SINGULARITIES OF DEFINABLE MAPS

TOMOHIRO KAWAKAMI

Department of Mathematics
Faculty of Education
Wakayama University
Sakaedani Wakayama 640-8510, Japan
e-mail: kawa@center.wakayama-u.ac.jp

Abstract

Let $f: X \to Y$ be a definable map between definable sets X, Y and k be a positive integer. We prove that the C^k singular set of f is a definable subset of X with codimension at least 1.

1. Introduction

Let $\mathcal{M}=(\mathbb{R},+,\cdot,<,...)$ be an o-minimal expansion of the standard structure $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ of the field \mathbb{R} of real numbers. In this paper "definable" means "definable with parameters in \mathcal{M} ", everything is considered in \mathcal{M} and a definable map means a map with definable graph.

Any definable category is a generalization of the semialgebraic category. Many results in semialgebraic geometry hold true in the more general setting of an o-minimal expansion \mathcal{M} . There are other examples and constructions of them ([2], [4], [7]). General references on o-minimal structures are ([1], [3], [9]), and there exist uncountably many o-minimal expansions of \mathcal{R} [8]. Definable sets and definable continuous maps are studied in [5].

 $2000\ Mathematics\ Subject\ Classification:\ 14P10,\ 14P20,\ 57R45,\ 58A07,\ 03C64.$

Keywords and phrases: o-minimal, definable maps, singular sets.

Received October 21, 2008

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable set and $f: X \to Y$ be a definable map. For any positive integer k, ∞ or ω , we define the C^k singular set $\sum_k (f)$ of f to be $\{x \in X \mid f^{-1}(f(x)) \text{ is not a } C^k \text{ submanifold of } \mathbb{R}^n \text{ at } x\}$. Then by definition $\sum_1 (f) \subset \sum_2 (f) \subset \cdots \subset \sum_{\infty} (f) \subset \sum_{\omega} (f)$.

Theorem 1.1. For any positive integer k, $\sum_{k}(f)$ is a definable subset of X with codimension at least 1. Here $\dim \emptyset = -\infty$.

Problem 1.2. Are $\sum_{\infty}(f)$ and $\sum_{\infty}(f)$ definable? If they are definable and dim $X \geq 2$, then do they have at least codimension 2?

Koike and Shiota [6] solved Problem 1.2 affirmatively if $\mathcal{M}=\mathcal{R}$. They also constructed a semialgebraic map such that for any positive integer k its C^k singular set has codimension 1 [6]. Thus in Theorem 1.1 we cannot state that $\sum_k (f)$ is a definable subset of X with codimension at least 2.

2. Proof of Theorem 1.1

The following two results are the definable triangulation theorem (8.2.9 [1]) and piecewise triviality (9.1.7 [1]).

Theorem 2.1 (8.2.9 [1]). (Definable triangulation theorem) Let X be a definable set and $X_1, ..., X_k$ be definable subsets of X. Then there exists a definable triangulation (M, τ) of X compatible with $X_1, ..., X_k$, namely M is a simplicial complex and τ is a definable homeomorphism from X to a union of open simplexes of M such that each $\tau(X_i)$ is a union of open simplexes of M. In particular, if X is compact, then $\tau(X) = M$.

Theorem 2.2 (9.1.7 [1]). (Piecewise triviality) Let X, Y be definable sets and $f: X \to Y$ be a definable map. Then there exist a finite partition $\{V_j\}_{j=1}^u$ of Y into definable sets and a family of definable homeomorphisms $\{\phi_j: f^{-1}(V_j) \to V_j \times f^{-1}(a_j)\}_{j=1}^u$ such that for each $j \operatorname{proj}_{V_j} \circ \phi_j = 0$

 $f|f^{-1}(V_j)$, where $proj_{V_j}: V_j \times f^{-1}(a_j) \to V_j$ denotes the projection and a_j is some point of V_j .

Since we can write the set of points at which f is continuous (resp. locally injective, locally surjective) by some sentence, it is definable.

Proof of definability of $\sum_k (f)$. Under assumption of Theorem 1.1, for a non-negative integer k, let A_k denote the set of points $x \in X$ at which $f^{-1}(f(x))$ is a C^k submanifold of \mathbb{R}^n , where a C^0 manifold of \mathbb{R}^n means a topological manifold with the relative topology induced from \mathbb{R}^n .

To prove that $\sum_{k} (f)$ is definable, we first prove A_0 is definable.

Let $\pi:\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^m$ be the canonical projection. Replacing f by $\pi|\Gamma(f):\Gamma(f)\to Y$, we may assume that f is continuous, where $\Gamma(f)$ denotes the graph of f. By Theorem 2.2, there exist a finite partition $\{V_j\}_{j=1}^u$ of Y into definable sets and a family of definable homeomorphisms $\{\phi_j:f^{-1}(V_j)\to V_j\times f^{-1}(a_j)\}_{j=1}^u$ such that for each j $proj_{V_j}\circ\phi_j=f(f^{-1}(V_j))$, where $proj_{V_j}:V_j\times f^{-1}(a_j)\to V_j$ denotes the projection and a_j is some point of V_j . To prove A_0 is definable, we may assume that $X=Y_1\times Y$ for a definable set $Y_1\subset\mathbb{R}^n$ and $f:Y_1\times Y\to Y$ is the projection. Let A_0^1 be the set of points of Y_1 at which Y_1 is a topological submanifold of $\mathbb{R}^n\subset S^n\subset\mathbb{R}^{n+1}$. By Theorem 2.1, there exists a definable triangulation (M,τ) of S^n such that $\tau(Y_1)$ is a union of open simplexes of M. For $a_1,a_2\in Int$ $\sigma,a_1\in A_0^1$ if and only if $a_2\in A_0^1$, where $\sigma\in M$. Thus A_0 is definable.

For $0 \le j \le n$, let $A_{k,j} \subset A_k$ be the set of points $x \in X$ at which $p|f^{-1}(f(x)):f^{-1}(f(x))\to\mathbb{R}^j$ is a C^k diffeomorphism (homeomorphism if k=0) locally at x, where $p:\mathbb{R}^n\to\mathbb{R}^j$ denotes the projection. Let

 p_1, p_2, \dots denote all the projections $\mathbb{R}^n \to \mathbb{R}^j$ forgetting some factors. If k>0, then it suffices to show that each $A_{k,j}$ is definable because $\sum_k (f)$ is the complement of the union of $A_{k,j}$'s for some $p=p_l$, $0 \le i \le n$ in X.

We now consider $A_{0,j}$. Clearly $A_{0,j}$ is the set of points $x \in X$ such that $p \mid f^{-1}(f(x)) : f^{-1}(f(x)) \to \mathbb{R}^j$ is injective and surjective locally at x and $(p \mid f^{-1}(f(x)))^{-1}$ is continuous at p(x). Thus

 $A_{0,j} = \{x \in X \mid \exists \varepsilon > 0 \ \forall x', \ x'' \in X \ \text{if} \ |x-x'| < \varepsilon, \ |x-x''| < \varepsilon, \ x' \neq x'' \}$ and $f(x) = f(x') = f(x''), \ \text{then} \ p(x') \neq p(x''); \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall a' \in \mathbb{R}^j \ \text{if}$ $|p(x) - a'| < \delta, \ \text{then} \ \exists x' \in X \ \text{such} \ \text{that} \ |x-x'| < \varepsilon, \ f(x) = f(x'),$ $p(x') = a; \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \varepsilon' > 0 \ \exists \delta' > 0 \ \forall a', \ a'' \in \mathbb{R}^j \ \text{if} \ |p(x) - a'| < \delta,$ $|p(x) - a''| < \delta, \ |a' - a''| < \delta', \ \text{then} \ \exists x', \ x'' \in X \ \text{such} \ \text{that} \ |x - x'| < \varepsilon,$ $|x - x''| < \varepsilon, \ f(x) = f(x') = f(x''), \ p(x') = a, \ p(x'') = a'\}. \ \text{Therefore} \ A_{0,j} \ \text{is}$ definable.

We next consider $A_{1,j}$. Let $B = \{(x, x') \in A_{0,j} \times A_{0,j} \mid f(x) = f(x')\}$ and $B_x = B \cap (\{x\} \times A_{0,j})$. Then B, B_x are definable and for each $x \in A_{0,j}$ the map $B_x \to \mathbb{R}^j$ defined by $(x, x') \mapsto p(x')$ is a local homeomorphism. Hence there exists a definable open neighborhood U of the diagonal of $A_{0,j}$ in B such that the map $U \cap B_x \to \mathbb{R}^j$ defined by $(x, x') \mapsto p(x')$ is a homeomorphism onto an open set V_x in \mathbb{R}^j . For any $x \in A_{0,j}$, let $q_x : V_x \to \mathbb{R}^n$ be the composition of the inverse map $V_x \to B_x$ and the projection $B_x \ni (x, x') \to x' \in A_{0,j} \subset \mathbb{R}^n$. Let $V = \bigcup_x \{x\} \times V_x \subset A_{0,j} \times \mathbb{R}^j$, where the union is taken over $A_{0,j}$ and $q(x, a) = q_x(a)$ for $(x, a) \in V$. Then V and $q: V \to \mathbb{R}^n$ are definable, q_x is a homeomorphism onto its image containing x, and $A_{1,j} = \{x \in A_{0,j} \mid q_x \text{ is a } C^1 \text{ imbedding at } p(x)\}$.

Hence it suffices to prove the following assertion.

Assertion *₁. Let $C, D \subset C \times \mathbb{R}^j$ be definable sets and $\phi: D \to \mathbb{R}^n$ be a definable map. If for each $x \in C$, $D_x = D \cap (\{x\} \times \mathbb{R}^j)$ is open in $\{x\} \times \mathbb{R}^j$ and $\phi \mid D_x$ is a homeomorphism onto its image, then $D^1 = \{(x, y) \in D \mid \phi \mid D_x \text{ is a } C^1 \text{ imbedding at } (x, y) \}$ is definable.

Let

$$\widetilde{D} = \{(x, y, y', t) \in D \times \mathbb{R}^j \times (0, 1] | \forall s \in [0, 1], (x, y + sy') \in D\},$$

$$\widetilde{\phi}(x, y, y', t) = (\phi(x, y + ty') - \phi(x, y))/t \text{ for } (x, y, y', t) \in \widetilde{D},$$

$$G = (D \times \mathbb{R}^j \times \{0\} \times \mathbb{R}^n) \cap \overline{\operatorname{graph} \widetilde{\phi}},$$

 $G_{x,\ y}=(\{(x,\ y)\}\times\mathbb{R}^j\times\{0\}\times\mathbb{R}^n)\cap G$ for $(x,\ y)\in D$, and let $\rho_1:G\to\mathbb{R}^j$ and $\rho_2:G\to\mathbb{R}^n$ be the projections, where $\overline{graph\ \widetilde{\phi}}$ denotes the closure of $graph\ \widetilde{\phi}$. Then $\widetilde{D},\ \widetilde{\phi}:\widetilde{D}\to\mathbb{R}^n,\ G,\ G_{x,\ y},\ \rho_1$ and ρ_2 are definable and $D^1=\{(x,\ y)\in D|\ \rho_1\ |G_{x,\ y}\ \text{ and }\ \rho_2\ |G_{x,\ y}\ \text{ are homeomorphism onto }\ \mathbb{R}^j\}.$ As in the first argument, D^1 is definable.

Let $k \geq 2$. By the above argument, Assertion $*_k$ which is similarly defined by replacing D^1 in Assertion $*_1$ by $D^k = \{(x, y) \in D^{k-1} | \phi | D^{k-1}$ is a C^k imbedding at (x, y) implies that $A_{k,j}$ is definable.

Assertion $*_2$ is proved as follows. Let $E = D^1 \times \mathbb{R}^j$, $\psi : D \times \mathbb{R}^j$ $\to \mathbb{R}^n \times \mathbb{R}^n$, $\psi(x, y, y') = (\phi(x, y), d(\phi | D_x^1)_y y')$, where d denotes the differential operator. Then E and $\psi : E \to \mathbb{R}^n \times \mathbb{R}^n$ are definable and for any $x \in C$, $E_x = E \cap (\{x\} \times \mathbb{R}^j \times \mathbb{R}^j)$ is open in $\{x\} \times \mathbb{R}^j \times \mathbb{R}^j$ and $\psi | E_x$ is a homeomorphism onto its image. Thus by Assertion $*_1, E^1 = \{(x, y, y') \in E | \psi | E_x \text{ is a } C^1 \text{ imbedding at } (x, y, y')\}$ is definable. Since $D^2 = \{(x, y) \in D^1 | \forall y \in \mathbb{R}^j, \psi | E_x \text{ is a } C^1 \text{ imbedding at } (x, y, y')\}$, D^2 is definable.

Using induction on k, we have Assertion $*_k$.

Therefore $\sum_{k}(f)$ is definable.

Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets, $A \subset X$ be a definable subset of X and $f: X \to Y$ be a definable map. For any $y \in f(A)$, let $\sum_k (f^{-1}(y)) = \{x \in f^{-1}(y) | f^{-1}(y) \text{ be a definable } C^k \text{ manifold in } \mathbb{R}^n \text{ at } x\}.$ Then $\sum_k (f^{-1}(y)) = \sum_k (f) \cap f^{-1}(y).$

By Theorem 2.1, we have the following lemma.

Lemma 2.3. For any
$$y \in f(A)$$
, dim $\sum_{b} (f^{-1}(y)) < \dim f^{-1}(y)$.

Lemma 2.4. Let $f: X \to Y$ be a definable continuous map and b be a positive integer. If $\dim(A \cap f^{-1}(y)) + b \le \dim f^{-1}(y)$ for any $y \in f(A)$, then $\dim A + b \le \dim X$.

Proof. By Theorem 2.2, there exists a finite partition of f(X) into definable sets R_i , and for any i there exist a definable set $D_i \subset \mathbb{R}^n$ and a definable homeomorphism $\phi_i: D_i \times R_i \to f^{-1}(R_i)$ compatible with the projection onto R_i . Moreover there exists a finite partition of f(A) into definable sets S_j , and for any j there exist a definable set $E_j \subset \mathbb{R}^n$ and a definable homeomorphism $\psi_j: E_j \times S_j \to A \cap f^{-1}(S_j)$ compatible with the projection onto S_j . By Theorem 2.1, we have a finite partition of f(A) into Nash manifolds N_k compatible with R_i 's and S_j 's. Namely for any k, there exist some i(k), j(k) such that $\phi_{i(k)} \mid D_{i(k)} \times N_k : D_{i(k)} \times N_k \to f^{-1}(N_k)$, $\psi_{j(k)} \mid E_{j(k)} \times N_k : E_{j(k)} \times N_k \to A \cap f^{-1}(N_k)$ are definable homeomorphisms compatible with the projections. Thus $\dim f^{-1}(y) + \dim N_k = \dim D_{i(k)} + \dim N_k = \dim f^{-1}(N_k) \le \dim X$, $y \in N_k$. Moreover there exists k_0 such that $\dim(A \cap f^{-1}(y)) + \dim N_{k_0} = \dim E_{j(k_0)} + \dim N_{k_0}$

 $=\dim(A\cap f^{-1}(N_{k_0}))=\dim A,\ y\in N_{k_0}.\ \text{Assume that }\dim A+b>\dim X.$ Then $\dim(A\cap f^{-1}(y))+\dim N_{k_0}+b>\dim f^{-1}(y)+\dim N_{k_0},\ y\in N_{k_0}.\ \text{Hence}$ we have $\dim(A\cap f^{-1}(y))+b>\dim f^{-1}(y),\ y\in N_{k_0}.\ \text{This contradiction}$ proves the result.

Proof of $\sum_k(f)$ with codimension at least 1. Definability of $\sum_k(f)$, Lemma 2.3 and Lemma 2.4 prove that $\sum_k(f)$ has codimension at least 1.

References

- L. van den Dries, Tame topology and o-minimal structures, Lecture Notes Series 248, London Math. Soc. Cambridge Univ. Press, 1998.
- [2] L. van den Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. of Math. 140 (1994), 183-205.
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350 (1998), 4377-4421.
- [5] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 54 (2004), 1-15.
- [6] S. Koike and M. Shiota, Non-smooth points set of fibres of a semialgebraic mapping, J. Math. Soc. Japan 59 (2007), 953-969.
- [7] C. Miller, Expansion of the field with power functions, Ann. Pure Appl. Logic 68 (1994), 79-94.
- [8] J. P. Rolin, P. Speissegger and A. J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751-777.
- [9] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math. 150, Birkhäuser, 1997.