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Abstract 

Let A be an nn×  quaternion circulant matrix. Then the complex 

representation cA  of A is similar to a complex matrix ( ,,diag 10
AA MM  

)...., 1
A
nM −  By using this property, a necessary and sufficient condition 

of A being nonsingular is given, and a system of right eigenvalues of A is 

determined. 

1. Introduction 

Let R be the real field, { }RbabiaC ∈|+= ,  be the complex field, 

and { }CyxyjxH ∈|+= ,  be the quaternion field, where 122 −== ji  

and .jiij −=  By custom, the conjugate of a quaternion α is denoted by .α  

That is to say, bia −=α  if ,Cbia ∈+=α  and yjx −=α  if 

.Hyjx ∈+=α  The module αα  of a quaternion α is denoted by .α  
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The matrices with entries in H are called quaternion matrices. 

Especially, the matrices with entries in C are called complex matrices. 
The researches of complex matrices have made giant development.    

Since the multiplication of H loss commutativity, the consideration of 

quaternion matrices is much more difficult than that of complex matrices. 
However, some important natures of quaternion matrices have been 

explored. For example, Huang [2] gave a necessary and sufficient 
condition for a quaternion matrix being nonsingular; Zhang [6] described 

the characteristics of the set of all right eigenvalues of a quaternion 
matrix. But Huang’s and Zhang’s results are abstract and unfeasible in 

algorithm. In this paper, we improve these results in quaternion circulant 
matrices. 

2. Nonsingularity of a Quaternion Circulant Matrix 

Let ( )ijA α=  be an nn ×  quaternion matrix. We customarily denote 

the conjugate, the transpose and the conjugate transpose of A by TAA ,  

and ,∗A  respectively. That is to say, 

( ) ( ) ( ).,, jiji
T

ij AAA α=α=α= ∗  

A quaternion circulant matrix is a quaternion matrix of the form 

( ) ....,,,,Circ
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nn
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The set of nn ×  quaternion circulant matrices is denoted by ( ).Circ Hn  

The nn ×  quaternion circulant matrix 

( )0...,,0,0,1,0Circ=P  

is called the nn ×  basic circulant matrix. Quaternion circulant matrices 

with entries in C are called complex circulant matrices. Since were raised 

by Good [1], complex circulant matrices have been systematically 
investigated and widely used in coding, statistics, theoretical physics, 
structural analysis, digital image processing and so on [5]. 
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It is evident that an nn ×  quaternion matrix A is a quaternion 

circulant matrix if and only if there exist Hn ∈ααα −110 ...,,,  such that 

∑
−

=

α=
1

0

.
n

k

k
kPA  

Furthermore, if A, B are nn ×  quaternion circulant matrices, then so do 

BAAAAA T +βα∗ ,,,,  and AB, where βα,  are arbitrary quaternions. 

Let 

( ),1...,,1,0,2exp −=




 π=ω nk

n
ik

k  

be the unity roots of order n, and let 

( ) nn
l
kn nF ×
−
−

−
ω= 1

1
2
1

 

be the nn ×  Fourier matrix. If ( ) ∑ =
λ=λ

m
l

l
laf

0
 is a polynomial of 

complex coefficients, then, for each ,1...,,1,0 −= nk  we have 

( ) ( )∑ ∑∑
= =

−−
=

ω=ω=ω=ω=ω
m

l

m

l
kn

l
knl

l
kl

m

l

l
klk faaaf

0 00

.  

This leads to the following 

Lemma 2.1. If ( )λf  is a polynomial of complex coefficients, then 

 ( ) ( ) ( ).1...,,1,0 −=ω=ω − nkff knk  � 

Recall that the complex representation of a quaternion bja +=α  is 

defined by the 22 ×  complex matrix 

( ) ,






−

=α
ab

ba
c  

Huang [2] advised the complex representation of an nn ×  quaternion 

matrix A by the nn 22 ×  complex matrix 

(( ) )cijcA α=  

and then established the following lemma. 
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Lemma 2.2 [2]. An nn ×  quaternion matrix A is nonsingular if and 

only if cA  is nonsingular, and if and only if .0det ≠cA  � 

If ( ) ( ),Circ...,,,Circ 110 HA nn ∈ααα= −  where Hjba kkk ∈+=α  

for each ,1...,,1,0 −= nk  we define 

( ) ( ) ( ) ( )∑ ∑ ∑ ∑
−

=

−

=

−
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−

=

λ=λλ=λλ=λλ=λ
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and let 

( ) ( )
( ) ( )
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ωω−
ωω=

k
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k
A

k
A

k
A

A
k

fg
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M  

Then, we have 

Theorem 2.3. An nn ×  quaternion circulant matrix A is nonsingular 

if and only if 

.
2

...,,1,00det 











=≠
n

kM A
k  

Proof. Suppose that ( ) ( ),Circ...,,,Circ 110 HA nn ∈ααα= −  where 

Hjba kkk ∈+=α  for each .1...,,1,0 −= nk  Note that 

( )∑
−

=

α⊗=
1

0

,
n

k
ck

k
c PA  

here ⊗ is Kronecker product of matrices. By direct calculations we can 

obtain that 

( ) ( ) ( ) ( ) ( ) ....,,,diag
1
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Furthermore, since for each ,1...,,1,0 −= nl  
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we have 

 ( ) ( ) ( ),...,,,diag 11022
A
n

AA
ncn MMMIFAIF −

∗ =⊗⊗  (1) 

and whence 

( )∏
−

=

=
1

0

.detdet
n

l

A
lc MA  

By Lemma 2.1, we can see that 

( ) ( ) ( ) ( )l
A

l
A

l
A

l
AA

l ggffM ωω+ωω=det  

( ) ( ) ( ) ( )ln
A

ln
A

ln
A

ln
A ggff −−−− ωω+ωω=  

.det A
lnM −=  

Therefore 

( ) [( ) ( )]

( ) ( ) [( ) ( )]







=

+=
=

∏
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−

=

=

.2ifdetdetdetdet

,12ifdetdetdet
det 1
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10
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pnMMM
A p

l
A
l

A
l

A
p

A

p

l
A
l

A
l

A

c  

Now, by Lemma 2.2, the required result holds. � 

Corollary 2.4. Let ( ) ( ).Circ...,,,Circ 110 HA nn ∈ααα= −  If ∑ −
=

α
1
0

n
k k  

,0= then A is singular. 

Proof. This claim follows by Theorem 2.3 directly since AM0det  

.
21

0∑ −
=

α= n
k k  � 

3. Right Eigenvalues of a Quaternion Circulant Matrix 

Let ~ be the similar relation on H defined by βα ~  if 1−γβγ=α      

for some nonzero quaternion γ. Then, of course, this relation is an 

equivalence relation. For each ,H∈α  we denote the ~-class of α by .~α  

Observe that α~  contains exactly one pair of complex numbers, say x, y, 

with yx =  [6]. 



YONGYU CAI 316

Let A be an nn ×  quaternion matrix. It is shown by [3, 4] that A 

must have a right eigenvalue C∈λ  and, in this case, each one of the 

~-class  λ~  is also a right eigenvalue of A. Accordingly, counting 

multiplicities,     A has n complex right eigenvalues say 110 ...,,, −λλλ n  

such that the set of all right eigenvalues of A is j1
0

.
n

kk
−
=
λ∪  We call the set 

{ }110 ...,,, −λλλ n  a system of right eigenvalues of A. To determine a 

system of right eigenvalues of a quaternion circulant matrix, the 

following lemma is needed. 

Lemma 3.1 [6]. Let α be a quaternion. Then ( )cα  has two complex 

eigenvalues which are conjugate each other. � 

Lemma 3.2 [3]. Let jAAA 21 +=  be an nn ×  quaternion matrix, 

where 21, AA  are nn ×  complex matrices, and let 

.
12

21












−
=

AA
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Acr  

If 111100 ,...,,,,, −− λλλλλλ nn  are all complex eigenvalues of the matrix 

,crA  then { }110 ...,,, −λλλ n  is a system of right eigenvalues of A. � 

It is evident that, for any nn ×  quaternion matrix A, the matrices 

cA  and crA  are similar. Therefore, we have 

Corollary 3.3. Let A be an nn ×  quaternion matrix. If ,,, 100 λλλ  

111 ,...,, −− λλλ nn  are all complex eigenvalues of the matrix ,cA  then 

{ }110 ...,,, −λλλ n  is a system of right eigenvalues of A. � 

The following theorem is the main result of this section. 

Theorem 3.4. Let ( ) ( ),Circ...,,,Circ 110 HA nn ∈ααα= −  where =αk  

Hjba kk ∈+  for each .1...,,1,0 −= nk  For every 2,1=ε  and every 

,1...,,1,0 −= nl  put 
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Let 

{ ( ) ( ) ( ) ( ) ( )}
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Then RE  is a system of right eigenvalues of A. 

Proof. By equality (1), we can see that the set of all complex right 

eigenvalues of cA  is exactly the union of those of A
lM ’s. For each 

,1...,,1,0 −= nl  since 

( ) [ ( ) ( )] ( ) ( ) ( ) ( ),det 2
l

A
l

A
l

A
l

A
l

A
l

AA
l ggffffMI ωω+ωω+λω+ω−λ=−λ  

the complex eigenvalues of A
lM  are 

( ) [ ( ) ( )]l
A

l
A

l ff ω+ω=λ ε

2
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( ).2,1=ε  

Furthermore, by Lemma 2.1, we have 

( ) ( )

( ) ( ) 
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Hence the Jordan canonical forms of A
lM  and A

lnM −  coincide. It follows 

that the Jordan canonical forms of A
lM  and A

lnM −  are conjugate each 

other, so that 

{ ( ) ( )} { ( ) ( ) }.,, 2121
lnlnll −− λλ=λλ  

Since ( ( ) ( )) ,110 c
AAA gfM +=  by Lemma 3.1, we claim that 

( ) ( ).1
0

2
0 λ=λ  

Further, if ,2pn =  then ( ( ) ( )) ,cp
A

p
AA

p gfM ω+ω=  thus it follows by 

Lemma 3.1 that 

( ) ( ).12
pp λ=λ  

By virtue of Corollary 3.3 and summarizing the above equalities, we can 

obtain the required conclusion. � 
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