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Abstract

In this paper, under mild condition, we give the sufficient and necessary
condition that (x) is a scaling function of I2(R®), in view of support

of Fourier transform for @(x). Furthermore, suppose {y,} is an

orthonormal wavelet of L2(RS) and the whole support of its Fourier
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transform is

Under the weakest condition that each |[{,| is continuous for

S
[ONS G[H [4;, Di]], we obtain results on the above whole support of
i=1

{\u”}, which are characterized by some equalities and inequalities. We

have improved completely Long’s results and generalized Zhang’s

results.
1. Introduction and Preliminaries

The wavelet transform is a simple and practical mathematical tool
that cuts up data or functions into different frequency components, and
then studies each component with a resolution matched to its scale. Many
mathematicians and physicians have noticed the wavelet transform.
Indeed, engineers have discovered that it can be applied in all
environments where the signal analysis is used. The main feature of the
wavelets transform is to hierarchically decompose general function, as a
signal or a process, into a set of approximations functions with different
scales. In order to implement the transform, we need to construct various
wavelets. The main purpose of this paper is to study compact support of

Fourier transform for scaling function and orthonormal wavelets of
L? (R®). Wavelets are a fairly simple mathematical tool with a variety of

possible application. Already they have led to exciting application in
fractals [7], signal analysis [11], image processing [1, 4, 5] and design of
orthonormal wavelet [2, 3, 6, 8, 9, 10, 12, 13] the last two decades.

Throughout this paper, Z is the set of integers, R is the set of real
numbers, E, denotes all the integer lattice points of cube [0, M —1]°
(M >2 MeZ) and T denotes all the vertices of cube [0,1]°. For
G c R®, 8G denotes the boundary of G. f(o) denotes the Fourier
transform of f(x) e L?(R®), defined by
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I?(‘D) = J.RS f(t)ei(”‘tdt, ® € RS,

Let f be a measurable function, if E = clos{x € R®|f(x) # 0}, then
we say the set E is the support of f, and write suppf = E.
Let {y,(x)} e I[*(R®) and Wy k1) be an orthonormal basis of

L2(R®). Then {wy(x)} is called an orthonormal wavelet, where vy,  ;(x)

ks

=M2y, (M —-1)peE,— {0 keZlecZ

Definition 1. Let {V}, }keZ be a sequence of the closed subspaces of
L2(R®) satisfying:

Q) V, « Vi, ke Z;

(2) CIOSL2(RS)[ UVkJ = L2(RS)’ ﬂVk = {0}7

keZ keZ

(3) f(x) € V; if and only if f(Mx) € V;,4, j € Z;

(4) There exists a function ¢(x) € V such that {p(x — n)}, s is an
orthonormal basis of V. Then {V}},_, is said to be a multiresolution
analysis with dilation factor M, and ¢(x) is the corresponding scaling

function. For ¢(x) € Vy < V}, then there exists a sequence {pg},_,s such

that ¢(x) satisfies the two-scale equation

o(x) = M* > po(Mx - k). €
keZ$

By taking Fourier transform on the both sides of (1), we have

(Mo) = mo(©)p).  mo(@) = D pre
keZ?®

where mg(o) is said to be the mask function, and mgy(w) € I2([0, 2x]).
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Suppose the vector (mo(w+%D ,ve E;, can be extended to a

v
unitary matrix

M(o) = (mu(m + %Dv’u, u v e E,. 2)

Then the function {y(x)},. E,-{o} is an orthonormal wavelet of L2(R®),
which is said to be an M-MRA wavelet generated by o(t), where
Ve, o satisfying (Vo) = m, @)4(0), u < B, {0}

However, we know that, not all orthonormal wavelets are MRA
wavelets. For example, the Journe’s wavelet

4n
Tg\ El<m 4n<| g \ST

W(E) = X[ }(i) + X[ 3271(&)

is a non-MRA wavelet (see [2, 4]), where y; is the characteristic function

on I.

Using several theorems [10, Theorem 2.2.1, Theorem 3.6.7, Theorem
3.6.10, Equation 3.5.65] and [2, 3, 8, 9, 12, 13], we can derive easily the
following results:

Proposition 1. Let {‘Vu(x)}peEs—{O} be an orthonormal wavelet, and

for some &1, 89 > 0 such that
A -3 A 2-8
(@) =00 + ||}, ¥, € "%, peE;-{0} 3)

and U (Q+2na) = R®, where Q = UueES—{O} U(M]supp\i/u). Then
acZ® j<0
{Wu(x)}ueESf{O} is an M-MRA wavelet.

Proposition 2. Let {‘Vu(x)}ueEs—{O} be an orthonormal wavelet and
(3) be valid. Then

2 2

neks—{0} j<0 gez®

\i/H(M_j((o + 21toc))|2 = n(w), for ae o e R’

where n(w) is an integer-valued function.
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Proposition 3. Let {w“(x)}HEEs_{O} be an orthonormal wavelet. Then
Z Z |\f/“(Mjo))|2 =1, for ae. o € R®
neks—{0} jeZ
and

Z Yy (o + 2ma)\r, (MY (0 + 2n0)) = 80, j8y,v» for ae. e R*, j>0.

aeZ’
Proposition 4. Let {‘Vu(x)}peEs—{O} be an M-MRA wavelet, and the
corresponding scaling function ¢ satisfies lim ¢(w) = 0. Then

EOEEEDIEY

neEg—{0} j>0

\IJH(Mjo))|2, for a.e. ® € R®. 4)

Proposition 5 [3]. Suppose {V;} jez 18 an orthonormal M-MRA with

scaling function ¢(x), and |p(o)| is a continuous at 0. Then §(0) = 0.

2. Main Results

In this section, we borrow ideas from reference [12], to give

characterization of compact support of Fourier transform for scaling
function and orthonormal wavelets of L2(Rs). We have improved

completely Long’s results [10, Proposition 2.2.2, Theorem 3.5.11] and
generalize Zhang’s results [12, Theorem 1, Theorem 2]. We give the
following results:

Theorem 1. Let the function ¢(x) e L*(R®) satisfy
S
supp ¢ = [ ] [a;, b;]. 6)
i=1

Then ¢(x) generates an orthonormal M-MRA if and only if the following
conditions hold:

S
|p(0)| =1 forae. oec H[ai +8;, b; — 8;], where §; =b; —a; —2n, (6)
i=1
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4M  q; b;
2n£bi—alﬁm M+2n wa_27t<a 2n<a; <0<b; <2n, (7)
z |p(o - 2nv)> =1 fora.e. ® € [0, 2(M —1)xf. ®)
veEg

Theorem 2. Let {y,(x)} jo; be an orthonormal wavelet with

peEg—
dilation M of L? (R®) and the whole support of its Fourier transform be

S

U supp{iy,} = H[Ai’ Di]_li[(Bif Ci), 4 <B;<C; <D;. (9

pneE;—{0} i=1 i=1

If each |\TJH| is continuous for o € 6[ﬁ [4;, Di]], then for i=1,2, ..., s
we have o
B, <0<C;, MB; < %<B C; < f/! <MGC;, C; - ZE—AM,BL'+27E:%. (10)
Theorem 3. Suppose {(w) € L2(R*)N C(R®), supp = ﬁ[aj, dj] -
j=1

S
H(bj’ ¢j) (bj <cj,c;>0,j=1,2,..,5), and ¢ generates an M-MRA.

Then

d.
aj <0, dj >0, 2n<d;-a; <4Mn, q; <M]_b'

j . 11)

Remark 1 [12]. Comparing Theorem 1 with Long’s results [10,
Proposition 2.2.2], it is clear that we remove the redundant condition

#(w) e C(R).

Remark 2 [12]. Comparing Theorem 2 with Long’s results [10,
Theorem 3.5.11], it is clear that we remove many redundant conditions in
Long’s result as follows:

() {w,} is an MRA wavelet.
(i) ¢p(w) € C(R®) and lim ¢(w) =0
w—>0

(i) B; <0<C;,i=12 ..,
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Remark 3. When M =2, we can prove that the conclusion of

Theorem 1 and Theorem 2 implies that of Long’s result [10, Proposition
2.2.2, Theorem 3.5.11] and Zhang’s results [12, Theorem 1, Theorem 2].

Remark 4 [12]. In general, the condition that |\IJM| is continuous for

S

(ONS c’{H [4;, D; ]] cannot be removed. The well-known Shannon wavelet
i=1

[7] w(x) is a counterexample. In fact, {(®) = x[_or, —x](®) + X[z, 2x](®)-

y(o) is discontinuous at the two endpoint w = —2x, 21 but here % =B
. A
(A = 2n, B = n). This is contrary to 5 < B.
Remark 5. We generalized result of reference [12, Theorem 1,

Theorem 2] as follows:

(1) dilation factor of scaling function is generalized to arbitrary
positive integer (M > 2) from 2;

(i) we gave the characterization of compactly support of Fourier

transform of scaling function in two different case, that 1is,

S S S
supp ¢ = [ [ la;, b;] and supp § = []la;, d;]1- ] ®;, ¢;). But, only one
i1 k) ik}

S
case was discussed in reference [12], that is supp ¢ = H la;, b;].
i=1

3. Proof of Main Results

Proof of Theorem 1. We prove sufficiency. Suppose the conditions
(6)-(8) are valid, we only need to prove that ¢ generated an M-MRA. In

other words, we need to prove that {¢(- — k) : k € Z°} is an orthonormal

basis for V, and V;, < V;. This is equivalent to proving ®(§) =

ZM)(& + 2kn)|2 =1 and finding a 2nZ° -periodic function m (&) satisfies
keZ®

P(ME) = mo(E)9(E), ae. e R°. (12)
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From (5) and (8), we obtain

©E) = D |6+ 2kn)* = Y

keZ® veEg

BE-2mv)]? =1 forae. &[0, 2M -1)nf

and ®(&) is 2nZ° -periodic function. Hence, ®(¢) = 1.

Defining
S b
oe)i. cen = ]| 5 37|
mg(&) = = (13)
0, Eelg—A = [—n+ai+bi,n+ai+bi}—A1,
, M? M?

which is then extended periodically by 2nZ° from Ay to R®. It is clear
that (12) is valid on Ay. We need to prove that (12) is valid on Ag + 27a,

o # 0, a € Z°. This is equivalent to proving
P(M(E +2mar)) = mg (8) P& + 2mar) (14)
for £ € Ag, a2 0, o € Z°.

Let aj be the k-th coordinate of a. Suppose aj > 1, when & € Ay, we

have

+ 21 > b;

§j+2ﬂi(x]' < s M(§]+27IOLJ)SMZ7] ij,

9
M
thus, the both sides of (14) are equal to 0, (14) is valid. When
£ e Ay —A;, we have m(&) = 0,

aj + b] S

i 2o

M <M aj+bj M
(&j+2n(xj)_ -7+ e +2n| = Mn +

thus, ¢(M(E + 2na)) = 0. So (14) is valid. Analogously, when o) < -1,

(14) 1s valid. Combining above results, we have

P(ME) = my(E)9(E), ae. & R”.

The proof of sufficiency is completed.
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We prove necessity. First, we prove that (7) is valid. The proof is

processed in three steps:
(a) We prove that b; —a; 2 2n, j =1, 2, ..., s

Since ¢(x) is a scaling function (¢(x) generates an orthonormal

M-MRA), we know that

D lo(o+ 2mk)® =1, ae. o< R". (15)
keZ®

Suppose that there exists some j such that b; — a; < 2rn. Without loss
of generality, we set j =1, i.e, b —a; < 2n. Then Vo € (b, @ + 2n),

we have
] + 2km ¢ [al, bl]? keZ.

Therefore
S
Z|(p(c0 +21k)* =0, o e (b, a +2n)x H[ai, b;].
keZ® =2
This is contrary to (15). So bj —a; 22m,j=12 ..,s
(b) We prove that a; <0, bj >0,j=1,2,..,s.

Suppose that there exists some j such that a; > 0. Without loss of

generality, we set j =1, i.e., a; > 0. Let & be a positive number such

b: —a;
that g < min{ﬂ, min{ i 9 }} Then

MM
a; <a;+Me <b;, i=12,..,s, a—]‘}+81 <%§a1.
Let a = (a4, ag, ..., a5), € = (§1, &1, ---, £1). Then we have
S S
a+ Me e H[ai, b;], %+ € ¢ H[ai, b;].
1=1 i=1

So from (5), we have

¢la + Me) # 0, @(%+ g) =0.
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Since ¢(x) generates an orthonormal M-MRA, we know that
P(Mo) = mo(e)o(0),
where mg(®) is the mask function which is stated as in Section 1. A
contradiction 1s achieved, so we obtain « i <0, j=1,2,.., s Similarly,
we have bj >0,j=1,2,..,s
(c) We prove that a; # 0, bj #0,j=12,..,s.
From (b), we know a; < 0. If there exists some a; = 0, without loss

of generality, we set j =1, i.e., @¢; = 0. Then by (5), supp¢ < E;, where
E; =[0,0)x R*!. Now take a function feI?(R®) such that

ks
supp f ¢ E;. Because {(ka(x) =M?2 (p(ka -l keZle ZS} is an

orthonormal basis of L2(R®), define V}, = {or.1(x), I € Z®}. Then f(x) can

be represented as follows:

fe) = D dpop().

keZ,1eZ®
By taking the Fourier transform on the both sides of above equation, we
get
flo) = Z dp, 19y, 1, 1(0).
keZ,leZ’

By supp$ < E;, we have supp ¢ ;(®) = supp (b(%) c E;. Again by

Unez V., =I2(R°), we have suppfe E;. This is contrary to
suppf ¢ E;. Therefore, a; # 0. Furthermore, we show that a; # 0,
j=1,2, .., s Similarly, we have bj #0,j=1,2,..,s.

Using ¢(Mw) = my(0)(w) and (5), we have that

S S

mo(®) = 0, 0 < [ [ las, b-]—H{%, bﬁf}

j=1 j=1
s

b
mg(®) 2 0, o € H[?W_J’ M]J

j=1
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By the periodicity of mg(w), we obtain that

b; aj
M—ajSZTC, bj—MSZR.
Therefore
4M .
2n£bj—aj§M+1n, —Znﬁaj<0<bj£2rc,]=1,2,...,s.

So, (7) is valid.

Next, we prove that (6) 1s valid.

S
Let o = (o1, 0y, ..., o) € [ [la; +8;, b; - 8;], where §; =b; —a; - 2m.
j=1
Then, we have that

S
®+ 2k ¢ H[aj, bl k= (ky, kg .., k) € Z5, k #0.
j=1

By (5) and (15), we have

S

1= [0+ 2mk) =), oe[]le;+8; b5 -8;)

keZ® J=1
So, (6) is valid.

Finally, we prove that (8) is valid.
Let & € [0, 2(M - 1)nf’, o = (ag, g, ..., ag) € Z° — E;. Then & - 2na

S
¢ (-2m, 2n)°. Furthermore, we have & - 2na ¢ [ [ [a;, b;]. By (5), (7) and
-1
(15), we have

D e -2 = Y JaE -2 =1, & e [0, 2M -1)af.

keZ® vekEg
So, (8) is valid. The proof of Theorem 2 is completed. 0
Before proof of Theorem 1, we give three lemmas:

Lemma 1. Under the assumptions of Theorem 2, we have A; < 0,

D, >0, i=12 ..,s.
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Proof. Suppose there exists some i such that A; > 0. Without
loss of generality, we set i =1, ie., A; > 0. Then by (9), supp\|7u c

E,(n e E, —{0}), where
E, =[0, ©)x R*7L. (16)
Now take a function f e L*(R®) such that f is continuous and

supp f ¢ E;. Because {\Vu,k,l(x)}ueEs—{O} is an orthonormal basis of

L%(R®). Then f(x) can be represented as follows:

)= D D Curvr(®).

uek,/{0} keZ,leZ’

Furthermore, we get

fo)y=" > D CunaVr©). 17
neEs/{0} rez,icz®

By suppy, c E;, we have suppy, j (o) = supp\f/u[ikj c E;. Again
&, I

by (17), noticing that f(w) is continuous in R®, we know that f(w) = 0
for ® € R® — E;. Furthermore, we have suppf c E;. This is contrary
to supp}2 z E;. So A; <0,i=1,2,.. s Similarly, we have D; >0,
1=1,2 .., s O

Lemma 2. Under the assumptions of Theorem 2, we have B; <0 < C;,

1=1,2,..,s

Proof. First, we prove that, for any p, v e E; — {0} and a sufficiently

large j > 0, we have
@H(M_jco)\f/\,(w) =0, fora.e. oe R’ (18)

Since {y,(x)j,cg, oy is an orthonormal wavelet in L*(R®), by

Proposition 3, we know that, for any p, v and j > 0,
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Z\@H(M_jm + 2o, (0 + M/ 2na) = 80, jOy,v, forae. o e R*. (19)

acZ®
By (9), we know that each \f/u(oo) has a compact support. So we can take a
sufficiently large j > 0 such that for any a = 0, ® € suppy,,, we always
have o + M’2no ¢ supp(,. Namely, (o + M/ 2na) = 0. Again by (19),
we know, for a sufficiently large j > 0,

\Du(ijm)\i/V(co) =0, for a.e. » € suppy,. (20)

From this we obtain (18) immediately.

Next, by (19) it follows that, for a sufficiently large j > 0,

> o) || Y |\pv(m)|J=o, forae oeR°. (21)

neE;—{0} veE;—{0}

Let
Q= supp{ > |¢H(M_j®)|] N Supp[ > |\va(®)|} (22)
peEs—{0} veEg—{0}
Combining (21) and (22), we know mes @ = 0.
Finally, by (9), we know that

Supp[ Z \I/M(w)lJ = U suppy,, = ﬁ[Ai> D;]- li[(Bi, ).

pneEg—{0} pneE;—{0} i=1 i=1

Consequently,

S S
supp[ > M(M‘fm)l}:H[MfAi, M'D]- | | 'B. M),
neE;—{0} i=1 i=1

Putting this equation, (21), (22) and Lemma 1 together, we obtain that,
for a sufficiently large j > O,

S

[ 14 pil = li[(MjBi, MICy).

i=1 i=1
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Hence we have M/B; < A; < D; < M'C; (i =1, 2, ..., s). Since A; <0,
D; >0, we have B; <0<C;, i=12 .. s Proof of Lemma 2 is

completed. 0
Lemma 3. Under the assumptions of Theorem 2, then

(1) % < Bi? Ci S%, i =1, 2, ey S
Gi) D; — A; > 2Mn, i =1, 2, ..., 5.
(iii) {WP«}HEES—{O} is an M-MRA wavelet.

Proof. First, we prove ().

A
Suppose ﬁl > B;. By Lemma 1 and Lemma 2, we know that

A < B; <0. Let F = li[(Bi, C;) and o e (Bl, %)XF When % > 1,
=2

MF*o e (M*B), M*A;)x M*F < (-, A;)x M*F. When k <0, M*o e

(B;, 0)x M*F, where M*F = f[(MkBi, M*C;). Noticing that B; < 0

< C;, we have -

S S
Mroe[]la, D]-[]®B. C). kez
i=1 i=1
Hence from (9), we obtain that
~ark N A
\VH(M(D)—O, Vo e BI,M XF, MEES—{O},}»’EZ.

Take f(x) # 0, a.e. x € R® such that suppf (Bl, %} x F. Then

@)= D D vk )V k)

neEs—{0} keZ jcz8

- Z Z 2(2111)3 (o Wb 1)W1, 1() = 0.

peE,—{0} keZ jcz8

This is contrary to f(x) # 0, a.e. x € R®. Therefore, % < By.
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. LA D; .
Similarly, we can obtain =~ < B;, C; < =Lt ,i=1,2, ..., s.
M

M

Next, we prove (i1).

S
By (9), we know that suppy,, H [4;, D;], then
i=1

\I’u(w) =0, o¢ H[Ai’ Di]’ ne Es - {0} (23)
i=1

S
Since [{,| is continuous for o e 6[1_[ [4;, Di]], we have {,(0) =0,
i=1

S .
e o0 A;, D;]|. From (23), we obtain that, for j >1, {,(M’/w) =0,
i i n

5T A D. A .
o ¢ | {Mlz , MZQ] Let G(w) = z z |\VH(M]0))|2. Then
i Ealo} >0
S
A D
G(w) = Z |\1:H(M(,))|2, “)EH{ i Lz}
Esf{o} i=1 M M
and
S
A D:
@) =0 2w 24
(©) weir_l[[M M} on

S
Again we noticing that |y, | is continuous for o e 8[1_[ [4;, D; ]J, we obtain
=1

s . .
that G(o) is continuous for ®» € & H {ﬁ, &} . Using (24), we have
alM M
T4, D
_ e R
Glw)=0, oe 8[ {M , MB (25)
=1
Now suppose D; — A; < 2Mmr, let
L(w) = Z G(o + 2na). (26)

oecZ®
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_ A A D
M’ M

L —} It is clear that

H c 6[111 {%, %H 27

i=1
Let o = (aq, ag, ..., ag). When a; =0 and o € H,
m+2naea[ﬁ{ﬁ,&ﬂ or w+2naéﬁ{ﬁ,&}. (28)
i=1 MM i=1 MM
Using (24) and (25), we have
G(w + 2na) = 0, ® € H and G(o + 2na) is continuous for € H. (29)
Similarly, when a; # 0 and © € H, in view of D; — A; < 2Mn, (28) and
(29) are still valid.
Therefore
Ll®)=0, oeH. (30)

Since G(w) has a compact support, we obtain that for

Al _ Al s Al DL . . .
oe {M &3+ 8:| x g {M, il there are only finite terms in L(w).

Again noticing that G(w + 2ra) is continuous for o € H, we know that
L(®) is continuous for ® € H. By Lemma 2 and Lemma 3(i), we have
Ay < B;. From the definition L(w) and G(®), noticing that G(®) > 0, we
know that

L(o) > G(o) > ZN]H(M(»)F.
0

But by (9), we get

g
?
5
zl\:)
Vv
(@]
o
=
o
®
e
m
1
<>
St
|
X
1
<l
S
| |

i 1=2
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So
A B 1HlA D
L(w) > 0 for a.e. me[ﬁ,ﬁ}xq[ﬁ,ﬁ-
i=

Again because L(w) is continuous for o € H, using (30), we know that

there exist 0 < 8 < ﬁ - ﬁ such that
M M

1 A A YTA; D,
0 <|L(w)| <3 fora.e. w € [H’HJFS}XI_! STl
1=
Again noticing the definition of L(w), we will see that this is contrary
to Proposition 2. So D; — A; > 2Mn. Similarly, we get D; — A; > 2Mmr,
1=1,2, ...

Finally, we prove (iii).

From (9) and Lemma 3(i), we have

[Tt Dibsupp[ 2 m(wn}: s [Ai,Di]—f[[%,%}.

i=1 pueEs—{0} i=1 i=1
So for j > 0,
[ A, D ;
[ REAEE I SO
1=1 M M peEg—{0}
T A D, T A D
1 1| 1 4
DH[MJ’MJ H[M”l M“l}
1= 1=
Since
UITT 20172 -2 =T 2 -
~ LMy ] Ay it L1 M M ’
Jj>0 \i=1 =1 i=1
we have

supp (M) = S 4 D) (31)
I 15 %

peE;—{0} j>0 i=1
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So letti Q= M/ h Q=
o letting U U( suppy, ), we have H[M M}
neEg/{0} j<0

Again from D; — A; > 2Mn, it follows that U (Q + 2na) = R®. Using

oeZ®

Proposition 1, we have {y,},.p_ /o, is an M-MRA wavelet. Lemma 3 is
proved. 0
Proof of Theorem 2. Using Lemma 3, we know that {Wu}ueEs _jo} 1s

an M-MRA wavelet. Here we define the corresponding M-MRA by
{Vin}mez and the scaling function by o(z).

Using Lemma 2, we have

B <0<C;, i=12 ..,s. (32)

S
Under the assumption condition, it is clear that supp\f/H c H[Ai, D;].

i=1
Again by A; <0, D; >0, it follows that suppy c ﬁ[i &}
g y 1 ,» 47 ) pp\vp,k,l 1 M’ M )
k < 0. Because ¢ € V; and
Vo = supp{y, i1 e E; {0}, k< 0,1 e Z%}, (33)
we have
suppo li[ 4 D (34)
Ppo < 11 WM
By (34), it is clear that lim ¢(w) = 0. Using Proposition 4, we obtain
W—>0
o) = for a.e. o € R®.
pneEg-{0} j>0

Again from (31), it follows that

suppp = {M il (35)



THE CHARACTERIZATION OF COMPACT SUPPORT ... 271

So by Theorem 2 and Lemma 3(i1), the following results hold:

2 .
oMr < D, - A; < M~ A oy
M +1 M
Di _oppm< A, —oMr< A <0< D <2Mr, (36)
M

S

|p(0)| =1, fora.e. o e 1_1[{% - 2n, % + 211}
1=
and

M M

S S
0 <|p(w) <1, forae. oe H[%, %} - {& -2n A + 27:}. 37
i=1 i=1

From (35) and (37), it follows that

~f @ 2
w5 -

Furthermore, using Proposition 4, we know the whole support

S

S
R A D D: A;
(P((D)lz} = I I [Ml, ﬁj‘ - [Ml - 2m, MZ + 27‘[).

i=1 =1

S

S
Ay A D D; A;
U o) =[] |55 5] I (-2 35+ 20).
1=

pueEgs—{0} i=1

Comparing it with the assumption condition, we get

B =2 o ¢ =Ziion (38)
M M

A D ..
From (38) and (36), we have MB; < Ml’ Ml < MC;. By Lemma 3(ii) and

(38), we finally get % < B;, % > C;. Again by (32) this completes the
proof of (10). So Theorem 1 is proved. 0

Proof of Theorem 3. First, we prove that a; <0, dj > 0,
j=12 ..,s

By Proposition 5, we know that ¢(0) = 0 and O is inner point of

S S
[a;, dj]—H(bj, ¢j). Therefore, aj <0,d; >0,j=1,2, .., 5.
Jj=1

j=1
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Next, we prove that dj -a; > 2m, j=12,..s.

Since ¢(x) generates an orthonormal M-MRA, we know that
Z|¢>(o) +2nk)[? =1, ae o e R (39)
keZ’

Suppose that there exists some j such that d; — a; < 2n. Without loss
of generality, we set j =1, ie., d; —a; < 2n For Vo, € (d;, a; + 2n),

then we have

o +2kn ¢ [a), d;], ke Z

Therefore
Zm(@ +2mk)? =0, oe(d,a +2m)x | [[a; d;].

This is contrary to (39). So, dj—a;22nj=1,2,.,s

Suppose that there exists some j such that d ; —aj = 2n. Then, when

® € supp®, we have

Po)* =1.

> Ji(o + 2mk)? =

keZ®

So ¢(w) = £1, it is contrary to the continuous of ¢. So d; —a; # 2m,

j=12 ..s.

We obtain d]- —-a; > 2m, j=12,..,s.

d:
Next, we prove that a; <

i <37 j=12,.., s The proof is

s
processed in three steps:
Cj 3
(a) We prove that ” <bj,j=12,..,s

Since ¢(t) generates an orthonormal M-MRA, we know that

G(ME) = mo(2)H(8), (40)
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where mg(w) is the mask function. Suppose that there exists some j such

c .
that b; < M] Without loss of generality, we set j =1, i.e., b < cﬁl, and

take any &; such that

bl <CM1<§1 <min{cl,%}SCl, ¢ < M\él <d1.

Let &= (&, &, - &), & € {—,ﬁ}—[ﬁ,i} j =23 .5 Then
M M M M
we obtain
ME e suppd, & & suppé.
Therefore

@(Me) = 0, ¢(&) =0

c:
It is contrary to (40). Thus, we have M] <bj,j=12 ..,
d;
(b) We prove that M <cj,j=12,.

¢;
Suppose that there exists some j such that b; < M Without loss of

generality, we set j =1, i.e., ¢ < ﬂ We show that it is impossible in two

M
cases. When d; > Mzbl, take & with Mb — ¢ < ¢ < min{d—]‘} -0, cl},
thus
g <€ +& :al <%<d1,b1 <§—]‘}<Cl.

Let &= (&, &2, .. &), &j €laj, dj]-(bj,¢j), j=2,3,.. 5 Then we

obtain

& € supp9, ¢ suppo.

&
M

®(&) = 0, fp(%} =

Therefore
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It is contrary to (40). When d; < Mzbl, take & with Mb, —dﬁl < g

. (d d
< m1n{ﬁ1, Me; - —1}, then

M
dl dl él
<—<—+g =& <dj, b <=>=<gcq.
‘1 M M =5 1 M “

Let &= (&, &g - &), &) € [aj, dj] - (bj, ¢j), j=2,8,...,s. Then we
obtain
& € suppg, % & suppg.
Therefore
’ N ij _
o) = 0, @(M = 0.

d:
L <ec..

It is contrary to (40). Consequently, we have Vj =1, 2, ..., s, i :

d:
(c) We prove that Mj <bj,j=12 ..,s

Suppose that there exists some j such that b; < ML Without loss of
. . . d; . d;
generality, we set j =1, ie, b < U Let & with b < & < N\ < ¢.
Then
C]_SMbl <]W5.~1<d1-

Let &= 9 4 Lo i=23 Th
€ g_(§1’é2;--'7as),§je M;H_M,M,]— y Oy veey S. en

we obtain

ME € suppp, & ¢ supp@.

Therefore
N NES.
(P((:) * Oa (P(Mj - 0

a contradiction is obtained. Thus, Mj < bj, j=12,..,s.
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Using above results (a), (b) and (c), we obtain the inequality
d; .
a; <M£bj, j=12, ..,s. (41)
Finally, we prove that dj -a; < 4Mr, j =1, 2, ..., s.
When the inequality (41) holds, we have that
my(w) = 0, otherwise,
e la; d; (b ¢
et A B _L L
mo <0, w1155 - 115 57)
j=1 j=1
By the periodicity of mq(w), we obtain that
ﬁ—a- < 2m, i—ﬁﬁ 2m, i—ﬁ§21'c, b; —&S 2n
M J M M M M M
or
—-—a; <2n, bj ——-<2n, —-——- <21, b - <2n
M M M M M
Consequently,
d] - a]- < 4MTE, ] = 1, 2, veey So (42)
Therefore, we have
d
aj; <0, d] > 0, 27c<dj—a~ < 4 Mr, aj <ﬁ$bj.
The proof of Theorem 3 is completed. 0

4. Conclusion

Suppose {y,} is an orthonormal wavelet of L2(R®) and the whole

support of its Fourier transform is

S

Jsupptin} = [ J14:, D1- ﬁ (Bi, C),
i=1

n i=1

AiSBiSCiSD' i:1,2,...,8.

1



276

LEI, HUANG and CHENG

A characterization of the above whole support is given by some equalities

and inequalities. We have improved completely Long’s results and

generalized Zhang’s results.
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