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Abstract 

As a generalization of constant weight binary codes, constant 
composition codes (CCCs) have attracted much interest due to their 
numerous applications. In this paper, a class of new CCCs is constructed 
by using combinatorial design techniques. 

1. Introduction 

Let { }10: −≤≤= mtaQ t  be an arbitrary alphabet of m elements. 

A code nQC ⊆  over Q of size M and minimum distance d is referred to 
as a constant composition code (CCC) or an ( ,,, dMn  
[ ]) CCC,-...,,, 110 mmwww −  if each codeword has precisely iw  occurrences 

of ia  for any ( ),10 −≤≤ mii  where iw  are positive integers satisfying 

∑ −≤≤
=10 .mi i nw  The constant composition [ ]110 ...,,, −mwww  is 

essentially an unordered multiset. For convenience, we sometimes write 
it in an exponential notation: a constant composition type [ ]rji 321  
denotes i occurrences of 1, j occurrences of 2, r occurrences of 3, etc. 
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Constant composition codes are a generalization of constant weight 
binary codes as we enlarge alphabet size from two to more. The class of 
constant composition codes includes the important permutation codes 
and has attracted much interest due to their numerous applications (see, 
for example, [8] and the references therein). Recently, Ding and Yin [3] 
gave a combinatorial characterization of constant composition codes. 
They introduced a type of designs called generalized doubly resolvable 
packings described below: 

Let X be a set of v elements (called points) and A be a collection of 

subsets (called blocks). Then the pair ( )A,X  is known as an 

( )-, λn packing of order v, if every pair of distinct points of X occurs in at 

most λ blocks and every point occurs in precisely n blocks. An 
( )-, λn packing of order v is referred to as a generalized doubly resolvable 

packing or a ( ),;,GDRP vn λ  if its blocks can be arranged into an nm ×  

array R which satisfies the properties listed below: 

• Each cell of R is either empty or contains one block. 

• For ,10 −≤≤ mi  the blocks in row i of R form a parallel-iw  class, 

that is, every point occurs in exactly iw  blocks. 

• The blocks in every column of R form a parallel class, that is, every 

point occurs in exactly one block. 

Here, m and iw  are positive integers satisfying ∑ −≤≤
=10 mi i nw  as 

before. The multiset { }110 ...,,, −= mwwwT  is called the type of the 

GDRP. When more convenient, we use the exponential notation to 

describe the type of a GDRP: a GDRP of type rji 321  denotes i 
occurrences of 1, j occurrences of 2, etc. in the multiset T. 

Theorem 1.1 [3]. The existence of a ( )vn ;,GDRP λ  of type 

{ }110 ...,,, −mwww  is equivalent to that of an ( ,,, dMn  

[ ]) CCC,-...,,, 110 mmwww −  where Mv =  and .λ−= nd  
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Following coding theory, we use [ ]( )110 ...,,,,, −mm wwwdnA  to 

denote the maximum size of an [ ]( ) CCC.-...,,,,,, 110 mmwwwdMn −  A 

CCC achieving this size is called optimal. We use the following bound 
which was established by Fu, Vinck and Chen [6] as our benchmark to 
check the optimality of our constructed CCCs. 

Lemma 1.2. If ( ) ,02
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The author [9] proved the following theorem: 

Theorem 1.3. Let λ and µ be two positive integers with µ<λ  and 

( ) .λ|λ−µ  If an optimal ( )vn ˆ;ˆ,ˆGDRP λ  of type ( ) 11 1ˆˆ −+λλ m  exists, then so 

does an optimal ( )vn ;,GDRP λ  of type ,11 −µλ m  where ( ).ˆ λ−µλ=λ  

Theorem 1.3 shows that to construct an optimal ( )vn ;,GDRP λ ’s of 

type 11 −µλ m  with ,µ<λ  it is sufficient to treat the case .1+λ=µ  In 

this case, ( ) nmv =−+λ= 11  which is uniquely determined by the 

parameters m and λ. Furthermore, the blocks of the 
( ) parallel-11 +λ−m  classes are of size ,1+λ  and the blocks of the 

unique λ-parallel class are of size λ. For convenience, in the following, we 

write 1+λ=k  and use the notation ( )vk,GDRP∗  to indicate an optimal 

( )vn ;,GDRP λ  of type ( ) .1 11 −+λλ m  Whenever this notation is used, the 

parameters λ,m  and n are given by ( ) kvmvn 1, +==  and .1−=λ k  

When 3=k  and 4, the existences of ( )vk,GDRP∗ ’s and their 

corresponding CCCs have been completely determined. 

Theorem 1.4 [9]. Let λ and µ be arbitrary positive integers satisfying 
.23 µ=λ  Then for all integers ,3≥m  an optimal ( ,,, λ−nMn  

[ ]) CCC-11
m

m−µλ  exists, where ( ) λ+µ−= 1mn  and ( ).λ−µ= nM  
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Theorem 1.5 [10]. Let λ and µ be arbitrary positive integers 
satisfying .34 µ=λ  Then for all integers ,2≥m  an optimal ( ,,, λ−nMn  

[ ]) CCC-11
m

m−µλ  exists, where ( ) λ+µ−= 1mn  and ( ).λ−µ= nM  

As k increases, the direct constructions of ( )vk,GDRP∗  become more 

and more difficult. In this paper, we are mainly interested in the 

existence of ( )vk,GDRP∗  with .5=k  As a consequence, the existence 

spectrum of a ( )vk,GDRP∗  or equivalently an optimal ( ,,, λ−nMn  

[ ]) CCC-...,,, mµµλ  with µ=λ 45  is almost determined only with finite 

possible exceptions. 

2. Constructions 

We assume that the reader is familiar with some basic concepts in 
design theory, otherwise, the reader may refer to [1, 2]. To give the 

constructions of ,GDRP∗  we need first to introduce the definitions of 

several combinatorial objects. The reader may refer to [9, 10] and the 
references therein for more details. 

A group divisible design or a ( ) GDD-, λK  in short, is a triple 

( ),,, AGX  where X is a finite set of points, { }110 ...,,, −= tGGGG  is a 

partition of X into t subsets (called groups), and A is a collection of 

subsets (called blocks) of X with KA ∈  for any ,A∈A  such that any 

pair of distinct points occurs together in either one group or exactly one 
block but not both. The multiset { }110 ...,,, −= tGGGT  is called the 

group type or the type of a ( ) GDD.-, λK  Usually, we use the exponential 

notation to describe the type. When ,1=λ  we simply write a K-GDD 

instead of a ( ) GDD.-1,K  When { },kK =  we simply write k for K. A 

k-GDD of type kg  is called a transversal design, which is denoted by 

( ).,TD gk  
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A ( ) frame-, λk  of type T is a ( ) GDD-, λk  of type ( ),,,, AGXT  in 

which the blocks of A can be partitioned into partial parallel classes each 

partitioning GX \  for some .G∈G  It is not hard to see that for any 

,G∈G  there are exactly ( )1−λ kG  partial parallel classes which 

partition .\GX  

Consider a ( ) frame-1, −kk  of type { }( )A,...,,,,, 110 −tGGGVT  with 

2+≥ kt  and .10, −≤≤| tiGk i  Let { ,0:10 =+= ∑ −≤≤ js sj uGuC  

}1...,,1 −jG  and { ( ) }1...,,1,0:10 −=+= ∑ −≤≤
kGwkGwR iis si  

for ,1 i≤  .1−≤ tj  Define { }10: 00 −≤≤= GuuC  and { 0:0 wR =  

( ) }.10 −≤≤ kGw  We call this frame an ( )Tk;FGDRP  if the blocks of 

A can be arranged into a ( ) VkV ×  array satisfying the properties 

listed below. We index the rows and columns of the array by the elements 
of 110 ...,,, −tRRR  and 110 ...,,, −tCCC  in turn. 

• Suppose that sF  is the subarray indexed by the elements of sR  and 

sC  for .10 −≤≤ ts  Then sF  is empty. (These t subarrays lie in the 

main diagonal from upper left corner to lower right corner).  

• For any ( ),10 −≤≤∈ tiRr i  the blocks in row r form a partial 

k-parallel class partitioning ,\ iGV  that is, every point of iGV \  occurs in 

exactly k blocks in row r, while any point of iG  does not occur in any 

block in row r. 

• For any ( ),10 −≤≤∈ tjCc j  the blocks in column c form a partial 

parallel class partitioning .\ iGV  

Now, we could describe following two constructions proved in [9], 

which are very useful to deal with the existence of .GDRP∗  

Theorem 2.1 [9]. Let w be a positive integer. Suppose that there exist 

an { }( )110 ...,,,;FGDRP −tGGGk  and a ( )wGk i +∗ ,GDRP  which 
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contains a ( )wk,GDRP∗  as a subdesign for .10 −≤≤ ti  Then there is a 

( )∑ −≤≤
∗ + 10,GDRP ti iGwk  which contains a ( )wk,GDRP∗  as a 

subdesign. 

Theorem 2.2 [9]. Let { }( )A,...,,,, 110 −tGGGV  be a K-GDD. Suppose 

that there exists a function { }0: ∪+→ ZVw  (a weight function) which 

has the property that for each block { } ,...,,, 21 A∈= hxxxB  there exists 

an ( ) ( ) ( ){ }( )....,,,;FGDRP 21 hxwxwxwk  Then there exists an 

( { ( ) ( ) ( )})....,,,;FGDRP
0 1 1

∑ ∑ ∑
∈ ∈ ∈ −Gx Gx Gx t

xwxwxwk  

The existence of ( )ukk;FGDRP  with 5=k  has been given in the 

following lemma: 

Lemma 2.3 [7]. Let { ,49,47,43,41,37,31,29,23,19,17,147 −=E  

}.61,59,53  If 63≥u  or ,Eu ∈  then an ( )u5;5FGDRP  exists. 

The following theorem gives a direct construction using starter-adder 
method: 

Theorem 2.4 [9]. If there exists an intransitive starter (S, R, C) for a 

( )wvk +∗ ,GDRP  over { }wku ∞∞∞× ...,,, 21∪ZZ  and a corresponding 

adder A for S, then there exists a ( )wvk +∗ ,GDRP  missing a 

( )wk,GDRP∗  as a subdesign, where .kvu =  Furthermore, if there exists 

a ( ),,GDRP wk∗  then a ( )wvk +∗ ,GDRP  exists. 

We use starter-adder method to construct some optimal ∗GDRP ’s of 
small size. They are necessary in the recursive constructions. 

Lemma 2.5. For any ,154 ≤≤ m  there exists a ( )45,5GDRP +∗ m  

which having a  ( )4,5GDRP∗  as a subdesign. 
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Proof. For the stated value of m, apply Theorem 2.4 with ,5=k  

4=w  and .5mn =  The starter (S, R, C) and the corresponding adder A 
are listed below. Here, we take the group G as { } ,0, 505 ZGZZm ⊕=⊕  

the fixed representative system of 0G  as ( ) (( ),0,0...,,, 110 =−mhhh  

( ) ( )).0,1...,,0,1 −m  
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3. Main Results 

Now, we are in a position to establish our main results. 

Theorem 3.1. For any integer m satisfying 165 ≤≤ m  or ,530≥m  

a ( )15,5GDRP −∗ m  exists. 

Proof. If ,75≥t  then a ( )t,8TD  exists [2]. We delete wt −  
( )104 ≤≤ w  points from its last group, then take all the blocks 
containing a certain deleted point and the broken group as the new group 
to obtain a ( ) GDD-8,7, t  of type .7 1wt  Weighing it 5, apply Theorem 2.2 

with the existence of ( )u5;5FGDRP  in Lemma 2.3 to obtain an 

( ( ) ),535;5FGDRP 1wt  .104 ≤≤ w  For any [ ( ) ,447515 ++∈− tm  
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( ) ],41075 ++t  a ( )15,5GDRP −∗ m  exists by using Theorem 2.1. Here, 

the required ( )45,5GDRP +∗ w ’s containing a ( )4,5GDRP∗  as a 
subdesign are given in Lemma 2.5. Do the above steps for all the integers 
not less than 75, we then have a ( ) .530,15,5GDRP ≥−∗ mm  Combining 
this with Lemma 2.5, we reach the conclusion. 

According to Theorem 3.1, we obtain the following results by using 
Theorems 1.1 and 1.3. 

Theorem 3.2. For any integer 165, ≤≤ mm  or ,530≥m  an 

optimal ( )vn ;,GDRP λ  of type 11 −µλ m  exists or equivalently, an optimal 
[ ]( ) CCC-...,,,,,, mnMn µµλλ−  with µ=λ 45  exists. 
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