ON NONSINGULARITY AND RIGHT EIGENVALUES OF A QUATERNION CIRCULANT MATRIX

YONGYU CAI

School of Mathematics Science Hunan University of Science and Technology Xiangtan, Hunan 411201 P. R. China

e-mail: yongyucai@163.com

Abstract

Let A be an $n \times n$ quaternion circulant matrix. Then the complex representation A_c of A is similar to a complex matrix $\operatorname{diag}(M_0^A, M_1^A, ..., M_{n-1}^A)$. By using this property, a necessary and sufficient condition of A being nonsingular is given, and a system of right eigenvalues of A is determined.

1. Introduction

Let R be the real field, $C = \{a + bi \mid a, b \in R\}$ be the complex field, and $H = \{x + yj \mid x, y \in C\}$ be the quaternion field, where $i^2 = j^2 = -1$ and ij = -ji. By custom, the conjugate of a quaternion α is denoted by $\overline{\alpha}$. That is to say, $\overline{\alpha} = a - bi$ if $\alpha = a + bi \in C$, and $\overline{\alpha} = \overline{x} - yj$ if $\alpha = x + yj \in H$. The module $\sqrt{\alpha}\overline{\alpha}$ of a quaternion α is denoted by $|\alpha|$. $\overline{\alpha} = 2000$ Mathematics Subject Classification: 15A33, 15A18.

Keywords and phrases: quaternion circulant matrix, complex representation, nonsingularity, system of right eigenvalue.

Received October 1, 2008

The matrices with entries in H are called quaternion matrices. Especially, the matrices with entries in C are called complex matrices. The researches of complex matrices have made giant development. Since the multiplication of H loss commutativity, the consideration of quaternion matrices is much more difficult than that of complex matrices. However, some important natures of quaternion matrices have been explored. For example, Huang [2] gave a necessary and sufficient condition for a quaternion matrix being nonsingular; Zhang [6] described the characteristics of the set of all right eigenvalues of a quaternion matrix. But Huang's and Zhang's results are abstract and unfeasible in algorithm. In this paper, we improve these results in quaternion circulant matrices.

2. Nonsingularity of a Quaternion Circulant Matrix

Let $A = (\alpha_{ij})$ be an $n \times n$ quaternion matrix. We customarily denote the *conjugate*, the *transpose* and the *conjugate transpose* of A by \overline{A} , A^T and A^* , respectively. That is to say,

$$\overline{A} = (\overline{\alpha_{ii}}), \quad A^T = (\alpha_{ii}), \quad A^* = (\overline{\alpha_{ii}}).$$

A quaternion circulant matrix is a quaternion matrix of the form

$$\operatorname{Circ}(\alpha_0,\ \alpha_1,\ \alpha_2,\ \ldots,\ \alpha_{n-1}) = \begin{pmatrix} \alpha_0 & \alpha_1 & \alpha_2 & \cdots & \alpha_{n-1} \\ \alpha_{n-1} & \alpha_0 & \alpha_1 & \cdots & \alpha_{n-2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_0 \end{pmatrix}.$$

The set of $n \times n$ quaternion circulant matrices is denoted by $\operatorname{Circ}_n(H)$. The $n \times n$ quaternion circulant matrix

$$P = Circ(0, 1, 0, 0, ..., 0)$$

is called the $n \times n$ basic circulant matrix. Quaternion circulant matrices with entries in C are called *complex circulant matrices*. Since were raised by Good [1], complex circulant matrices have been systematically investigated and widely used in coding, statistics, theoretical physics, structural analysis, digital image processing and so on [5].

It is evident that an $n \times n$ quaternion matrix A is a quaternion circulant matrix if and only if there exist α_0 , α_1 , ..., $\alpha_{n-1} \in H$ such that

$$A = \sum_{k=0}^{n-1} \alpha_k P^k.$$

Furthermore, if A, B are $n \times n$ quaternion circulant matrices, then so do \overline{A} , A^T , A^* , $\alpha A\beta$, A + B and AB, where α , β are arbitrary quaternions.

Let

$$\omega_k = \exp\left(\frac{2k\pi i}{n}\right), \quad (k = 0, 1, ..., n-1),$$

be the *unity roots of order n*, and let

$$F_n = n^{-\frac{1}{2}} (\omega_{k-1}^{l-1})_{n \times n}$$

be the $n \times n$ Fourier matrix. If $f(\lambda) = \sum_{l=0}^{m} a_l \lambda^l$ is a polynomial of complex coefficients, then, for each k=0,1,...,n-1, we have

$$\overline{f(\omega_k)} = \overline{\sum_{l=0}^m a_l \omega_k^l} = \sum_{l=0}^m \overline{a_l} \overline{\omega_k}^l = \sum_{l=0}^m \overline{a_l} \omega_{n-k}^l = \overline{f}(\omega_{n-k}).$$

This leads to the following

Lemma 2.1. If $f(\lambda)$ is a polynomial of complex coefficients, then

$$\overline{f(\omega_k)} = \overline{f}(\omega_{n-k}) \quad (k = 0, 1, ..., n-1).$$

Recall that the *complex representation of a quaternion* $\alpha = a + bj$ is defined by the 2×2 complex matrix

$$(\alpha)_c = \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix},$$

Huang [2] advised the *complex representation* of an $n \times n$ quaternion matrix A by the $2n \times 2n$ complex matrix

$$A_c = ((\alpha_{ii})_c)$$

and then established the following lemma.

Lemma 2.2 [2]. An $n \times n$ quaternion matrix A is nonsingular if and only if A_c is nonsingular, and if and only if $\det A_c \neq 0$.

If $A = \text{Circ}(\alpha_0, \alpha_1, ..., \alpha_{n-1}) \in \text{Circ}_n(H)$, where $\alpha_k = a_k + b_k j \in H$ for each k = 0, 1, ..., n-1, we define

$$f^A(\lambda) = \sum_{k=0}^{n-1} a_k \lambda^k, \quad \bar{f}^A(\lambda) = \sum_{k=0}^{n-1} \overline{a_k} \lambda^k, \quad g^A(\lambda) = \sum_{k=0}^{n-1} b_k \lambda^k, \quad \overline{g}^A(\lambda) = \sum_{k=0}^{n-1} \overline{b_k} \lambda^k,$$

and let

$$M_k^A = \begin{pmatrix} f^A(\omega_k) & g^A(\omega_k) \\ -\overline{g}^A(\omega_k) & \overline{f}^A(\omega_k) \end{pmatrix}.$$

Then, we have

Theorem 2.3. An $n \times n$ quaternion circulant matrix A is nonsingular if and only if

$$\det M_k^A \neq 0 \quad \left(k = 0, 1, ..., \left[\frac{n}{2}\right]\right).$$

Proof. Suppose that $A = \operatorname{Circ}(\alpha_0, \alpha_1, ..., \alpha_{n-1}) \in \operatorname{Circ}_n(H)$, where $\alpha_k = a_k + b_k j \in H$ for each k = 0, 1, ..., n-1. Note that

$$A_c = \sum_{k=0}^{n-1} P^k \otimes (\alpha_k)_c,$$

here \otimes is Kronecker product of matrices. By direct calculations we can obtain that

$$(F_n \otimes I_2)^*A_c(F_n \otimes I_2) = \operatorname{diag}\!\left(\sum_{k=0}^{n-1} \omega_0^k(\alpha_k)_c, \sum_{k=0}^{n-1} \omega_1^k(\alpha_k)_c, ..., \sum_{k=0}^{n-1} \omega_{n-1}^k(\alpha_k)_c\right).$$

Furthermore, since for each l = 0, 1, ..., n - 1,

$$\sum_{k=0}^{n-1} \omega_l^k(\alpha_k)_c = \begin{pmatrix} \sum_{k=0}^{n-1} a_k \omega_l^k & \sum_{k=0}^{n-1} b_k \omega_l^k \\ -\sum_{k=0}^{n-1} \overline{b_k} \omega_l^k & \sum_{k=0}^{n-1} \overline{a_k} \omega_l^k \end{pmatrix} = M_l^A,$$

we have

$$(F_n \otimes I_2)^* A_c(F_n \otimes I_2) = \operatorname{diag}(M_0^A, M_1^A, ..., M_{n-1}^A),$$
 (1)

and whence

$$\det A_c = \prod_{l=0}^{n-1} (\det M_l^A).$$

By Lemma 2.1, we can see that

$$\det M_l^A = f^A(\omega_l) \overline{f}^A(\omega_l) + g^A(\omega_l) \overline{g}^A(\omega_l)$$

$$= \overline{f^A(\omega_{n-l}) \overline{f}^A(\omega_{n-l}) + g^A(\omega_{n-l}) \overline{g}^A(\omega_{n-l})}$$

$$= \overline{\det M_{n-l}^A}.$$

Therefore

$$\det A_c = \begin{cases} (\det M_0^A) \prod_{l=1}^p [(\det M_l^A)(\overline{\det M_l^A})] & \text{if } n = 2p+1, \\ (\det M_0^A)(\det M_p^A) \prod_{l=1}^{p-1} [(\det M_l^A)(\overline{\det M_l^A})] & \text{if } n = 2p. \end{cases}$$

Now, by Lemma 2.2, the required result holds.

Corollary 2.4. Let $A = \text{Circ}(\alpha_0, \alpha_1, ..., \alpha_{n-1}) \in \text{Circ}_n(H)$. If $\sum_{k=0}^{n-1} \alpha_k = 0$, then A is singular.

Proof. This claim follows by Theorem 2.3 directly since $\det M_0^A = \left| \sum_{k=0}^{n-1} \alpha_k \right|^2$.

3. Right Eigenvalues of a Quaternion Circulant Matrix

Let \sim be the *similar relation* on H defined by $\alpha \sim \beta$ if $\alpha = \gamma \beta \gamma^{-1}$ for some nonzero quaternion γ . Then, of course, this relation is an equivalence relation. For each $\alpha \in H$, we denote the \sim -class of α by $\widetilde{\alpha}$. Observe that $\widetilde{\alpha}$ contains exactly one pair of complex numbers, say x, y, with $x = \overline{y}$ [6].

Let A be an $n \times n$ quaternion matrix. It is shown by [3, 4] that A must have a right eigenvalue $\lambda \in C$ and, in this case, each one of the \sim -class $\widetilde{\lambda}$ is also a right eigenvalue of A. Accordingly, counting multiplicities, A has n complex right eigenvalues say $\lambda_0, \lambda_1, ..., \lambda_{n-1}$ such that the set of all right eigenvalues of A is $\bigcup_{k=0}^{n-1} \widetilde{\lambda_k}$. We call the set $\{\lambda_0, \lambda_1, ..., \lambda_{n-1}\}$ a system of right eigenvalues of A. To determine a system of right eigenvalues of a quaternion circulant matrix, the following lemma is needed.

Lemma 3.1 [6]. Let α be a quaternion. Then $(\alpha)_c$ has two complex eigenvalues which are conjugate each other.

Lemma 3.2 [3]. Let $A = A_1 + A_2 j$ be an $n \times n$ quaternion matrix, where A_1 , A_2 are $n \times n$ complex matrices, and let

$$A_{cr} = \begin{pmatrix} A_1 & A_2 \\ -\overline{A_2} & \overline{A_1} \end{pmatrix}.$$

If λ_0 , $\overline{\lambda_0}$, λ_1 , $\overline{\lambda_1}$, ..., λ_{n-1} , $\overline{\lambda_{n-1}}$ are all complex eigenvalues of the matrix A_{cr} , then $\{\lambda_0, \lambda_1, ..., \lambda_{n-1}\}$ is a system of right eigenvalues of A.

It is evident that, for any $n \times n$ quaternion matrix A, the matrices A_c and A_{cr} are similar. Therefore, we have

Corollary 3.3. Let A be an $n \times n$ quaternion matrix. If λ_0 , $\overline{\lambda_0}$, λ_1 , $\overline{\lambda_1}$, ..., λ_{n-1} , $\overline{\lambda_{n-1}}$ are all complex eigenvalues of the matrix A_c , then $\{\lambda_0, \lambda_1, ..., \lambda_{n-1}\}$ is a system of right eigenvalues of A.

The following theorem is the main result of this section.

Theorem 3.4. Let $A = \text{Circ}(\alpha_0, \alpha_1, ..., \alpha_{n-1}) \in \text{Circ}_n(H)$, where $\alpha_k = a_k + b_k j \in H$ for each k = 0, 1, ..., n-1. For every $\epsilon = 1, 2$ and every l = 0, 1, ..., n-1, put

$$\lambda_l^{(\varepsilon)} = \sum_{k=0}^{n-1} \frac{a_k + \overline{a_k}}{2} \, \omega_l^k + (-1)^\varepsilon \sqrt{\left(\sum_{k=0}^{n-1} \frac{a_k - \overline{a_k}}{2} \, \omega_l^k\right)^2 - \sum_{k=0}^{n-1} \left(\sum_{s+t=k} b_s \overline{b_t} + \sum_{s+t=n+k} b_s \overline{b_t}\right) \omega_l^k} \,.$$

Let

$$\mathcal{RE} = \begin{cases} \{\lambda_0^{(1)}, \, \lambda_1^{(1)}, \, \lambda_1^{(2)}, \, ..., \, \lambda_p^{(1)}, \, \lambda_p^{(2)}\} & \text{if } n = 2p+1, \\ \{\lambda_0^{(1)}, \, \lambda_1^{(1)}, \, \lambda_1^{(2)}, \, ..., \, \lambda_{p-1}^{(1)}, \, \lambda_{p-1}^{(2)}, \, \lambda_p^{(1)}\} & \text{if } n = 2p. \end{cases}$$

Then \mathcal{RE} is a system of right eigenvalues of A.

Proof. By equality (1), we can see that the set of all complex right eigenvalues of A_c is exactly the union of those of M_l^A 's. For each l=0,1,...,n-1, since

$$\det(\lambda I - M_I^A) = \lambda^2 - [f^A(\omega_I) + \bar{f}^A(\omega_I)]\lambda + f^A(\omega_I)\bar{f}^A(\omega_I) + g^A(\omega_I)\bar{g}^A(\omega_I),$$

the complex eigenvalues of M_l^A are

$$\begin{split} \lambda_{l}^{(\varepsilon)} &= \frac{1}{2} \left[f^{A}(\omega_{l}) + \bar{f}^{A}(\omega_{l}) \right] \\ &+ (-1)^{\varepsilon} \frac{1}{2} \sqrt{\left[f^{A}(\omega_{l}) + \bar{f}^{A}(\omega_{l}) \right]^{2} - 4 \left[f^{A}(\omega_{l}) \bar{f}^{A}(\omega_{l}) + g^{A}(\omega_{l}) \bar{g}^{A}(\omega_{l}) \right]} \\ &= \frac{1}{2} \left[f^{A}(\omega_{l}) + \bar{f}^{A}(\omega_{l}) \right] + (-1)^{\varepsilon} \frac{1}{2} \sqrt{\left[f^{A}(\omega_{l}) - \bar{f}^{A}(\omega_{l}) \right]^{2} - 4 g^{A}(\omega_{l}) \bar{g}^{A}(\omega_{l})} \\ &= \sum_{k=0}^{n-1} \frac{a_{k} + \overline{a_{k}}}{2} \omega_{l}^{k} \\ &+ (-1)^{\varepsilon} \sqrt{\left(\sum_{k=0}^{n-1} \frac{a_{k} - \overline{a_{k}}}{2} \omega_{l}^{k} \right)^{2} - \sum_{k=0}^{n-1} \left(\sum_{s+t=k} b_{s} \overline{b_{t}} + \sum_{s+t=n+k} b_{s} \overline{b_{t}} \right) \omega_{l}^{k}} \\ &(\varepsilon = 1, 2). \end{split}$$

Furthermore, by Lemma 2.1, we have

$$\begin{split} \overline{M_l^A} &= \begin{pmatrix} \bar{f}^A(\omega_{n-l}) & \overline{g}^A(\omega_{n-l}) \\ -g^A(\omega_{n-l}) & f^A(\omega_{n-l}) \end{pmatrix} \\ &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} M_{n-l}^A \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-1}. \end{split}$$

Hence the Jordan canonical forms of $\overline{M_l^A}$ and M_{n-l}^A coincide. It follows that the Jordan canonical forms of M_l^A and M_{n-l}^A are conjugate each other, so that

$$\{\overline{\lambda_{l}^{(1)}}, \overline{\lambda_{l}^{(2)}}\} = \{\lambda_{n-l}^{(1)}, \lambda_{n-l}^{(2)}\}.$$

Since $M_0^A = (f^A(1) + g^A(1))_c$, by Lemma 3.1, we claim that

$$\lambda_0^{(2)} = \overline{\lambda_0^{(1)}}.$$

Further, if n=2p, then $M_p^A=(f^A(\omega_p)+g^A(\omega_p))_c$, thus it follows by Lemma 3.1 that

$$\lambda_p^{(2)} = \overline{\lambda_p^{(1)}}.$$

By virtue of Corollary 3.3 and summarizing the above equalities, we can obtain the required conclusion.

References

- [1] I. J. Good, On the inversion of circulant matrices, Biometria 37 (1950), 185-186.
- [2] L. P. Huang, Transformation theorem of quaternion matrices and their applications, Northeast. Math. J. 9(1) (1993), 69-80.
- [3] L. P. Huang, Jordan canonical form of a matrix over the quaternion field, Northeast. Math. J. 10(1) (1994), 18-24.
- [4] L. P. Huang, Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001), 21-30.
- [5] Philip J. Davis, Circulant Matrices, New York, 1979.
- [6] F. Z. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997), 21-57.