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Abstract 

In this paper, under mild condition, we give the sufficient and necessary 

condition that ( )xϕ  is a scaling function of ( ),2 sRL  in view of support  

of Fourier transform for ( ).xϕ  Furthermore, suppose { }µψ  is an 

orthonormal wavelet of ( )sRL2  and the whole support of its Fourier  
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transform is 
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Under the weakest condition that each µψ̂  is continuous for 

[ ] ,,
1









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


∂∈ω ∏

=

s

i
ii DA  we obtain results on the above whole support of 

{ },µψ  which are characterized by some equalities and inequalities. We 

have improved completely Long’s results and generalized Zhang’s 
results. 

1. Introduction and Preliminaries 

The wavelet transform is a simple and practical mathematical tool 

that cuts up data or functions into different frequency components, and 
then studies each component with a resolution matched to its scale. Many 

mathematicians and physicians have noticed the wavelet transform. 
Indeed, engineers have discovered that it can be applied in all 

environments where the signal analysis is used. The main feature of the 
wavelets transform is to hierarchically decompose general function, as a 

signal or a process, into a set of approximations functions with different 
scales. In order to implement the transform, we need to construct various 

wavelets. The main purpose of this paper is to study compact support of 
Fourier transform for scaling function and orthonormal wavelets of 

( ).2 sRL  Wavelets are a fairly simple mathematical tool with a variety of 

possible application. Already they have led to exciting application in 
fractals [7], signal analysis [11], image processing [1, 4, 5] and design of 
orthonormal wavelet [2, 3, 6, 8, 9, 10, 12, 13] the last two decades. 

Throughout this paper, Z is the set of integers, R is the set of real 

numbers, sE  denotes all the integer lattice points of cube [ ]sM 1,0 −  

( )ZMM ∈≥ ,2  and Γ denotes all the vertices of cube [ ] .1,0 s  For 

,sRG ⊂  G∂  denotes the boundary of G. ( )ωf̂  denotes the Fourier 

transform of ( ) ( ),2 sRLxf ∈  defined by 
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( ) ( )∫ ∈ω=ω ⋅ω
sR

sti Rdtetff .,ˆ  

Let f be a measurable function, if { ( ) },0clos ≠|∈= xfRxE s  then 

we say the set E is the support of f, and write .supp Ef =  

Let { ( )} ( )sRLx 2∈ψµ  and { }lk,,µψ  be an orthonormal basis of 

( ).2 sRL  Then { ( )}xµψ  is called an orthonormal wavelet, where ( )xlk,,µψ  

( ) { } .,,0,2 s
s

k
ks

ZlZkElxMM ∈∈−∈µ−ψ= µ  

Definition 1. Let { } ZkkV ∈  be a sequence of the closed subspaces of 

( )sRL2  satisfying: 

(1) ;,1 ZkVV kk ∈⊂ +  

(2) ( ) ( ) { }∩∪
Zk

k
s

Zk
kRL

VRLVs

∈∈

==









;0,Clos 2

2  

(3) ( ) jVxf ∈  if and only if ( ) ;,1 ZjVMxf j ∈∈ +  

(4) There exists a function ( ) 0Vx ∈ϕ  such that ( ){ } sZnnx ∈−ϕ  is an 

orthonormal basis of .0V  Then { } ZkkV ∈  is said to be a multiresolution 

analysis with dilation factor M, and ( )xϕ  is the corresponding scaling 

function. For ( ) ,10 VVx ⊂∈ϕ  then there exists a sequence { } sZkkp ∈  such 

that ( )xϕ  satisfies the two-scale equation 

 ( ) ( )∑
∈

−ϕ=ϕ
sZk

k
s kMxpMx .  (1) 

By taking Fourier transform on the both sides of (1), we have 

( ) ( ) ( ) ( ) ∑
∈

ω⋅−=ωωϕω=ωϕ
sZk

ik
kepmmM ,,ˆˆ 00  

where ( )ω0m  is said to be the mask function, and ( ) ([ ] ).2,02
0

sLm π∈ω  



LEI, HUANG and CHENG 256

Suppose the vector sE
M

m ∈ν













 πν

+ω
ν
,

2
0  can be extended to a 

unitary matrix 

 ( ) .,,2

,
sE

M
mM ∈νµ





 





 πν+ω=ω

µν
µ  (2) 

Then the function { ( )} { }0−∈µµψ sEx  is an orthonormal wavelet of ( ),2 sRL  

which is said to be an M-MRA wavelet generated by ( ),tϕ  where 

{ ( )} { }0−∈µµψ sEx  satisfying ( ) ( ) ( ) { }.0,ˆˆ −∈µωϕω=ωψ µµ sEmM  

However, we know that, not all orthonormal wavelets are MRA 

wavelets. For example, the Journe’s wavelet 

( ) ( ) ( )ξχ+ξχ=ξψ




 π≤ξ≤π



 π≤ξ≤π

7
324

7
4ˆ  

is a non-MRA wavelet (see [2, 4]), where Iχ  is the characteristic function 

on I. 

Using several theorems [10, Theorem 2.2.1, Theorem 3.6.7, Theorem 

3.6.10, Equation 3.5.65] and [2, 3, 8, 9, 12, 13], we can derive easily the 

following results: 

Proposition 1. Let { ( )} { }0−∈µµψ sEx  be an orthonormal wavelet, and 

for some 0, 21 >δδ  such that 

 ( ) ( ) { }0,ˆ,1ˆ 21 2 −∈µ∈ψω+=ωψ δ−
µ

δ−
µ sELO  (3) 

and ( )∪
sZ

sR
∈α

=πα+Ω ,2  where ( ){ }∪ ∪0
0

.ˆsupp
−∈µ

<
µψ=Ω

sE
j

jM  Then 

{ ( )} { }0−∈µµψ sEx  is an M-MRA wavelet. 

Proposition 2. Let { ( )} { }0−∈µµψ sEx  be an orthonormal wavelet and 

(3) be valid. Then 

( ( )) ( )
{ }

∑ ∑ ∑
−∈µ < ∈α

−
µ ∈ωω=πα+ωψ

0 0

2 ,..,2ˆ

s sE j Z

sj ReafornM  

where ( )ωn  is an integer-valued function. 
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Proposition 3. Let { ( )} { }0−∈µµψ sEx  be an orthonormal wavelet. Then 

( )
{ }

∑ ∑
−∈µ ∈

µ ∈ω=ωψ
0

2 ..,1ˆ

sE Zj

sj ReaforM  

and 

( ) ( ( ))∑
∈α

νµνµ ≥∈ωδδ=πα+ωψπα+ωψ
sZ

s
j

j jReaforM .0,..,2ˆ2ˆ ,,0  

Proposition 4. Let { ( )} { }0−∈µµψ sEx  be an M-MRA wavelet, and the 

corresponding scaling function ϕ satisfies ( ) .0ˆlim =ωϕ
∞→ω

 Then 

 ( ) ( )
{ }

∑ ∑
−∈µ >

µ ∈ωωψ=ωϕ
0 0

22 ...,ˆˆ

sE j

sj ReaforM  (4) 

Proposition 5 [3]. Suppose { } ZjjV ∈  is an orthonormal M-MRA with 

scaling function ( ),xϕ  and ( )ωϕ̂  is a continuous at 0. Then ( ) .00ˆ ≠ϕ  

2. Main Results 

In this section, we borrow ideas from reference [12], to give 
characterization of compact support of Fourier transform for scaling 

function and orthonormal wavelets of ( ).2 sRL  We have improved 

completely Long’s results [10, Proposition 2.2.2, Theorem 3.5.11] and 
generalize Zhang’s results [12, Theorem 1, Theorem 2]. We give the 
following results: 

Theorem 1. Let the function ( ) ( )sRLx 2∈ϕ  satisfy 

 [ ]∏
=

=ϕ
s

i
ii ba

1

.,ˆsupp  (5) 

Then ( )xϕ  generates an orthonormal M-MRA if and only if the following 

conditions hold: 

( ) 1ˆ =ωϕ   for a.e. [ ]∏
=

δ−δ+∈ω
s

i
iiii ba

1

,,  where ,2π−−=δ iii ab  (6) 
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,202,2,2,
1

42 π≤<<≤π−≤π−≥π+π
+

≤−≤π iii
i

i
i

ii baa
M
b

b
M
a

M
Mab  (7) 

( )∑
∈ν

=πν−ωϕ

sE

12ˆ 2    for a.e. ( )[ ] .12,0 sM π−∈ω  (8) 

Theorem 2. Let { ( )} { }0−∈µµψ sEx  be an orthonormal wavelet with 

dilation M of ( )sRL2  and the whole support of its Fourier transform be 

 { } [ ] ( )
{ }
∪

0 1 1

.,,,ˆ
−∈µ = =

µ ∏ ∏ ≤≤≤−=ψ

sE

s

i

s

i
iiiiiiii DCBACBDAsupp  (9) 

If each µψ̂  is continuous for [ ] ,,
1











∂∈ω ∏

=

s

i
ii DA  then for ,...,,2,1 si =  

we have 

.2,2,,,0
M
D

B
M
A

CMC
M
D

CB
M
A

MBCB i
i

i
ii

i
ii

i
iii =π+=π−≤<<≤<<  (10) 

Theorem 3. Suppose ( ) ( ) ( ),ˆ 2 ss RCRL ∩∈ωϕ  [ ] −=ϕ ∏
=

s

j
jj dasupp

1

,ˆ  

( ) ( )∏
=

=><
s

j
jjjjj sjccbcb

1

,...,,2,1,0,,  and ϕ generates an M-MRA. 

Then 

 .,42,0,0 j
j

jjjjj b
M

d
aMadda ≤<π≤−<π><  (11) 

Remark 1 [12]. Comparing Theorem 1 with Long’s results [10, 
Proposition 2.2.2], it is clear that we remove the redundant condition 

( ) ( ).ˆ sRC∈ωϕ  

Remark 2 [12]. Comparing Theorem 2 with Long’s results [10, 
Theorem 3.5.11], it is clear that we remove many redundant conditions in 
Long’s result as follows: 

  (i) { }µψ  is an MRA wavelet. 

 (ii) ( ) ( )sRC∈ωϕ̂  and ( ) .0ˆlim =ωϕ
∞→ω

 

(iii) ....,,2,1,0 siCB ii =≤≤  
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Remark 3. When ,2=M  we can prove that the conclusion of 

Theorem 1 and Theorem 2 implies that of Long’s result [10, Proposition 
2.2.2, Theorem 3.5.11] and Zhang’s results [12, Theorem 1, Theorem 2]. 

Remark 4 [12]. In general, the condition that µψ̂  is continuous for 

[ ]








∂∈ω ∏

=

s

i
ii DA

1

,  cannot be removed. The well-known Shannon wavelet 

[7] ( )xψ  is a counterexample. In fact, ( ) [ ]( ) [ ]( ).ˆ 2,,2 ωχ+ωχ=ωψ πππ−π−  

( )ωψ̂  is discontinuous at the two endpoint ππ−=ω 2,2  but here B
A

=
2

 

( ).,2 π=π= BA  This is contrary to .
2

B
A

<  

Remark 5. We generalized result of reference [12, Theorem 1, 
Theorem 2] as follows: 

 (i) dilation factor of scaling function is generalized to arbitrary 

positive integer ( )2≥M  from 2; 

(ii) we gave the characterization of compactly support of Fourier 
transform of scaling function in two different case, that is, 

[ ]∏
=

=ϕ
s

i
ii ba

1

,ˆsupp  and [ ] ( )∏ ∏
= =

−=ϕ
s

j

s

j
jjjj cbda

1 1

.,,ˆsupp  But, only one 

case was discussed in reference [12], that is [ ]∏
=

=ϕ
s

i
ii ba

1

.,ˆsupp  

3. Proof of Main Results 

Proof of Theorem 1. We prove sufficiency. Suppose the conditions 

(6)-(8) are valid, we only need to prove that ϕ generated an M-MRA. In 

other words, we need to prove that { ( ) }sZkk ∈−⋅ϕ :  is an orthonormal 

basis for 0V  and .10 VV ⊂  This is equivalent to proving ( ) =ξΦ  

( )∑
∈

≡π+ξϕ
sZk

k 12ˆ 2  and finding a sZπ2 -periodic function ( )ξ0m  satisfies 

 ( ) ( ) ( ),ˆˆ 0 ξϕξ=ξϕ mM   a.e. .sR∈ξ  (12) 
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From (5) and (8), we obtain 

( ) ( ) ( )∑ ∑
∈ ∈ν

=πν−ξϕ=π+ξϕ=ξΦ
s sZk E

k 12ˆ2ˆ 22  for a.e. ( )[ ]sM π−∈ξ 12,0  

and ( )ξΦ  is sZπ2 -periodic function. Hence, ( ) .1≡ξΦ  

Defining 

 ( )
( ) ( )














∆−



 +

+π
+

+π−=∆−∆∈ξ





=∆∈ξξϕξϕ

=ξ

∏

∏

=

=

,,,0

,,,ˆ2ˆ

1
12212

1
1

0 s

i

iiii

s

i

ii

M

ba

M

ba

M
b

M
a

m  (13) 

which is then extended periodically by sZπ2  from 2∆  to .sR  It is clear 

that (12) is valid on .2∆  We need to prove that (12) is valid on ,22 πα+∆  

.,0 sZ∈α≠α  This is equivalent to proving 

 ( )( ) ( ) ( )πα+ξϕξ=πα+ξϕ 2ˆ2ˆ 0mM  (14) 

for .,0,2
sZ∈α≠α∆∈ξ  

Let kα  be the k-th coordinate of α. Suppose ,1≥αk  when ,1∆∈ξ  we 

have 

( ) ,2,22 jjjjj
j

jj bMbMb
M

≥≤πα+ξ≥π+
α

≤πα+ξ  

thus, the both sides of (14) are equal to 0, (14) is valid. When 

,12 ∆−∆∈ξ  we have ( ) ,00 =ξm  

( ) ,22
2 j

jjjj
jj b

M
ba

M
M

ba
MM ≥

+
+π=








π+

+
+π−≤πα+ξ  

thus, ( )( ) .02ˆ =πα+ξϕ M  So (14) is valid. Analogously, when ,1−≤αk  

(14) is valid. Combining above results, we have 

( ) ( ) ( ),ˆˆ 0 ξϕξ=ξϕ mM   a.e. .sR∈ξ  

The proof of sufficiency is completed. 
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We prove necessity. First, we prove that (7) is valid. The proof is 
processed in three steps: 

(a) We prove that ....,,2,1,2 sjab jj =π≥−  

Since ( )xϕ  is a scaling function ( )( xϕ  generates an orthonormal 

),MRA-M  we know that 

 ( )∑
∈

=π+ωϕ
sZk

k ,12ˆ 2   a.e. .sR∈ω  (15) 

Suppose that there exists some j such that .2π<− jj ab  Without loss 

of generality, we set ,1=j  i.e., .211 π<− ab  Then ( ),2, 111 π+∈ω∀ ab  

we have 
[ ] .,,2 111 Zkbak ∈∉π+ω  

Therefore 

( ) ( ) [ ]∏∑
=∈

×π+∈ω=π+ωϕ
s

i
ii

k

baabk
2

11
2 .,2,,02ˆ

sZ

 

This is contrary to (15). So ....,,2,1,2 sjab jj =π≥−  

(b) We prove that ....,,2,1,0,0 sjba jj =≥≤  

Suppose that there exists some j such that .0>ja  Without loss of 

generality, we set ,1=j  i.e., .01 >a  Let 1ε  be a positive number such 

that .min,min 1
1















 −

<ε
M

ab
M
a jj

j
 Then 

.
2

,...,,2,1, 1
1

1
1

1 a
M
a

M
a

sibMaa iii ≤<ε+=<ε+<  

Let ( ) ( )....,,,,...,,, 11121 εεε=ε= saaaa  Then we have 

[ ] [ ]∏ ∏
= =

∉ε+∈ε+
s

i

s

i
iiii ba

M
abaMa

1 1

.,,,  

So from (5), we have 

( ) .0ˆ,0ˆ =




 ε+ϕ≠ε+ϕ

M
aMa  
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Since ( )xϕ  generates an orthonormal M-MRA, we know that 

( ) ( ) ( ),ˆˆ 0 ωϕω=ωϕ mM  

where ( )ω0m  is the mask function which is stated as in Section 1. A 

contradiction is achieved, so we obtain ....,,2,1,0 sja j =≤  Similarly, 

we have ....,,2,1,0 sjbj =≥  

(c) We prove that ....,,2,1,0,0 sjba jj =≠≠  

From (b), we know .0≤ja  If there exists some ,0=ja  without loss    

of generality, we set ,1=j  i.e., .01 =a  Then by (5), ,ˆsupp 1E⊂ϕ  where 

[ ) .,0 1
1

−×∞= sRE  Now take a function ( )sRLf 2∈  such that 

supp .ˆ
1Ef ⊄  Because ( ) ( )













∈∈−ϕ=ϕ sk
ks

lk ZlZklxMMx ,,2
,  is an 

orthonormal basis of ( ),2 sRL  define { ( ) }.,,
s

lkk ZlxV ∈ϕ=  Then ( )xf  can 

be represented as follows: 

( ) ( )∑
∈∈

ϕ=
sZlZk

lklk xdxf

,

,, .  

By taking the Fourier transform on the both sides of above equation, we 

get 

( ) ( )∑
∈∈

µ ωϕ=ω
sZlZk

lklkdf

,

,,, .ˆˆ  

By ,ˆsupp 1E⊂ϕ  we have ( ) .ˆsuppˆsupp 1, E
M klk ⊂






 ω

ϕ=ωϕ  Again by 

( ),2 s
mZm RLV =∈∪  we have .ˆsupp 1Ef ∈  This is contrary to 

.ˆsupp 1Ef ⊄  Therefore, .01 ≠a  Furthermore, we show that ,0≠ja  

....,,2,1 sj =  Similarly, we have ....,,2,1,0 sjbj =≠  

Using ( ) ( ) ( )ωϕω=ωϕ ˆˆ 0mM  and (5), we have that 

( ) [ ]

( )





















∈ω≠ω









−∈ω=ω

∏

∏ ∏

=

= =
s

j

jj

s

j

s

j

jj
jj

M
b

M
a

m

M
b

M
a

bam

1
0

1 1
0

.,,0

,,,,0
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By the periodicity of ( ),0 ωm  we obtain that 

.2,2 π≤−π≤−
M
a

ba
M
b j

jj
j  

Therefore 

....,,2,1,202,
1

4
2 sjba

M
M

ab jjjj =π≤<<≤π−π
+

≤−≤π  

So, (7) is valid. 

Next, we prove that (6) is valid. 

Let ( ) [ ]∏
=

δ−δ+∈ωωω=ω
s

j
jjjjs ba

1
21 ,,...,,,  where .2π−−=δ jjj ab  

Then, we have that 

[ ] ( )∏
=

≠∈=∉π+ω
s

j

s
sjj kZkkkkbak

1
21 .0,...,,,,,2  

By (5) and (15), we have 

( ) ( ) [ ]∑ ∏
∈ =

δ−δ+∈ωωϕ=π+ωϕ=
sZk

s

j
jjjj bak

1

22 .,,ˆ2ˆ1  

So, (6) is valid. 

Finally, we prove that (8) is valid. 

Let ( )[ ] ( ) ....,,,,12,0 21 s
s

s
s EZM −∈ααα=απ−∈ξ  Then πα−ξ 2  

( ) .2,2 sππ−∉  Furthermore, we have [ ]∏
=

∉πα−ξ
s

j
jj ba

1

.,2  By (5), (7) and 

(15), we have 

( ) ( ) ( )[ ]∑ ∑
∈ ∈ν

π−∈ξ=πν−ξϕ=πν−ξϕ
s sZk E

sM .12,0,12ˆ2ˆ 22  

So, (8) is valid. The proof of Theorem 2 is completed. � 

Before proof of Theorem 1, we give three lemmas: 

Lemma 1. Under the assumptions of Theorem 2, we have ,0<iA  

,0>iD  ....,,2,1 si =  



LEI, HUANG and CHENG 264

Proof. Suppose there exists some i such that .0≥iA  Without                

loss of generality, we set ,1=i  i.e., .01 ≥A  Then by (9), ⊂ψµˆsupp  

{ }( ),01 −∈µ sEE  where 

 [ ) .,0 1
1

−×∞= sRE  (16) 

Now take a function ( )sRLf 2∈  such that f̂  is continuous and 

.ˆsupp 1Ef ⊄  Because { ( )} { }0,, −∈µµψ sElk x  is an orthonormal basis of 

( ).2 sRL  Then ( )xf  can be represented as follows: 

( ) ( )
{ }

∑ ∑
∈µ ∈∈

µµ ψ=
0 ,

,,,, .

s sE ZlZk

lklk xCxf  

Furthermore, we get 

( ) ( )
{ }

∑ ∑
∈µ ∈∈

µµ ωψ=ω
0 ,

,,,, .ˆˆ

s sE ZlZk

lklkCf  (17) 

By ,ˆsupp 1E⊂ψµ  we have ( ) .ˆsuppˆsupp 1,, E
M klk ⊂






 ω

ψ=ωψ µµ  Again 

by (17), noticing that ( )ωf̂  is continuous in ,sR  we know that ( ) 0ˆ =ωf  

for .1ERs −∈ω  Furthermore, we have .ˆsupp 1Ef ⊂  This is contrary      

to .ˆsupp 1Ef ⊄  So ....,,2,1,0 siAi =<  Similarly, we have ,0>iD  

....,,2,1 si =  � 

Lemma 2. Under the assumptions of Theorem 2, we have ,0 ii CB <<  

....,,2,1 si =  

Proof. First, we prove that, for any { }0, −∈νµ sE  and a sufficiently 

large ,0>j  we have 

 ( ) ( ) ,0ˆˆ =ωψωψ ν
−

µ
jM    for a.e. .sR∈ω  (18) 

Since { ( )} { }0−∈µµψ sEx  is an orthonormal wavelet in ( ),2 sRL  by 

Proposition 3, we know that, for any νµ,  and ,0>j  
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( ) ( )∑
∈α

νµν
−

µ δδ=πα+ωψπα+ωψ
sZ

j
jj MM ,2ˆ2ˆ ,,0   for a.e. .sR∈ω  (19) 

By (9), we know that each ( )ωψµˆ  has a compact support. So we can take a 

sufficiently large 0>j  such that for any ,ˆsupp,0 νψ∈ω≠α  we always 

have .ˆsupp2 νψ∉πα+ω jM  Namely, ( ) .02ˆ =πα+ωψν
jM  Again by (19), 

we know, for a sufficiently large ,0>j  

 ( ) ( ) ,0ˆˆ =ωψωψ ν
−

µ
jM   for a.e. .ˆsupp νψ∈ω  (20) 

From this we obtain (18) immediately. 

Next, by (19) it follows that, for a sufficiently large ,0>j  

 ( )
{ }

( )
{ }

,0ˆˆ
00

=













ωψ














ωψ ∑∑

−∈ν
ν

−∈µ

−
µ

ss EE

jM   for a.e. .sR∈ω  (21) 

Let 

( )
{ }

( )
{ }

.ˆsuppˆsupp
00














ωψ














ωψ= ∑∑

−∈ν
ν

−∈µ

−
µ

ss EE

jMQ ∩  (22) 

Combining (21) and (22), we know mes .0=Q  

Finally, by (9), we know that 

( )
{ }

[ ] ( )
{ }
∪

0 1 10

.,,ˆsuppˆsupp
−∈µ = =

µ
−∈µ

µ ∏ ∏∑ −=ψ=













ωψ

ss E

s

i

s

i
iiii

E

CBDA  

Consequently, 

( )
{ }

[ ] ( )∏ ∏∑
= =−∈µ

−
µ −=














ωψ

s

i

s

i
i

j
i

j
i

j
i

j

E

j CMBMDMAMM

s 1 10

.,,ˆsupp  

Putting this equation, (21), (22) and Lemma 1 together, we obtain that, 
for a sufficiently large ,0>j  

[ ] ( )∏ ∏
= =

⊂
s

i

s

i
i

j
i

j
ii CMBMDA

1 1

.,,  
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Hence we have ( )....,,2,1 siCMDABM i
j

iii
j =≤≤≤  Since ,0<iA  

,0>iD  we have ,0 ii CB <<  ....,,2,1 si =  Proof of Lemma 2 is 

completed. � 

Lemma 3. Under the assumptions of Theorem 2, then 

  (i) ....,,2,1,, si
M
D

CB
M
A i

ii
i =≤≤  

 (ii) ....,,2,1,2 siMAD ii =π>−  

(iii) { } { }0−∈µµψ sE  is an M-MRA wavelet. 

Proof. First, we prove (i). 

Suppose .1
1 B

M
A

>  By Lemma 1 and Lemma 2, we know that 

.011 <≤ BA  Let ( )∏
=

=
s

i
ii CBF

2

,  and ., 1
1 F

M
A

B ×





∈ω  When ,1≥k  

( ) ( ) .,, 11
1

1 FMAFMAMBMM kkkkk ×∞−⊂×∈ω −  When ,0≤k  ∈ωkM  

( ) ,0,1 FMB k×  where ( )∏
=

=
s

i
i

k
i

kk CMBMFM
2

.,  Noticing that 0<iB  

,iC<  we have 

[ ] ( )∏ ∏
= =

∈−∉ω
s

i

s

i
iiii

k ZkCBDAM
1 1

.,,,  

Hence from (9), we obtain that 

( ) { } .,0,,,0ˆ 1
1 ZkEF

M
A

BM s
k ∈−∈µ×






∈ω∀=ωψµ  

Take ( ) ,0≠xf  a.e. sRx ∈  such that .,ˆsupp 1
1 F

M
A

Bf ×





⊂  Then 

( ) ( )
{ }

∑ ∑ ∑
−∈µ ∈ ∈

µµ ψψ=
0

,,,,,

s sE Zk Zl

lklk xfxf  

( )
( )

{ }
∑ ∑ ∑

−∈µ ∈ ∈

µµ =ψψ
π

=
0

,,,, .0ˆ,ˆ
2

1

s sE Zk Zl

lklks
xf  

This is contrary to ( ) ,0≠xf  a.e. .sRx ∈  Therefore, .1
1 B

M
A

≤  
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Similarly, we can obtain ....,,2,1,, si
M
D

CB
M
A i

ii
i =≤≤  

Next, we prove (ii). 

By (9), we know that [ ]∏
=

µ ⊂ψ
s

i
ii DA

1

,,ˆsupp  then 

 ( ) [ ] { }∏
=

µ −∈µ∉ω=ωψ
s

i
sii EDA

1

.0,,,0ˆ  (23) 

Since µψ̂  is continuous for [ ] ,,
1











∂∈ω ∏

=

s

i
ii DA  we have ( ) ,0ˆ =ωψµ  

[ ] .,
1











∂∈ω ∏

=

s

i
ii DA  From (23), we obtain that, for ,1>j  ( ) ,0ˆ =ωψµ

jM  

∏
=





∉ω

s

i

ii

M

D

M

A

1
22

.,  Let ( ) ( )
{ }
∑ ∑
− >

µ ωψ=ω
0 0

2.ˆ
sE j

jMG  Then 

( ) ( )
{ }
∑ ∏
− =

µ 



∉ωωψ=ω

0 1
22

2 ,,ˆ

sE

s

i

ii

M

D

M

A
MG  

and 

 ( ) ∏
=





∉ω=ω

s

i

ii

M
D

M
A

G
1

.,,0  (24) 

Again we noticing that µψ̂  is continuous for [ ] ,,
1











∂∈ω ∏

=

s

i
ii DA  we obtain 

that ( )ωG  is continuous for .,
1















∂∈ω ∏

=

s

i

ii

M
D

M
A

 Using (24), we have 

( ) .,,0
1


















∂∈ω=ω ∏

=

s

i

ii
M
D

M
A

G  (25) 

Now suppose ,2 π≤− MAD ii  let 

( ) ( )∑
∈α

πα+ω=ω
sZ

GL .2  (26) 
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Let ∏
=





×=

s

i

ii
M
D

M
A

M
A

H
2

1 .,  It is clear that 

 .,
1


















∂⊂ ∏

=

s

i

ii
M
D

M
A

H  (27) 

Let ( )....,,, 21 sααα=α  When 01 =α  and ,H∈ω  


















∂∈πα+ω ∏

=

s

i

ii

M
D

M
A

1

,2   or  ∏
=





∉πα+ω

s

i

ii
M
D

M
A

1

.,2  (28) 

Using (24) and (25), we have 

( ) HG ∈ω=πα+ω ,02  and ( )πα+ω 2G  is continuous for .H∈ω  (29) 

Similarly, when 01 ≠α  and ,H∈ω  in view of ,211 π≤− MAD  (28) and 

(29) are still valid. 

Therefore 

 ( ) .,0 HL ∈ω=ω  (30) 

Since ( )ωG  has a compact support, we obtain that for 





 ε+ε−∈ω

M
A

M
A 11 ,  ∏

=




×

s

i

ii
M
D

M
A

2

,,  there are only finite terms in ( ).ωL  

Again noticing that ( )πα+ω 2G  is continuous for ,H∈ω  we know that 

( )ωL  is continuous for .H∈ω  By Lemma 2 and Lemma 3(i), we have 

.11 BA <  From the definition ( )ωL  and ( ),ωG  noticing that ( ) ,0≥ωG  we 

know that 

( ) ( ) ( )∑
µ

µ ωψ≥ω≥ω .ˆ 2MGL  

But by (9), we get 

( )∑
µ

µ >ωψ 0ˆ 2M   for a.e. ∏
=





×



∈ω

s

i

ii
M
D

M
A

M
B

M
A

2

11 .,,   
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So 

( ) 0>ωL   for a.e. ∏
=





×



∈ω

s

i

ii
M
D

M
A

M
B

M
A

2

11 .,,   

Again because ( )ωL  is continuous for ,H∈ω  using (30), we know that 

there exist 
M
A

M
B 110 −<δ<  such that 

( )
2
1

0 <ω< L   for a.e. ∏
=





×



 δ+∈ω

s

i

ii
M
D

M
A

M
A

M
A

2

11 .,,  

Again noticing the definition of ( ),ωL  we will see that this is contrary     

to Proposition 2. So .211 π>− MAD  Similarly, we get ,2 π>− MAD ii  

....,,2,1 si =  

Finally, we prove (iii). 

From (9) and Lemma 3(i), we have 

[ ] ( )
{ }

[ ]∏ ∏ ∏∑
= = =−∈µ

µ 



−⊃














ωψ⊃

s

i

s

i

s

i

ii
ii

E
ii M

D
M
A

DADA

s1 1 10

.,,ˆsupp,  

So for ,0>j  

( )
{ }

∏ ∑
= −∈µ

µ













ωψ⊃





s

i E

j
j

i
j

i

s

M
M

D

M

A

1 0

ˆsupp,  

∏ ∏
= =

++ 



−



⊃

s

i

s

i
j
i

j
i

j
i

j
i

M

D

M

A

M

D

M

A

1 1
11

.,,  

Since 

{ }∪
0 11 1

11
,0,,,

> == =
++ ∏∏ ∏ −



=

















−





j

s

i

ii
s

i

s

i
j
i

j
i

j
i

j
i

M
D

M
A

M

D

M

A

M

D

M

A
 

we have 

 ( )
{ }

∑ ∑ ∏
−∈µ > =

µ 



=ωψ

0 0 1

2 .,ˆsupp

sE j

s

i

iij
M
D

M
A

M  (31) 
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So letting ( )
{ }
∪ ∪

0 0

,ˆsupp
sE j

jM
∈µ <

µψ=Ω  we have ∏
=





=Ω

s

i

ii

M
D

M
A

1

.,  

Again from ,2 π>− MAD ii  it follows that ( )∪
sZ

sR
∈α

=πα+Ω .2  Using 

Proposition 1, we have { } { }0sE∈µµψ  is an M-MRA wavelet. Lemma 3 is 

proved. � 

Proof of Theorem 2. Using Lemma 3, we know that { } { }0−∈µµψ sE  is 

an M-MRA wavelet. Here we define the corresponding M-MRA by 

{ } ZmmV ∈  and the scaling function by ( ).tϕ  

Using Lemma 2, we have 

 ....,,2,1,0 siCB ii =<<  (32) 

Under the assumption condition, it is clear that [ ]∏
=

µ ⊂ψ
s

i
ii DA

1

.,ˆsupp  

Again by ,0,0 >< ii DA  it follows that ∏
=

µ 



⊂ψ

s

i

ii
lk M

D
M
A

1
,, ,,ˆsupp  

.0<k  Because 0V∈ϕ  and 

 { { } },,0,0:supp ,,0
s

slk ZlkEV ∈<−∈µψ= µ  (33) 

we have 

 ∏
=





⊂ϕ

s

i

ii
M
D

M
A

1

.,ˆsupp  (34) 

By (34), it is clear that ( ) .0ˆlim =ωϕ
∞→ω

 Using Proposition 4, we obtain 

( ) ( )
{ }

∑ ∑
−∈µ >

µ ωψ=ωϕ
0 0

22 ˆˆ

sE j

jM   for a.e. .sR∈ω  

Again from (31), it follows that 

 ∏
=





=ϕ

s

i

ii
M
D

M
A

1

.,ˆsupp  (35) 
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So by Theorem 2 and Lemma 3(ii), the following results hold: 

,2,
1

4
2

2

i
i

ii DM
M
A

M
M

ADM ≥π+π
+

≤−<π  

,202,2 π≤<<≤π−≤π− MDAMAM
M
D

iii
i  (36) 

( ) ,1ˆ =ωϕ   for a.e. ∏
=





 π+π−∈ω

s

i

ii

M
A

M
D

1

2,2  

and 

( ) ,1ˆ0 <ωϕ<   for a.e. ∏ ∏
= =





 π+π−−



∈ω

s

i

s

i

iiii
M
A

M
D

M
D

M
A

1 1

.2,2,  (37) 

From (35) and (37), it follows that 

( ) ∏ ∏
= =







 π+π−−



=









ωϕ−




 ωϕ

s

i

s

i

iiii
M
A

M
D

M
D

M
A

M
1 1

2
2

.2,2,ˆˆsupp  

Furthermore, using Proposition 4, we know the whole support 

( )
{ }
∪

0 1 1

.2,2,ˆsupp
−∈µ = =

µ ∏ ∏ 





 π+π−−



=ψ

sE

s

i

s

i

iiii

M
A

M
D

M
D

M
A

 

Comparing it with the assumption condition, we get 

 .2,2 π+=π−=
M
A

C
M
D

B i
i

i
i  (38) 

From (38) and (36), we have ., i
ii

i MC
M
D

M
A

MB ≤≤  By Lemma 3(ii) and 

(38), we finally get ., i
i

i
i C

M
D

B
M
A

><  Again by (32) this completes the 

proof of (10). So Theorem 1 is proved. � 

Proof of Theorem 3. First, we prove that ,0<ja  ,0>jd  

....,,2,1 sj =  

By Proposition 5, we know that ( ) 00ˆ ≠ϕ  and 0 is inner point of 

[ ] ( )∏ ∏
= =

−
s

j

s

j
jjjj cbda

1 1

.,,  Therefore, ....,,2,1,0,0 sjda jj =><  
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Next, we prove that ....,,2,1,2 sjad jj =π>−  

Since ( )xϕ  generates an orthonormal M-MRA, we know that 

 ( )∑
∈

=π+ωϕ
sZk

k ,12ˆ 2   a.e. .sR∈ω  (39) 

Suppose that there exists some j such that .2π<− jj ad  Without loss 

of generality, we set ,1=j  i.e., .211 π<− ad  For ( ),2, 111 π+∈ω∀ ad  

then we have 

[ ] .,,2 111 Zkdak ∈∉π+ω  

Therefore 

( )∑
∈

=π+ωϕ
sZk

k ,02ˆ 2    ( ) [ ]∏
=

×π+∈ω
s

i
ii daad

2
11 .,2,  

This is contrary to (39). So, ....,,2,1,2 sjad jj =π≥−  

Suppose that there exists some j such that .2π=− jj ad  Then, when 

,ˆsuppϕ∈ω  we have 

( ) ( )∑
∈

=ωϕ=π+ωϕ
sZk

k .1ˆ2ˆ 22  

So ( ) ,1ˆ ±=ωϕ  it is contrary to the continuous of .ϕ̂  So ,2π≠− jj ad  

....,,2,1 sj =   

We obtain ....,,2,1,2 sjad jj =π>−  

Next, we prove that ,j
j

j b
M

d
a ≤<  ....,,2,1 sj =  The proof is 

processed in three steps: 

(a) We prove that ....,,2,1, sjb
M

c
j

j =≤  

Since ( )tϕ  generates an orthonormal M-MRA, we know that 

 ( ) ( ) ( ),ˆˆ 0 ξϕξ=ξϕ mM  (40) 
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where ( )ω0m  is the mask function. Suppose that there exists some j such 

that .
M

c
b j

j <  Without loss of generality, we set ,1=j  i.e., ,1
1 M

c
b <  and 

take any 1ξ  such that 

.,,min 1111
1

11
1

1 dMcc
M
d

c
M
c

b <ξ<≤






<ξ<<  

Let ( ),...,,, 21 sξξξ=ξ  ,,, 







−








∈ξ

M

c

M

b

M

d

M

a jjjj
j  ....,,3,2 sj =  Then 

we obtain 

.ˆsupp,ˆsupp ϕ∉ξϕ∈ξM  

Therefore 

( ) ( ) .0ˆ,0ˆ =ξϕ≠ξϕ M  

It is contrary to (40). Thus, we have ....,,2,1, sjb
M

c
j

j =≤  

(b) We prove that ....,,2,1, sjc
M

d
j

j =≤  

Suppose that there exists some j such that .
M

c
b j

j <  Without loss of 

generality, we set ,1=j  i.e., .1
1 M

d
c < We show that it is impossible in two 

cases. When ,1
2

1 bMd ≥  take 1ξ  with ,,min 11
1

111 





 −<ε<− cc

M
d

cMb  

thus 

., 1
1

11
1

1111 c
M

bd
M
d

cc <
ξ

<<<ξ=ε+<  

Let ( ),...,,, 21 sξξξ=ξ  [ ] ( ),,, jjjjj cbda −∈ξ  ....,,3,2 sj =  Then we 

obtain 

.ˆsupp,ˆsupp ϕ∉
ξ

ϕ∈ξ
M

 

Therefore 

( ) .0ˆ,0ˆ =





 ξ

ϕ≠ξϕ
M

 



LEI, HUANG and CHENG 274

It is contrary to (40). When ,1
2

1 bMd <  take 1ε  with 1
1

1 ε<−
M
d

Mb  

,,min 1
1

1






 −<

M
d

Mc
M
d

 then 

., 1
1

1111
11

1 c
M

bd
M
d

M
d

c <
ξ

<<ξ=ε+<<  

Let ( ) [ ] ( ) ....,,3,2,,,,...,,, 21 sjcbda jjjjjs =−∈ξξξξ=ξ  Then we 

obtain 

.ˆsupp,ˆsupp ϕ∉ξϕ∈ξ
M

 

Therefore 

( ) .0ˆ,0ˆ =




 ξϕ≠ξϕ

M
 

It is contrary to (40). Consequently, we have .,...,,2,1 j
j c

M

d
sj ≤=∀  

(c) We prove that ....,,2,1, sjb
M

d
j

j =≤  

Suppose that there exists some j such that .
M
d

b i
j <  Without loss of 

generality, we set ,1=j  i.e., .1
1 M

d
b <  Let ξ with .1

1
11 c

M
d

b ≤<ξ<  

Then 

.1111 dMMbc <ξ<≤  

Let ( ) ....,,3,2,,,,...,,, 21 sj
M
c

M
b

M
d

M
a jjjj

js =







−








∈ξξξξ=ξ  Then 

we obtain 

.ˆsupp,ˆsupp ϕ∉ξϕ∈ξM  

Therefore 

( ) 0ˆ,0ˆ =




 ξϕ≠ξϕ

M
 

a contradiction is obtained. Thus, ....,,2,1, sjb
M

d
j

j =≤  
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Using above results (a), (b) and (c), we obtain the inequality 

....,,2,1, sjb
M
d

a j
j

j =≤<  (41) 

Finally, we prove that ....,,2,1,4 sjMad jj =π≤−  

When the inequality (41) holds, we have that 

( )

( )















−








∈ω≠ω

=ω

∏ ∏
= =

s

j

s

j

jjjj
M
c

M
b

M
d

M
a

m

m

1 1
0

0

.,,,0

otherwise,,0

 

By the periodicity of ( ),0 ωm  we obtain that 

π≤−π≤−π≤−π≤− 2,2,2,2
M

c
b

M

b

M

d

M

a

M

c
a

M

b j
j

jjjj
j

j  

or 

.2,2,2,2 π≤−π≤−π≤−π≤−
M

c
b

M

b

M

d

M

a
ba

M

d j
j

jjj
jj

j  

Consequently, 

 ....,,2,1,4 sjMad jj =π≤−  (42) 

Therefore, we have 

.,42,0,0 j
j

jjjjj b
M

d
aMadda ≤<π≤−<π><  

The proof of Theorem 3 is completed. � 

4. Conclusion 

Suppose { }µψ  is an orthonormal wavelet of ( )sRL2  and the whole 

support of its Fourier transform is 

{ } [ ] ( )∪
µ = =

µ ∏ ∏−=ψ
s

i

s

i
iiii CBDA

1 1

,,,ˆsupp  

....,,2,1, siDCBA iiii =≤≤≤  
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A characterization of the above whole support is given by some equalities 

and inequalities. We have improved completely Long’s results and 
generalized Zhang’s results. 
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