ON NONSINGULARITY AND RIGHT EIGENVALUES OF A QUATERNION CIRCULANT MATRIX

YONGYU CAI

School of Mathematics Science
Hunan University of Science and Technology
Xiangtan, Hunan 411201
P. R. China
e-mail: yongyucai@163.com

Abstract

Let A be an $n \times n$ quaternion circulant matrix. Then the complex representation A_{c} of A is similar to a complex matrix $\operatorname{diag}\left(M_{0}^{A}, M_{1}^{A}\right.$, \ldots, M_{n-1}^{A}). By using this property, a necessary and sufficient condition of A being nonsingular is given, and a system of right eigenvalues of A is determined.

1. Introduction

Let R be the real field, $C=\{a+b i \mid a, b \in R\}$ be the complex field, and $H=\{x+y j \mid x, y \in C\}$ be the quaternion field, where $i^{2}=j^{2}=-1$ and $i j=-j i$. By custom, the conjugate of a quaternion α is denoted by $\bar{\alpha}$. That is to say, $\bar{\alpha}=a-b i$ if $\alpha=a+b i \in C$, and $\bar{\alpha}=\bar{x}-y j$ if $\alpha=x+y j \in H$. The module $\sqrt{\alpha \bar{\alpha}}$ of a quaternion α is denoted by $|\alpha|$. 2000 Mathematics Subject Classification: 15A33, 15A18.
Keywords and phrases: quaternion circulant matrix, complex representation, nonsingularity, system of right eigenvalue.

Received October 1, 2008

The matrices with entries in H are called quaternion matrices. Especially, the matrices with entries in C are called complex matrices. The researches of complex matrices have made giant development. Since the multiplication of H loss commutativity, the consideration of quaternion matrices is much more difficult than that of complex matrices. However, some important natures of quaternion matrices have been explored. For example, Huang [2] gave a necessary and sufficient condition for a quaternion matrix being nonsingular; Zhang [6] described the characteristics of the set of all right eigenvalues of a quaternion matrix. But Huang's and Zhang's results are abstract and unfeasible in algorithm. In this paper, we improve these results in quaternion circulant matrices.

2. Nonsingularity of a Quaternion Circulant Matrix

Let $A=\left(\alpha_{i j}\right)$ be an $n \times n$ quaternion matrix. We customarily denote the conjugate, the transpose and the conjugate transpose of A by \bar{A}, A^{T} and A^{*}, respectively. That is to say,

$$
\bar{A}=\left(\overline{\alpha_{i j}}\right), \quad A^{T}=\left(\alpha_{j i}\right), \quad A^{*}=\left(\overline{\alpha_{j i}}\right)
$$

A quaternion circulant matrix is a quaternion matrix of the form

$$
\operatorname{Circ}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right)=\left(\begin{array}{ccccc}
\alpha_{0} & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n-1} \\
\alpha_{n-1} & \alpha_{0} & \alpha_{1} & \cdots & \alpha_{n-2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \ldots & \alpha_{0}
\end{array}\right)
$$

The set of $n \times n$ quaternion circulant matrices is denoted by $\operatorname{Circ}_{n}(H)$.
The $n \times n$ quaternion circulant matrix

$$
P=\operatorname{Circ}(0,1,0,0, \ldots, 0)
$$

is called the $n \times n$ basic circulant matrix. Quaternion circulant matrices with entries in C are called complex circulant matrices. Since were raised by Good [1], complex circulant matrices have been systematically investigated and widely used in coding, statistics, theoretical physics, structural analysis, digital image processing and so on [5].

ON NONSINGULARITY AND RIGHT EIGENVALUES ...

It is evident that an $n \times n$ quaternion matrix A is a quaternion circulant matrix if and only if there exist $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} \in H$ such that

$$
A=\sum_{k=0}^{n-1} \alpha_{k} P^{k}
$$

Furthermore, if A, B are $n \times n$ quaternion circulant matrices, then so do $\bar{A}, A^{T}, A^{*}, \alpha A \beta, A+B$ and $A B$, where α, β are arbitrary quaternions.

Let

$$
\omega_{k}=\exp \left(\frac{2 k \pi i}{n}\right), \quad(k=0,1, \ldots, n-1)
$$

be the unity roots of order n, and let

$$
F_{n}=n^{-\frac{1}{2}}\left(\omega_{k-1}^{l-1}\right)_{n \times n}
$$

be the $n \times n$ Fourier matrix. If $f(\lambda)=\sum_{l=0}^{m} a_{l} \lambda^{l}$ is a polynomial of complex coefficients, then, for each $k=0,1, \ldots, n-1$, we have

$$
\overline{f\left(\omega_{k}\right)}=\overline{\sum_{l=0}^{m} a_{l} \omega_{k}^{l}}=\sum_{l=0}^{m} \overline{a_{l} \omega_{k}} l=\sum_{l=0}^{m} \overline{a_{l}} \omega_{n-k}^{l}=\bar{f}\left(\omega_{n-k}\right)
$$

This leads to the following
Lemma 2.1. If $f(\lambda)$ is a polynomial of complex coefficients, then

$$
\overline{f\left(\omega_{k}\right)}=\bar{f}\left(\omega_{n-k}\right) \quad(k=0,1, \ldots, n-1) .
$$

Recall that the complex representation of a quaternion $\alpha=a+b j$ is defined by the 2×2 complex matrix

$$
(\alpha)_{c}=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)
$$

Huang [2] advised the complex representation of an $n \times n$ quaternion matrix A by the $2 n \times 2 n$ complex matrix

$$
A_{c}=\left(\left(\alpha_{i j}\right)_{c}\right)
$$

and then established the following lemma.

Lemma 2.2 [2]. An $n \times n$ quaternion matrix A is nonsingular if and only if A_{c} is nonsingular, and if and only if $\operatorname{det} A_{c} \neq 0$.

If $A=\operatorname{Circ}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \in \operatorname{Circ}_{n}(H)$, where $\alpha_{k}=a_{k}+b_{k} j \in H$ for each $k=0,1, \ldots, n-1$, we define

$$
f^{A}(\lambda)=\sum_{k=0}^{n-1} a_{k} \lambda^{k}, \quad \bar{f}^{A}(\lambda)=\sum_{k=0}^{n-1} \overline{a_{k}} \lambda^{k}, \quad g^{A}(\lambda)=\sum_{k=0}^{n-1} b_{k} \lambda^{k}, \quad \bar{g}^{A}(\lambda)=\sum_{k=0}^{n-1} \overline{b_{k}} \lambda^{k},
$$

and let

$$
M_{k}^{A}=\left(\begin{array}{cc}
f^{A}\left(\omega_{k}\right) & g^{A}\left(\omega_{k}\right) \\
-\bar{g}^{A}\left(\omega_{k}\right) & \bar{f}^{A}\left(\omega_{k}\right)
\end{array}\right) .
$$

Then, we have
Theorem 2.3. An $n \times n$ quaternion circulant matrix A is nonsingular if and only if

$$
\operatorname{det} M_{k}^{A} \neq 0 \quad\left(k=0,1, \ldots,\left[\frac{n}{2}\right]\right)
$$

Proof. Suppose that $A=\operatorname{Circ}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \in \operatorname{Circ}_{n}(H)$, where $\alpha_{k}=a_{k}+b_{k} j \in H$ for each $k=0,1, \ldots, n-1$. Note that

$$
A_{c}=\sum_{k=0}^{n-1} P^{k} \otimes\left(\alpha_{k}\right)_{c}
$$

here \otimes is Kronecker product of matrices. By direct calculations we can obtain that

$$
\left(F_{n} \otimes I_{2}\right)^{*} A_{c}\left(F_{n} \otimes I_{2}\right)=\operatorname{diag}\left(\sum_{k=0}^{n-1} \omega_{0}^{k}\left(\alpha_{k}\right)_{c}, \sum_{k=0}^{n-1} \omega_{1}^{k}\left(\alpha_{k}\right)_{c}, \ldots, \sum_{k=0}^{n-1} \omega_{n-1}^{k}\left(\alpha_{k}\right)_{c}\right)
$$

Furthermore, since for each $l=0,1, \ldots, n-1$,

$$
\sum_{k=0}^{n-1} \omega_{l}^{k}\left(\alpha_{k}\right)_{c}=\left(\begin{array}{cc}
\sum_{k=0}^{n-1} a_{k} \omega_{l}^{k} & \sum_{k=0}^{n-1} b_{k} \omega_{l}^{k} \\
-\sum_{k=0}^{n-1} \overline{b_{k}} \omega_{l}^{k} & \sum_{k=0}^{n-1} \overline{a_{k}} \omega_{l}^{k}
\end{array}\right)=M_{l}^{A}
$$

we have

$$
\begin{equation*}
\left(F_{n} \otimes I_{2}\right)^{*} A_{c}\left(F_{n} \otimes I_{2}\right)=\operatorname{diag}\left(M_{0}^{A}, M_{1}^{A}, \ldots, M_{n-1}^{A}\right), \tag{1}
\end{equation*}
$$

and whence

$$
\operatorname{det} A_{c}=\prod_{l=0}^{n-1}\left(\operatorname{det} M_{l}^{A}\right) .
$$

By Lemma 2.1, we can see that

$$
\begin{aligned}
\operatorname{det} M_{l}^{A} & =f^{A}\left(\omega_{l}\right) \bar{f}^{A}\left(\omega_{l}\right)+g^{A}\left(\omega_{l}\right) \bar{g}^{A}\left(\omega_{l}\right) \\
& =\overline{f^{A}\left(\omega_{n-l}\right) \bar{f}^{A}\left(\omega_{n-l}\right)+g^{A}\left(\omega_{n-l}\right) \bar{g}^{A}\left(\omega_{n-l}\right)} \\
& =\overline{\operatorname{det} M_{n-l}^{A}} .
\end{aligned}
$$

Therefore

$$
\operatorname{det} A_{c}= \begin{cases}\left(\operatorname{det} M_{0}^{A}\right) \prod_{l=1}^{p}\left[\left(\operatorname{det} M_{l}^{A}\right)\left(\overline{\operatorname{det} M_{l}^{A}}\right)\right] & \text { if } n=2 p+1, \\ \left(\operatorname{det} M_{0}^{A}\right)\left(\operatorname{det} M_{p}^{A}\right) \prod_{l=1}^{p-1}\left[\left(\operatorname{det} M_{l}^{A}\right)\left(\overline{\operatorname{det} M_{l}^{A}}\right)\right] & \text { if } n=2 p .\end{cases}
$$

Now, by Lemma 2.2, the required result holds.
Corollary 2.4. Let $A=\operatorname{Circ}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \in \operatorname{Circ}_{n}(H)$. If $\sum_{k=0}^{n-1} \alpha_{k}$ $=0$, then A is singular .

Proof. This claim follows by Theorem 2.3 directly since $\operatorname{det} M_{0}^{A}$ $=\left|\sum_{k=0}^{n-1} \alpha_{k}\right|^{2}$.

3. Right Eigenvalues of a Quaternion Circulant Matrix

Let \sim be the similar relation on H defined by $\alpha \sim \beta$ if $\alpha=\gamma \beta \gamma^{-1}$ for some nonzero quaternion γ. Then, of course, this relation is an equivalence relation. For each $\alpha \in H$, we denote the \sim class of α by $\tilde{\alpha}$. Observe that $\tilde{\alpha}$ contains exactly one pair of complex numbers, say x, y, with $x=\bar{y}$ [6].

Let A be an $n \times n$ quaternion matrix. It is shown by [3, 4] that A must have a right eigenvalue $\lambda \in C$ and, in this case, each one of the \sim-class $\tilde{\lambda}$ is also a right eigenvalue of A. Accordingly, counting multiplicities, $\quad A$ has n complex right eigenvalues say $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}$ such that the set of all right eigenvalues of A is $\bigcup_{k=0}^{n-1} \widetilde{\lambda_{k}}$. We call the set $\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right\}$ a system of right eigenvalues of A. To determine a system of right eigenvalues of a quaternion circulant matrix, the following lemma is needed.

Lemma 3.1 [6]. Let α be a quaternion. Then $(\alpha)_{c}$ has two complex eigenvalues which are conjugate each other.

Lemma 3.2 [3]. Let $A=A_{1}+A_{2} j$ be an $n \times n$ quaternion matrix, where A_{1}, A_{2} are $n \times n$ complex matrices, and let

$$
A_{c r}=\left(\begin{array}{cc}
A_{1} & A_{2} \\
-\overline{A_{2}} & \overline{A_{1}}
\end{array}\right)
$$

If $\lambda_{0}, \overline{\lambda_{0}}, \lambda_{1}, \overline{\lambda_{1}}, \ldots, \lambda_{n-1}, \overline{\lambda_{n-1}}$ are all complex eigenvalues of the matrix $A_{c r}$, then $\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right\}$ is a system of right eigenvalues of A.

It is evident that, for any $n \times n$ quaternion matrix A, the matrices A_{c} and $A_{c r}$ are similar. Therefore, we have

Corollary 3.3. Let A be an $n \times n$ quaternion matrix. If $\lambda_{0}, \overline{\lambda_{0}}, \lambda_{1}$, $\overline{\lambda_{1}}, \ldots, \lambda_{n-1}, \overline{\lambda_{n-1}}$ are all complex eigenvalues of the matrix A_{c}, then $\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right\}$ is a system of right eigenvalues of A.

The following theorem is the main result of this section.
Theorem 3.4. Let $A=\operatorname{Circ}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \in \operatorname{Circ}_{n}(H)$, where $\alpha_{k}=$ $a_{k}+b_{k} j \in H$ for each $k=0,1, \ldots, n-1$. For every $\varepsilon=1,2$ and every $l=0,1, \ldots, n-1, p u t$
$\lambda_{l}^{(\varepsilon)}=\sum_{k=0}^{n-1} \frac{a_{k}+\overline{a_{k}}}{2} \omega_{l}^{k}+(-1)^{\varepsilon} \sqrt{\left(\sum_{k=0}^{n-1} \frac{a_{k}-\overline{a_{k}}}{2} \omega_{l}^{k}\right)^{2}-\sum_{k=0}^{n-1}\left(\sum_{s+t=k} b_{s} \overline{b_{t}}+\sum_{s+t=n+k} b_{s} \overline{b_{t}}\right) \omega_{l}^{k}}$.

Let

$$
\mathscr{R E}= \begin{cases}\left\{\lambda_{0}^{(1)}, \lambda_{1}^{(1)}, \lambda_{1}^{(2)}, \ldots, \lambda_{p}^{(1)}, \lambda_{p}^{(2)}\right\} & \text { if } n=2 p+1, \\ \left\{\lambda_{0}^{(1)}, \lambda_{1}^{(1)}, \lambda_{1}^{(2)}, \ldots, \lambda_{p-1}^{(1)}, \lambda_{p-1}^{(2)}, \lambda_{p}^{(1)}\right\} & \text { if } n=2 p\end{cases}
$$

Then $\mathscr{R} B$ is a system of right eigenvalues of A.
Proof. By equality (1), we can see that the set of all complex right eigenvalues of A_{c} is exactly the union of those of M_{l}^{A} 's. For each $l=0,1, \ldots, n-1$, since

$$
\operatorname{det}\left(\lambda I-M_{l}^{A}\right)=\lambda^{2}-\left[f^{A}\left(\omega_{l}\right)+\bar{f}^{A}\left(\omega_{l}\right)\right] \lambda+f^{A}\left(\omega_{l}\right) \bar{f}^{A}\left(\omega_{l}\right)+g^{A}\left(\omega_{l}\right) \bar{g}^{A}\left(\omega_{l}\right),
$$

the complex eigenvalues of M_{l}^{A} are

$$
\begin{aligned}
& \lambda_{l}^{(\varepsilon)}=\frac{1}{2}\left[f^{A}\left(\omega_{l}\right)+\bar{f}^{A}\left(\omega_{l}\right)\right] \\
& +(-1)^{\varepsilon} \frac{1}{2} \sqrt{\left[f^{A}\left(\omega_{l}\right)+\bar{f}^{A}\left(\omega_{l}\right)\right]^{2}-4\left[f^{A}\left(\omega_{l}\right) \bar{f}^{A}\left(\omega_{l}\right)+g^{A}\left(\omega_{l}\right) \bar{g}^{A}\left(\omega_{l}\right)\right]} \\
& =\frac{1}{2}\left[f^{A}\left(\omega_{l}\right)+\bar{f}^{A}\left(\omega_{l}\right)\right]+(-1)^{\varepsilon} \frac{1}{2} \sqrt{\left[f^{A}\left(\omega_{l}\right)-\bar{f}^{A}\left(\omega_{l}\right)\right]^{2}-4 g^{A}\left(\omega_{l}\right) \bar{g}^{A}\left(\omega_{l}\right)} \\
& =\sum_{k=0}^{n-1} \frac{a_{k}+\overline{a_{k}}}{2} \omega_{l}^{k} \\
& +(-1)^{\varepsilon} \sqrt{\left(\sum_{k=0}^{n-1} \frac{a_{k}-\overline{a_{k}}}{2} \omega_{l}^{k}\right)^{2}-\sum_{k=0}^{n-1}\left(\sum_{s+t=k} b_{s} \overline{b_{t}}+\sum_{s+t=n+k} b_{s} \overline{b_{t}}\right) \omega_{l}^{k}} \\
& (\varepsilon=1,2) .
\end{aligned}
$$

Furthermore, by Lemma 2.1, we have

$$
\begin{aligned}
\overline{M_{l}^{A}} & =\left(\begin{array}{cc}
\bar{f}^{A}\left(\omega_{n-l}\right) & \bar{g}^{A}\left(\omega_{n-l}\right) \\
-g^{A}\left(\omega_{n-l}\right) & f^{A}\left(\omega_{n-l}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) M_{n-l}^{A}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)^{-1}
\end{aligned}
$$

Hence the Jordan canonical forms of $\overline{M_{l}^{A}}$ and M_{n-l}^{A} coincide. It follows that the Jordan canonical forms of M_{l}^{A} and M_{n-l}^{A} are conjugate each other, so that

$$
\left\{\overline{\lambda_{l}^{(1)}}, \overline{\lambda_{l}^{(2)}}\right\}=\left\{\lambda_{n-l}^{(1)}, \lambda_{n-l}^{(2)}\right\}
$$

Since $M_{0}^{A}=\left(f^{A}(1)+g^{A}(1)\right)_{c}$, by Lemma 3.1, we claim that

$$
\lambda_{0}^{(2)}=\overline{\lambda_{0}^{(1)}}
$$

Further, if $n=2 p$, then $M_{p}^{A}=\left(f^{A}\left(\omega_{p}\right)+g^{A}\left(\omega_{p}\right)\right)_{c}$, thus it follows by Lemma 3.1 that

$$
\lambda_{p}^{(2)}=\overline{\lambda_{p}^{(1)}}
$$

By virtue of Corollary 3.3 and summarizing the above equalities, we can obtain the required conclusion.

References

[1] I. J. Good, On the inversion of circulant matrices, Biometria 37 (1950), 185-186.
[2] L. P. Huang, Transformation theorem of quaternion matrices and their applications, Northeast. Math. J. 9(1) (1993), 69-80.
[3] L. P. Huang, Jordan canonical form of a matrix over the quaternion field, Northeast. Math. J. 10(1) (1994), 18-24.
[4] L. P. Huang, Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001), 21-30.
[5] Philip J. Davis, Circulant Matrices, New York, 1979.
[6] F. Z. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997), 21-57.

