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Abstract

Let f: X — Y be a definable map between definable sets X, Y and & be

a positive integer. We prove that the c* singular set of f is a definable

subset of X with codimension at least 1.

1. Introduction

Let M= (R, +, - <, ...) be an o-minimal expansion of the standard

structure R = (R, +, -, <) of the field R of real numbers. In this paper

“definable” means “definable with parameters in M?”, everything is

considered in M and a definable map means a map with definable graph.

Any definable category is a generalization of the semialgebraic

category. Many results in semialgebraic geometry hold true in the more

general setting of an o-minimal expansion M. There are other examples

and constructions of them ([2], [4], [7]). General references on o-minimal

structures are ([1], [3], [9]), and there exist uncountably many o-minimal

expansions of R [8]. Definable sets and definable continuous maps are

studied in [5].
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Let X c R” and Y ¢ R™ be definable set and f: X - Y be a
definable map. For any positive integer k, © or o, we define the ck

singular set Zk (f) of fto be {x € X|f7}(f(x)) is not a C* submanifold

of R" at x}. Then by definition 21(f) c 22(f) c-c zw(f) c Z@(f)‘

Theorem 1.1. For any positive integer k, Zk (f) is a definable subset

of X with codimension at least 1. Here dim & = —o.

Problem 1.2. Are ) (f) and ). (f) definable? If they are definable

and dim X > 2, then do they have at least codimension 2?

Koike and Shiota [6] solved Problem 1.2 affirmatively if M = R.
They also constructed a semialgebraic map such that for any positive
integer k its ck singular set has codimension 1 [6]. Thus in Theorem 1.1

we cannot state that zk (f) is a definable subset of X with codimension

at least 2.
2. Proof of Theorem 1.1

The following two results are the definable triangulation theorem
(8.2.9 [1]) and piecewise triviality (9.1.7 [1]).

Theorem 2.1 (8.2.9 [1]). (Definable triangulation theorem) Let X be a
definable set and X, ..., X}, be definable subsets of X. Then there exists a
definable triangulation (M, t) of X compatible with X;, ..., X}, namely

M is a simplicial complex and t is a definable homeomorphism from X to a

union of open simplexes of M such that each 1(X;) is a union of open

simplexes of M. In particular, if X is compact, then 1(X) = M.

Theorem 2.2 (9.1.7 [1]). (Piecewise triviality) Let X, Y be definable
setsand [ : X — Y be a definable map. Then there exist a finite partition

{Vj }?:1 of Y into definable sets and a family of definable homeomorphisms

{0 : fﬁl(Vj) - V;x }’71(611-)};-‘:1 such that for each jprojvj °od; =
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f|f_1(Vj), where projVj Vi x f_l(aj) — V; denotes the projection and

a:

j is some point of V.

Since we can write the set of points at which f is continuous (resp.

locally injective, locally surjective) by some sentence, it is definable.

Proof of definability of Zk (). Under assumption of Theorem 1.1,
for a non-negative integer k, let A; denote the set of points x € X at
which f71(f(x)) is a C* submanifold of R”, where a C° manifold of R"

means a topological manifold with the relative topology induced from R™.

To prove that zk (f) is definable, we first prove Ay is definable.

Let m:R"” xR™ — R™ be the canonical projection. Replacing f by
n|T(f): T(f) > Y, we may assume that f is continuous, where T(f)

denotes the graph of f. By Theorem 2.2, there exist a finite partition
{Vj }3-‘:1 of Yinto definable sets and a family of definable homeomorphisms
{9;: f_l(Vj) - Vjx f_l(aj)};‘:1 such that for each Jprojy; c¢; =
f|f_1(Vj), where projVj Vi x F (aj) > V; denotes the projection and

a:

j 1s some point of V;. To prove A, is definable, we may assume that

X =Y, xY for a definable set ¥; c R” and f:Y; xY > Y is the
projection. Let A(l) be the set of points of Y] at which Y] is a topological

submanifold of R" c S" c R™!. By Theorem 2.1, there exists a

definable triangulation (M, t) of S™ such that t(Y;) is a union of open

simplexes of M. For ay, ay € Int o, a; € A} if and only if as e A},
where 6 € M. Thus Ay is definable.

For 0 <j<n, let A, ; c A, be the set of points x € X at which
pIf Nf(x): FH(f(x)) > R is a C* diffeomorphism (homeomorphism if

k =0) locally at x, where p:R" — R/ denotes the projection. Let
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D1, D3, ... denote all the projections R" — R/ forgetting some factors. If
k >0, then it suffices to show that each A; ; is definable because
Zk (f) is the complement of the union of A ;’s for some p = py,
0<i<mninX

We now consider A4 ;. Clearly A, ; is the set of points x € X such
that p|f ' (f(x)): f 1 (f(x)) > R’ is injective and surjective locally at x
and (p| £ (f(x))" is continuous at p(x). Thus
Apj=lxeX|Fe>0Vx,x"eX if [x-x'|<e, [x-a"[<e & #x
and f(x) = f(x') = f(x"), then p(x')# p(x"); Ve > 035 >0 Va' e R/ if
| p(x)—a'| <3, then 3x'e X such that |x-x'|<eg fl(x)=f(x'),
px)=a;Ve>038>0Ve >038 >0Va,a" e RN if | p(x) —a'| <8,
| p(x)—a"| <8, |a" —a"| <&, then 3z, x" € X such that |x-x'| <e¢,
|x —x"| <& flx) = f(x") = f(x"), p(x) = @, p(x") = a’}. Therefore Ay ; is
definable.

We next consider A; ;. Let B={(x, x') € Ay jx Ag j|f(x) = f(x)} and
B, = BN ({x}x Ay j). Then B, B, are definable and for each x € 4 ;
the map B, — R/ defined by (x, x') = p(x') is a local homeomorphism.

Hence there exists a definable open neighborhood U of the diagonal of
Ay, j in B such that the map U N B, — R/ defined by (x, x') — p(x') is

a homeomorphism onto an open set V, in R’. For any x € Ag j, let

g, : V., = R" be the composition of the inverse map V, — B, and the
projection B, > (x, ') > &' € Ay j c R™. Let V = U, {x}x V, c 4y ; xR/,
where the union is taken over A, ; and q(x, a) = q,(a) for (x, a) e V.
Then Vand ¢q : V — R" are definable, g, is a homeomorphism onto its

image containing x, and 4; ; = {x € Ay j|gq, isa C! imbedding at p(x)}.
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Hence it suffices to prove the following assertion.

Assertion*;. Let C, D c C x R’ be definable sets and ¢: D —>R"
be a definable map. If for each x € C, D, = D ({x}x R/) is open in
{x} x R’ and ¢|D, is a homeomorphism onto its image, then D! =

{(x, y) € D|¢|D, isa C* imbedding at (x, y)} is definable.
Let

D= {(x, ¥, ¥, t) e Dx R/ x (0,1]|vs € [0, 1], (x, y + sy') € D},
o(x, 3, ', £) = (@(x, y +1y') = olx, y))/t for (x, y, ¥, t) € D,
G =(Dx R/ x {0} xR™")N graph §,

G, , = ({(x, Y} xR x {0} x R*)N G for (x, y) e D, and let p; : G —> R/

> Y

and py : G — R" be the projections, where graph$ denotes the closure

of graph $ Then D, 5 :D > R" G,G p; and py are definable and

X,y
D' = {(x, y) e D p; |G,y and py |G, , are homeomorphism onto R/}
As in the first argument, D' is definable.

Let k& > 2. By the above argument, Assertion *; which is similarly
defined by replacing D' in Assertion *; by D* = {(x, y) e Dk_1| ) |Dk_1

isa C* imbedding at (x, y)} implies that Ay, ; is definable.

Assertion *, is proved as follows. Let E = D' xR/, v Dx R/
> R"xR", y(x, y, y) = (¢(x, ), d(<|)|D,lc)yy'), where d denotes the
differential operator. Then E and v : E — R" x R" are definable and for
any x € C, E, = EN({x}x R/ xR/) is open in {x} x R/ x R/ and y|E,
1s a homeomorphism onto 1its image. Thus by Assertion
#,E' ={(x,v,y) eE|y|E, is a C' imbedding at (x, y, y')} is
definable. Since D? = {(x, y) e D' |Vy € R/, y|E, isa C! imbedding at
(x, y, ¥)}, D? is definable.
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Using induction on k, we have Assertion *,.

Therefore Zk (f) is definable. 0

Let X c R",Y « R™ Dbe definable sets, A c X be a definable
subset of X and f: X - Y be a definable map. For any y e f(A), let

Zk(f_l(y)) = {x € )|/ X(y) be a definable C* manifold in R" at
x}. Then > (F7'(9) = X, (HNF().
By Theorem 2.1, we have the following lemma.

Lemma 2.3. For any y € f(A), dim Zk (F () < dim £ 1(y).

Lemma 2.4. Let f : X —> Y be a definable continuous map and b be
a positive integer. If dim(A N 7Y (y))+ b < dim f~1(y) for any y € f(A),
then dim A + b < dim X.

Proof. By Theorem 2.2, there exists a finite partition of f(X) into
definable sets R;, and for any i there exist a definable set D; c R" and

a definable homeomorphism ¢; : D; x R; — f *(R;) compatible with the

projection onto R;. Moreover there exists a finite partition of f(A) into
definable sets S;, and for any j there exist a definable set E; c R” and
a definable homeomorphism y; : E; x S; — A Ft (S;) compatible with
the projection onto S;. By Theorem 2.1, we have a finite partition of
f(A) into Nash manifolds Nj compatible with R;’s and S;’s. Namely
for any k, there exist some i(k), j(k) such that ¢;)|Dix) *x N @ Dy
x Ny = fHINy), Vi) [ Ejk)yx Ni 2 Ejryx Nj, = ANfY(N),) are definable
homeomorphisms compatible with the projections. Thus dim fﬁl(y) +
dim N, = dim Dy(,) + dim N, = dim f1(N,)<dimX, ye Nj. Moreover

there exists ky such that dim(ANf™(y))+dim Np, =dim Ej( ) +dim Ny,
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=dim(A N f_l(NkO)) = dim A, y € Nj,. Assume that dim A + b > dim X.

Then dim(ANf"'(y))+dim Ny, +b>dimf '(y)+dim N,y € N, . Hence

we have dim(ANf1(y)+b > dimfl(y), y e Nj,- This contradiction

proves the result. 0

Proof of Zk (f) with codimension at least 1. Definability of

Zk (f), Lemma 2.3 and Lemma 2.4 prove that Zk (f) has codimension

at least 1. O
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