on I. Note that the admissible space φ≠adU  if 

( )EPI f→Γ :  is graph measurable and the map 

( ) { ( )} ( ).:sup: ILtvvtt qE ∈Γ∈=Γ→  

The control problem (P) under consideration is the following: 

( ) ( )( ) ( )( ) ( ) ( ) ,0,,,, TttttutBtxtgtxtAtx i ≤≤≠+=+  (11a) 

( ) ( ) ( )( ) ,...,,2,1, nitxFtxtx iiii ==−+  (11b) 

( ) ( ).0 Txx =  (11c) 

Here, we require the operators A, g and iF ’s of equation (11) to 
satisfy hypotheses (A), (G) and (F), respectively as in Section 2. We now 
give new hypotheses for the remaining data. 

(U) ( )EPIU fc→:  is a measurable multifunction such that the map 

( ) { ( )}tUuutUt E ∈=→ :sup  

belongs to ( ).ILq  

(B) ( )( ),,, HELILB ∞∈  where by ( ),, HEL  we denote the space of 
all bounded, linear operators from V into H. 

By using the same notation as in equation (3), we can rewrite the 
control systems (11a)-(11c) into an equivalent operator equation as 
follows: 

( ) ( ) ( ) ,0, TtuBxGxAx <<+=+  (12a) 
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( ) ,0 0 Hxx ∈=  (12b) 

( ) ( )( ),iii txFtx =∆  (12c) 

where ( )Ttttni n <<<<<= 210...,,2,1  and the operators A, G 
and ( )niFi ...,,2,1=  are the same as in equation (4). We set 
( ) ( ) ( ) ( ).tutBtuB =  

This relation defines an operator ( ) ( )HILEILB qq ,,: →  which is 

linear and continuous. 

It follows immediately from hypothesis (U) that the admissible space 
φ≠adU  and adU  is a bounded closed convex subset of ( )., EILq  Any 

solution x of equations (12a)-(12c) is referred to as a state trajectory of 
the evolution system corresponding to adUu ∈  and the pair ( )ux,  is 
called an admissible pair. Let 

{( ) ( ) ( ) },pairadmissibleanis,:, uxUIPWuxA adpqad ×∈=  

{ ( ) ( ) }.,thatsuch: adadpqad AuxUuIPWxX ∈∈∃∈=  

Theorem 3. Assume that the hypotheses (A), (G), (B) and (U) hold. 
Then the admissible set φ≠adA  and adX  is bounded in ( )IPWpq  

( )., HIPC∩  

Proof. Let ,adUu ∈  define 

( ) ( ) ( ) ( ).,, tutBxtgxtgu +=  

Since ( )( ),,, HELILB ∞∈  one can see that ∗→× VHIgu :  
satisfies hypothesis (G). Hence, by virtue of Theorem B, equation (12) has 
a solution. 

Next, we shall show that adX  is bounded in ( )IPWpq  by considering 

each case separately. Let .adXx ∈  

Case 1. ( ).,0 1tt ∈  By Lemma 2, x  is bounded in ( ).,0 1tWpq  

Hence, 

( ) [ ]( ) .and 1,,01,0 11
MxMx HtCtWpq

≤≤  
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Case 2. ( )., 21 ttt ∈  Since ( ) Hx 0  and ( ) ,11 Mtx H ≤  by 

hypothesis (F), we have 

( ) ( ) ( )( ) HHH txFtxtx 111 +≤+  

( )[ ] ( )( ) ,021 111 HxFMLM ++≤  

where ( )1ML  is real constant depending on .1M  Hence, ( ) Htx +
1  is 

bounded. Using Lemma 2 again, we have 

( ) [ ]( ) .and 2,,2,0 212
MxMx HttCtWpq

≤≤  

After a finite step, there exists 0>M  such that 

( ) ([ ]) .and ,,0 MxMx HICTWpq
≤≤  

Hence, adX  is bounded in ( ) ( ).,,0 HIPCTPWpq ∩  
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