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Abstract

In this paper, we consider the question of the existence of periodic
solutions of nonlinear impulsive differential equations monitored by the

strongly nonlinear evolution equations x(t)+ A(t, x(t)) = g(t, x(¢)),
0<t<T. Here, V. H < V" is an evolution triple, A : IxV - V*

is a uniformly monotone operator and g:IxH » V" is a

Caratheodary mapping.

1. Introduction

In recent years, impulsive periodic systems have attracted much
attention since many evolution processes are subject to short term
impulsive perturbations. In this paper, we consider the following periodic

boundary value problem of an impulsive differential equation

x(t) + A(¢, x(t)) = g, x(¢)), t #¢,0<t < T, (1a)
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x(t7) - x(t;) = Fi(x(t;)),i=1,2, ..., n, (1b)
x(0) = x(T), (1c)

where 0=ty <t; <ty <---<t, <T, A is a nonlinear monotone
operator, g is a nonlinear nonmonotone perturbation in a Banach space,
Ax(t;) = x(t])—x(t; ) = (] ) - x(t;), i =1,2,.., n and F,’s are some
operators. The impulsive condition (1b) represents the jump in the state x
at time ¢;; with F; determining the size of the jump at time ¢; (for the
definitions of the operators A, g and F; will be given in Section 2). Some
interesting examples of impulsive periodic systems can be found in the

modelling of nanoelectronic devices (see for instance [6, p. 307]).

Impulsive evolution equations with an unbounded linear operator A
of the form
x(t)+ A@t) = g(t, x(¢)), t > 0, t = t;,

Ax(t;) = Fi(x(t)), i = 1, 2, ..., n,
x(0) = x(T),
have been considered by Hinpang [3]. The questions of the existence and

regularity of solutions have been discussed. However, these questions

still open when the operator A is nonlinear.

The purpose of this paper is to study the existence of periodic
solutions of the strongly nonlinear impulsive evolution equations on

(0, T) and we will apply these results to impulsive control of periodic

systems.

2. System Descriptions

The mathematical setting of our problem is the following. Let H be a
real separable Hilbert space, V be a dense subspace of H having the
structure of a reflexive Banach space, with the continuous embedding

V < H < V*, where V” is the topological dual space of V. The system

model considered here is based on this evolution triple. Let the
embedding V — H be compact.
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Let (x, y) denote the pairing of an element x € V* and an element
yeV. If x, ye H, then (x, y) = (x, y), where (x,y) is the scalar
product on H. The norm in any Banach space X will be denoted by | - | 5.

Let I = (0, T) be a finite subinterval of the real line and I = [0, T'].
Let p, ¢ > 1 be such that 1/p +1/¢g =1 where 2 < p < +w. For p and ¢
satisfying the preceding conditions, it follows from reflexivity of V that

both L,(I,V) and L,(I, V") are reflexive Banach spaces and the
pairing between L, (I, V) and L,(I, V") is denoted by ((, )).

Define
Wyg(I) = Wy (0, T) = {x : x € L,(I, V), & e L,(I, V*)}
and

by = 1 Dy, vy + D%l vy

where x denotes the derivative of x in the generalized sense. Furnished

with the norm ||-||qu(1), the space (Wp,(I), ||‘||qu(1)) becomes a

Banach space which is clearly reflexive and separable. Moreover, the
embedding W, (1) < C(I, H) is continuous. Let us assume further that
there 1s an  embedding constant 0<n<l1 such  that

7 < . If th bedd:i - H i t, th
I legz, m n||x||qu(I) e embedding V is compact, the
embedding W,,(I) = L,(I, H) is also compact (see [7], Problem 23.13
(b)).

For a partition 0 <t <ty <---<t, <T on (0, T), we define the set
PW,, (0, T) = {x € Wy,(t;, ti1), i = 1,2, ..., n, where t; =0, t,,; =T}.

Moreover, for each xe PW,,(0,T), we define "x”Pqu(O, )

=30« "qu(tivtiﬂ)' As a result, the space (PW,,(0, T, ||- "Pqu(O, )

becomes a Banach space. Let PC([0, T'], H) = {x : x is a map from [0, T']

into H such that x is continuous at every point ¢ # ¢;, left continuous at

t =t;, and possesses the right-hand limit x(¢) for i=1,2, .., n}.

Equipped with the supremum norm topology, it is a Banach space.
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Definition 1. By a (classical) solution x of problem (1), we mean a
function x € PW,,(0, T)N PC([0, T], H) such that x(0)= x(T) and

Ax(t;) = F;(x(¢;)) for i =1, 2, ..., n which satisfies
(%(2), v) + (A(t, x), v) = (g(¢, x), v)
for all v € V and p-a.e. on I, where p is the Lebesgue measure on I.
We need the following hypothesis on the data of problem (1).
(A) A:IxV — V" is an operator such that
(1) t > A(t, x) is weakly measurable, i.e., the function ¢ - (A(t, x), v)

is u-measurable on [ for all x, v € V.

(2) For each te I, the operator A(t):V — V* is uniformly
monotone and hemicontinuous, that is, there is a constant ¢; > 0 such

that
(A(t, 21) = A2, x2), %1 —x9) 2 1| 21 - 22 ||y

for all x1, xo € V, and the map s — (A(f, x + sz), y) is continuous on

[0, 1] forall x, y, z e V.

(3) Growth condition: There exists a constant ¢y >0 and a

nonnegative function a;(-) € L,(I) such that

-1
| A x) [y~ < call 2 [y

forall x e V,t e I.
(4) Coerciveness: There exists a constant cg > 0 such that
(A, x), x) = c3] x [
forall x e V,t e I.

Without loss of generality, we can assume that A(¢, 0) = 0 for all

t el
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(G) g : I xH — V" is an operator such that

(1) t > g(¢, x) is weakly measurable.

(2) g(¢, x) is Hélder continuous with respect to x with exponent

0 < o <1 in H and uniformly in ¢. That is, there is a constant L such
that

" g(t’ xl) - g(t’ x2)"V* < L" X1 — X2 "(I,:I

for all x;,x9 € H and t € I. This assumption implies that the map

x — g(t, x) is continuous.

(3) There exists a constant ¢, > 0 such that

ke
| 8t ) Iy < ealx I3
forall x e V,t € I, where 1 < k < p is constant.

(F) F, : H > H is locally Lipschitz continuous on H, i.e., for any
p > 0, there exists a constant L;(p) such that

| Fi(x1) = Fy(xo) | < Li(P)|| %1 = %2 |5
forall | x1 g, %2 |y <p (@ =12, .., n)

It is sometimes convenient to rewrite system (1) into an operator
equation. To do this, we set X = L,(I, V) and hence X" = L, (I, V™).

Moreover, we set

Alx)(t) = Alt, (),
G(x)(t) = g(t9 x(t))9 (2)

for all x € X and for all ¢ € (0, T). Then the original problem (1) is

equivalent to the following operator equation (see [7, Theorem 30.A]):
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%+ Ax = G(x),
x(0) = x(T),
Ax(t;) = Fy(x(t;)), (3)

fori=1,2,..,nand 0 <t] <itg <---<t, <T.

Remark. It follows from Theorem 30.A of Zeidler [7] that equation

(3) defines an operator A : X — X" such that A is uniformly monotone,

hemicontinuous, coercive, bounded and satisfied
-1
| Ax g < vl x|

for some constants y >0 and for all x € X. Moreover, by using
hypothesis (G)(3) and using the same technique as in Theorem 30.A, one
can show that the operator G : L,(I, H) - X" is also bounded and

satisfies
k-1
1G@) [y < 8] u "Lp(I,H)

for some constants & > 0 and for all u € L,(I, H).

3. Existence of a Periodic Solution

In order to get a periodic solution of equation (1) in the space

PW,,(I), we firstly consider the following Cauchy problem:

x(t) + At (1)) = g(t, x(2)),

x(0) = x9 € H,
Ax(t;) = Fi(x(t;)), 4
where i=1,2,..,n and 0<¢ <ty <---<t, <T. By a solution of

system (4), we mean a function x(t) as defined in Definition 1 except that

x(t) must satisfy the initial condition x(0) = x.

Lemma 1. Under assumptions (A), (F) and (G), system (4) has a
unique solution x € PW,,(0, T)NPC([0,T], H) and the solution depends

continuously on the initial condition.
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Proof. The existence of the solution of system (4) follows from [5]
Theorem B. We can use hypothesis G(2) in proving the solution’s
uniqueness. To see this, suppose that system (4) has two solutions
x1, %9 € PW,, (0, T)NPC([0,T], H). Then it follows from the integration

by parts formula and monotonicity of A(t, x) that
2 2
261 (¢) = x2) |77 = | %1 (0) = 22(0) |7

t
_ 9 j (1(69) - 53(5), 31(6) — wp (o)) _y s
= 2 (6) - #2(6), 1) - w6y s
w2 glo, 1 6) - o, 22060, 71(6) - mals)yey s
< 2f {05, 16) - 806, 1:06)), 11(5) - %2 (6)y ey s
< 2 (s, 160 - 65, 226y 3206) ~ 32 (6) Iy
< 2L 111(6) - 1209 gl 1) - w6y s

t
2
< 2Lef [[x1(5) - x2(6) s,
for some positive constant c. By Gronwall’s lemma, we get

| 21(8) = %0 (0) [ < || 21(0) - x5(0) | €2E<-0), 6)

Note that we can derive the uniqueness result for system (4) by
simply setting x;(0) = x9(0) and using equation (5). Furthermore,
equation (5) also implies that the solution of system (4) depends

continuously on the initial condition. This proves Lemma 1.
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Definition 2. For each y € H, we write x(; 0, y) to mean the

solution of equation (4) corresponding to the initial condition x(0) = y.

Corollary to Lemma 1. The map y — x(t; 0, y) is well defined and

is continuous from H into H.
Proof. The proof follows immediately from Theorem 1.

Lemma 2. Assume that p =2 and k=1. Let r >0 and xo € H. If

[xo||<r, then |x "C([fH]) <r, where x is the solution of (4) corresponding

to the initial condition x.

Proof. Let x be the solution of (4) corresponding to the initial
condition x(0) = xp. Then «xe Wy, (I) Let X =L,(I,V) and

X" = L,(I, V"), it follows from equation (3) that

(&, %)) + (Alx), x)) = ((G(x), x)).

Since A is coercive (Hypothesis (A)),

call x [ < {(G(x), 2)) - ((#, x))-

Using integration by part, Hélder’s inequality and Hypothesis (G); we
get

csl| x ||§(

< (Gl), x)) = 5 [ =) [ - (0[]

<([T1ee ozl ([ T1+01)

— 215 [ - )]

1/p

T 1/q
<o [ Qs Par] Qxl) s 51200



NONLINEAR IMPULSIVE PERIODIC EVOLUTION EQUATIONS 69
1 2
< el * g, . ml % lx + 51120) 5

1
< sy, vl 2lx +51%O) [ (- Ly, V) = Ly(1, H) [7, p. 407))

2 1 2
< el x|y +§|| x(0) ||z

for some constants c¢; > 0. We finally get cgf x [|§ < c5] » ||§( + %" x(0) .

Substituting p = 2, we get

2 _1 2
(e3 —cs)lx[x < 51 %0) -
By choosing some suitable constants c3 and c5, we can assume that
C3 — Cj > 1.

Hence

1 1
I2 1k < a1 *@ I < 51+ [ ©®

It follows from equation (6) that if | x(0) | < r, then || x |y < 1/v2)r
for each fixed r > 0. Next, we shall estimate | x|. Let ¢ € X. Then it

follows from equation (3) that
(%, o) + ((A(x), 9)) = (G(x), ).
Applying Hélder’s inequality, we get
40| < | A el Ly +1 G el 0

By using Remark at the end of Section 2, we have
. -1 k-1
O] Gl 8 +dlx B ol ©

Then by substituting p = 2, & =1 into (7) and by choosing sufficiently

small y and 3, we get

. 1 1
lil<vlxly+8 o)+ sqn ®
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Hence for a given r > 0, we get from equations (6) and (8) that

. 1 1
12 w2y =l llx + 1% [ < WAL
Finally, we note that the embedding W), (1) < C[I, H] is continuous;
then
= o <
I llegz, gy < mll = ||qu(1)-

Since we assume that the embedding constant 0 < n < 1,

(E: ||C[T, s
The assertion follows:

Theorem 1. Let conditions (A), (F) and (G) hold. Then equation (1)

has a T-periodic solution if and only if there exists xq € H such that
x(T) = xo = x(0). )
Proof. The necessary condition is obvious.
Sufficiency: Consider the following Cauchy problem:
x(t) + A, x(2)) = g(, x(2)),
x(0) = xg,
Ax(t;) = Fi(x(¢)),i=1,2, .., n. (10)

It follows from Lemma 1 that system (10) has a solution on [0, T].
Since condition (9) is satisfied, this solution must be a 7T-periodic
impulsive solution.

Lemma 3 (Bohl-Brower fixed point theorem). Let B be a non-empty

compact convex subset of R™ and let the operator U :B — B be

continuous. Then U has a fixed point x € B.

We are now ready to prove the existence of a periodic solution of

system (1) in the special case that H = R™.
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Theorem 2. Let the following conditions hold:
1. Conditions (A), (F) and (G) are met.
2. Assumptions of Lemma 2 are met.

Then equation (2) has a T-periodic solution x e PW,,(0,T)
N Pc(o, T], H).

Proof. Let t,s € (0, T] be such that s <t <T and y e H, and
x(¢; s, y) be the solution equation (3) for which x(s™; s, y) = v (i.e., the
initial condition is x(s*) = y). We define the operator U(t, s): H - H
by the formula U(t, s)y = x(¢; s, y). It follows from Lemma 1 that the
operator Ul(t, s) is defined uniquely for each y € H. Let x(¢) = x(¢; 0, y)
be the solution of (3) corresponding to the initial condition
x(0)=ye R™. Let t>0 be a positive real number and let
D = ¢lB(0, r) (cIB(0, r) = closure of the ball in R™ centered at the origin
and of radius r) which is a compact subset of R™. Define an operator

U=U(T,0): D— R™ as follows:

U(y) = x(T; 0, y).

By Lemma 1, the solution of (2) is unique and hence the operator U is
well defined and continuous. It follows from Lemma 2 that the operator
U:D — D. Hence, Lemma 3 implies that there is a point xy € D such
that

U(T, 0)(xq) = x¢ or x(T; 0, xq¢) = xp.

Hence x(0) = x¢y = x(7") and by Theorem 1, system (2) has a periodic
solution.

4. Control of Impulsive Periodic Systems

In this section, we study the existence of admissible control pairs. We
model the control space by a separable reflexive Banach space E. By

P¢(E)(Pr(E)), we denote a class of nonempty closed (closed and convex)
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subsets of E. Recall that (see for example [4]) a multifunction
[': I - Py(E) is said to be graph measurable if

Gr(U)={t,v)e IxE :v eU(t) € B(I)x B(E),

where B(I) and B(E) are the Borel c-fields of I and E respectively. For
2 < g < +o, we define the admissible space U,y to be the set of all

Ly(I, E)-selections of I'(-), i.e.,
Ugg = tu e Ly(I, E) : u(t) e T(t)u - ae. on I},

where p is the Lebesgue on I. Note that the admissible space U,y # ¢ if
[ : I — Py(E) is graph measurable and the map

t > |T()| = supf|v|g : veTlE)e LyI).

The control problem (P) under consideration is the following:

x(t)+ A(t, x(t)) = g(t, x(¢)) + B(t)ult), t #t;,0<t <T, (11a)
x(t])-x(t;) = Fi(x(;)),i=1,2, .., n, (11b)
x(0) = x(T). (11c)

Here, we require the operators A, g and F;’s of equation (11) to

satisfy hypotheses (A), (G) and (F), respectively as in Section 2. We now

give new hypotheses for the remaining data.
(U) U : I - Py (E) is a measurable multifunction such that the map
t > |U@®)|=supl|ulg :ueU®)
belongs to L, (I).
(B) B e L,(I, L(E, H)), where by L(E, H), we denote the space of
all bounded, linear operators from Vinto H.

By using the same notation as in equation (3), we can rewrite the
control systems (11a)-(11lc) into an equivalent operator equation as
follows:

x+ A(x) = G(x)+ B(u), 0 <t <T, (12a)
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x(0) = x9 € H, (12b)
Ax(t;) = Fi(x(t;)), (12¢)

where i =1,2,..,n (0<# <ty <---<t, <T) and the operators 4, G

and F; (i=1,2,..,n) are the same as in equation (4). We set
B(u)(t) = B(t)ul(?).

This relation defines an operator B : L,(I, E) - L,(I, H) which is
linear and continuous.

It follows immediately from hypothesis (U) that the admissible space
Ugg # ¢ and Ugyq is a bounded closed convex subset of L,(I, E). Any

solution x of equations (12a)-(12¢) is referred to as a state trajectory of
the evolution system corresponding to u € U,; and the pair (x, u) is

called an admissible pair. Let

Agqg = (%, u) € PWy,(I)xUgq : (¥, u) is an admissible pair},
Xqq = 1x € PWy,(I) : Ju € Uyqg such that (x, u) € Ayg}

Theorem 3. Assume that the hypotheses (A), (G), (B) and (U) hold.
Then the admissible set Ayq # ¢ and X,q is bounded in PW,,(I)

NPC(I, H).
Proof. Let u € U,,, define
gu(t, x) = g(t, x) + B(t)u(t).

Since B e L,(I, L(E, H)), one can see that g, :IxH — V"

satisfies hypothesis (G). Hence, by virtue of Theorem B, equation (12) has
a solution.

Next, we shall show that X4 is bounded in PW,,,(I) by considering
each case separately. Let x € X 4.
Case 1. ¢t € (0, ;). By Lemma 2, |x| is bounded in W, (0, t;).

Hence,

" X ”qu(o,tl) < M]_ and ” X "C([O,tl],H) < M].‘
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Case 2. te(t,ty). Since [x(0)|y and |x(t)|y < M;, by

hypothesis (F), we have

Il g < 2t g + 1 Ft) |5

< My[1+ 2Ly (My)] + | F(x(0)) | 5,

where L(Mj) is real constant depending on M;. Hence, || x(t) || is

bounded. Using Lemma 2 again, we have

(1]

(2]

(3

(4]

(5]

(6]
(7

[ x ||qu(0,t2) < My and | x ||C([t1, o], H) < M,.

After a finite step, there exists M > 0 such that

Hence, X4 is bounded in PW,, (0, T) N PC(I, H).
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