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Abstract 

In this paper, we discuss on the formal linearization and exact solution 
of m-Kdv’s equation 

.032 2 =+++ xxxxxt uuuuuu  (1) 

So that, we know an efficient method for constructing of particular 
solutions of some nonlinear partial differential equations is introduced. 

1. Introduction 

Many years ago there was interest in constructing solutions of 
nonlinear partial differential equations in the form of infinite series. The 
direct linearization of certain famous integrable nonlinear equations was 
carried out in [8]. The possibility to use such series for some other 
equations was discussed in [3]. Exponential series were used also for 
investigating nonlinear elliptic equations [5]. In this paper, we consider 
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the class of equations and systems containing arbitrary linear differential 
operators with constant coefficients and arbitrary nonlinear analytic 
functions of dependent variables and their derivatives up to some finite 
order in assumption that these equations possess a constant solution. 
Our method is based on formal linearization of a nonlinear partial 
differential equation to the system of linear ordinary differential 
equations, describing some finite-dimensional subspace of the space of 
solutions of the linearized equation. It allows us to develop a very simple 
technique of finding the linearizing transformation and to apply the 
method to nonintegrable equations as well as to integrable ones. 
Solutions have the form of exponential or Fourier series. 

2. The Method of Formal Linearization 

Let us consider equations of the following form: 
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is a linear differential operator with constant coefficients and 
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is an arbitrary analytic function of u and of its derivatives up to some 
finite order p. We suppose that equation (2) possesses the constant 
solution. Without loss of generality, we assume that 
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We consider equation (2) in connection with the equation linearized 
near a zero solution 

( ) ( ) .0,,ˆ =xtwDDL xt  (4) 
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Let L be the vector space of solutions of equation (4) and LP N ⊂  be 
the N-dimensional subspace with the basis 

( ) .,1,,exp NitsxWw iiiiii =−=ξξα=  

Here, is  and iW  are some constants. The constants ( )iii sα=α  are 
assumed to satisfy the dispersion relation 

( ) .0,ˆ =αα− iiisL  

The subspace 
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system of N linear ordinary differential equations 
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We use the following notation: 
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It is obvious that the monomials ( )
δ
Nw  are the eigenfunctions of the 

operator (3) 
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Theorem 1. If 0≠λδ  for every multiindex δ with positive integer 

components ,,1, NiZi =∈δ +  satisfying the condition ,1,0≠δ  then 

equation (2) possesses solutions connected with solutions from NP  by the 
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formal transformation 
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where 

( ) ( )∑
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n
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are homogeneous polynomials of degree n in the variables .iw  This 

transformation is unique (for the first term NP∈φ1  fixed). 

Remark 1. Here, ε is the grading parameter, finally, we can put 
.1=ε  

The proof of the theorem is constructive. Substituting (5) into (2), 
expanding [ ]uN  into the power series in ε, and then collecting equal 
powers of ε, we obtain the determining equations for the functions nφ  

and show that if ,0≠λδ  then these equations possess the solution (6) 

with the coefficients ( )δnA  uniquely determined through the coefficients 

( )δ1A  by the recursion relation. Thus, the theorem gives us the method 

for constructing particular solutions of equation (2). 

3. The Solution of m-Kdv’s Equation 

Let us consider the m-Kdv’s equation 

( ) ( ) ,32,,ˆ 2
xxxt uuuuxtuDDL −−=  (7) 

( ) .,ˆ 3
xtxt DDDDL +=  

For simplicity, we look for a solution of (7) in the form 
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where 
[ ( )] 2,1,exp =−= itsxsWw iiii  
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is the basis of the subspace LP ⊂2  (let is  and iW  be some real 

constants). Substituting (8) into (7) and collecting equal powers of ε, we 
obtain the determining equations for the functions nφ  as follows: 
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These equations possess the solution ( ) ( )∑ =δ
δ

δ=φ n nn wA ,2  

( ),, 21 δδ=δ  which can be rewritten in this case in the following form: 
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If 0<k  or ,nk >  then .0=n
kA  

( ) ( ) ( ) [( ) ]11 2
22
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( ) [ ( )].3 2121 knsksknkss −+−+  

If ,01 >s  ,02 >s  then ( ) 0, ≠λ −knk  for every pair ( )knk −,  with k, 

.0,2, nknZn ≤≤≥∈ +  Then (8) be the solution of m-Kdv’s equation. 
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