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Abstract 

This article considers the small sample properties and model choice 
problem in spatial models from a Bayesian point of view. Small sample 
properties of spatial autoregressive model (SAR), spatial error model 
(SEM) and spatial Durbin model (SDM) are examined through Monte 
Carlo simulations. To select a desirable (true) model, we also compare 
the performance of some information criteria and marginal likelihood by 
Monte Carlo studies. The simulation results show that serious spatial 
correlation bias appears in constant term and variance and that DIC 
performs the best to select an appropriate model. 

1. Introduction 

Spatial data has been widely used in several research areas like 
spatial statistics, regional science and other fields. In econometrics, we 
find that several estimation methods are proposed and the properties of 
the estimators are discussed. For example, the efficient maximum 
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likelihood (ML) method was proposed by Ord [18] and Lee [16] first 
formally proved that the ML estimator has the usual asymptotic 
properties including n -consistency, normality and asymptotic 
efficiency. Small sample properties have also been discussed by Bao and 
Ullah [3]. They analytically derived the second order bias and discussed 
the properties through Monte Carlo simulations. The properties of two-
stage least squares are discussed by Das et al. [8], Kelejian and Prucha 
[12, 13] and Lee [15]. A class of moment method is examined by Conley 
[7] and Kelejian and Prucha [14]. The Bayesian approach was first 
considered by Anselin [1] and the small sample properties are examined 
using the Monte Carlo simulations. Thereafter, LeSage [17] proposed a 
Markov chain Monte Carlo (MCMC) method in a Bayesian analysis. 

According to [2], there are three basic models: spatial autoregressive 
model (SAR); spatial error model (SEM) and spatial Durbin model 
(SDM). However, the properties of the models are not compared yet as far 
as we know. In this article, we examine the samll sample properties of 
these models through Monte Carlo simulations from a Bayesian point of 
view. In addition, model choice is one of the problems in empirical 
research if there are several candidates of the models. Therefore, we also 
compare several model choice approaches like information criteria and 
marginal likelihood by Monte Carlo studies. From the simulation results, 
we found that serious spatial correlation bias appears in constant term 
and variance and that the DIC performs the best to select an appropriate 
model. 

The rest of this article is organized as follows: In Section 2, we 
summarize spatial models. In Section 3, we give the summary of model 
choice criteria. In Section 4, we implement Monte Carlo simulations and 
give the results. Finally, brief conclusions and remaining issues are given 
in Section 5. 

2. Spatial Models 

Let y and X be dependent and independent variables, respectively 
and these dimensions are 1×N  and .kN ×  Moreover, let W be a weight 
matrix (see [2]). Then the spatial autoregressive model (SAR) is written 
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as 

( ),,0~, 2
NIXWyy σεε+β+ρ= N  (1) 

where ρ is the parameter which measures the intensity of spatial 
interaction and NI  is an NN ×  unit matrix. 

Given the model, the likelihood function of the model is written as 

( ) ( ) ,
2

exp,,,, 2222 







σ

′
ρ−σ∝σρβ| − eeWIWXy N

N
L  (2) 

where .β−ρ−= XWyye  

The other types of basic models are called spatial error model (SEM) 
and spatial Durbin model (SDM). These models are expressed as 

( ),,0~, 2
N, IWuuuXy σεε+ρ=+β= N  (3) 

( ),,0~,ˆ 2
NIXWXWyy w σεε+β+β+ρ= N  (4) 

where X̂  is an ( )1−× kN  matrix, which excludes constant term from X. 
Therefore, wβ  is reduced to ( ) 11 ×−k  vector. As error terms are 
spatially correlated in (3), it is called SEM. On the other hand, both 
dependent and independent variables are correlated in (4) but the 
intensity of spatial correlations is different. Thus, we can find that the 
relationship among these three models. If we suppose no spatial 
correlation of independent variables in SDM, that is, ,0=βw  it becomes 
SAR. In addition, if we suppose the intensities of independent and 

dependent variables are equal, that is, ,β̂β ρ−=w  where β̂  excludes 
intercept from β, it reduces to SEM.1  

As we take a Bayesian approach, following prior distributions are 
assumed: 

( ) ( ) ( ),2,2~,1,1~,,~ 00
2

00 λνσ−ρΣββ IGUN  

                                                      
1Strictly speaking, intercept in β is also separated into two parts, that is, 

∑ =
∗∗ βρ−β=β

N
j ijw

1 000 .  
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where ( )ba,IG  denotes an inverse gamma distribution with scale and 
shape parameters a and b.2  

3. Model Choice Procedures 

In this section, we briefly review several model choice approaches 
from a Bayesian point of view. If there are several candidates of 
econometric models, we need to choose the desirable model among them. 
There are several model choice procedures like information criteria, 
marginal likelihood and so on. First of all, we will briefly sketch the 
procedures, which we compare in this paper. 

3.1. AIC and BIC 

As one of the famous model choice procedures, we will pick up the 
information criteria like AIC and BIC, which can also be used in classical 
methods. For model ,kM  let ( )kk ML ,θ|y  be the likelihood for the 
model. 

AIC and BIC are given by 

( ) [ ( )] ,2,ln2AIC pML kkk −|= ∗∗ θθ y  (5) 

( ) [ ( )] ( ),ln,ln2BIC NpML kkk −|= ∗∗ θθ y  (6) 

where ∗θk  is a particular high density point (typically the posterior mean 

or the ML estimate), p is the number of parameters in model kM  and N 

is the number of observations. We choose the model with highest 
information criteria. 

3.2. DIC 

Spiegelhalter et al. [19] developed information criterion called the 
Deviance Information Criterion (DIC), which is designed to work well 
when models involve latent data and hierarchical priors. Let ED 2−=  

                                                      
2The procedures for the posterior simulations are given in Appendix A. 
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{ [ ( )]}kk ML ,θln |⋅ y  and [ ( )]kk MLD ,ln2ˆ ∗θ|−= y  be the posterior mean of 

the deviance and a point estimate of the deviance obtained by 
substituting in a particular high density point (typically the posterior 
mean or the ML estimate), respectively. Then the effective number of 

parameters Dp  is given by DDDp ˆ−=  and finally, DIC is written as 

( ) .2ˆDIC DpDDpDk +=+=∗θ  (7) 

The model with the smallest DIC is estimated to be the model that 
would best predict a replicate dataset which has the same structure as 
that currently observed. 

3.3. Marginal likelihood 

Let ( )kk M|θπ  be the prior for the model. Then the marginal 

likelihood of the model is defined as 

( ) ( ) ( )∫ θθ||θπ= ., kkkkk dMLMm yy  

Since the marginal likelihood can be written as 

( )
( ) ( )

( ) ,,
,

kk

kkkk
M

MLM
m y

y
y

|π
||π

=
θ

θθ
 

Chib [4] suggests estimating the marginal likelihood from the 
expression 

( ) ( ) ( ) ( ).,log,logloglog kkkkkk MMLMm yyy |π−|+|π= ∗∗∗ θθθ  

He also provides a computationally efficient method to estimate the 

posterior ordinate ( )kk M,y|π ∗θ  in the context of Gibbs sampling and 

Chib and Jeliazkov [6] provides the method in the context of Metropolis-

Hasting sampling. In SAR, for example, we set ( )2,, σρβ=θk  and 

estimate the posterior ordinate ( )kk Mp ,y|∗θ  via the decomposition 

( ) ( ) ( ) ( ).,,,,,,,,,,,,, 222 WXyWXyWXyy ∗∗∗∗∗∗∗∗∗∗ βρ|σπσρ|βπσβ|ρπ=|π θ kk M  
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( )WXy ,,,, 2∗∗∗ σρ|βπ  and ( )WXy ,,,,2 ∗∗∗ ρβ|σπ  are calculated from 

Gibbs output (see [4]) and ( )WXy ,,,, 2∗∗∗ σβ|ρπ  is calculated from 

Metropolis-Hasting output (see [6]).3  

4. Monte Carlo Experiments 

We now explain the setup for the Monte Carlo simulations. First, we 
set the number of regions as .50=N  The elements of lower triangular 
matrix of W are generated from ( ),2.0BE  where ( )aBE  is Bernoulli 
distribution with probability of success a. For the independent variables 

( ),,1 21 iii xx,=x  we take the standard normal variates.4 The true data 

generating process (DGP) is as 

∑
=

+β+β+β+ρ=
50

1
22110

SAR ,
j

iiijiji uxxywy  (8) 

( )∑
=

+β+β+β+β−β−β−ρ=
50

1
2211022110

SEM ,
j

iiijjjiji uxxxxywy  (9) 

( )∑ ∑
= =

β−β+ρ=
50

1

50

1
2211

SDM

j j
jjijjiji xxwywy ww  

,22110 iii uxx +β+β+β+  (10) 

where the iu ’s are normally and independently distributed with 

( ) 0=iuE  and ( ) .22 σ=iuE  The parameter values are set to be 

                                                      

3If we drop ( ),,,,, 2 WXy∗∗∗ σβ|ρπ  it becomes the posterior ordinate of linear regression 

model. 
4For example, as Bao and Ullah [3] is interested in the degree of sparseness of the 

weight matrix, it studied three types of weight matrices. However, the weight matrix is 
sometimes not regular like the ones in Bao and Ullah [3] in empirical analysis because the 
contiguity weight matrix assumes the existence of a map from which the boundaries can be 
discerned (see [2]). Therefore, we use the different weight matrix from Bao and Ullah [3]. 
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( ) ( )1,1,1,, 210 =βββ=β′  and ( ) ( ).5.0,5.021 −−=β−β=β′ www  Moreover, 

L samples of ,SAR
iy  SEM

iy  and SDM
iy  are generated given the ix  for 

.50...,,1=i  That is, we perform L simulation runs for Bayesian 
estimators, where 1000=L  is taken in this section. 

The simulation procedure in this section is as follows: 

(i) Given ,9.0,6.0,3.0,0.0,3.0,6.0,9.0 −−−=ρ  we generate random 

numbers of iu  for 50...,,1=i  based on the assumption: ( ),,0~ 2σNiu  

where 1.02 =σ  is taken. 

(ii) Given ixw ,, ββ  and iu  for ,50...,,1=i  we obtain sets of data 

,SAR
iy  SEM

iy  and SDM
iy  for ,50...,,1=i  from (8)-(10), where ( )21, ββ  

( )1,1,1=  and ( )5.0,5.0 −−=β′w  are assumed. 

(iii) Given ( ),,,SAR
iiiy wx  ( )iiiy wx ,,SEM  and ( ),,,SDM

iiiy wx  for 

,50...,,1=i  where iw  is the i-th row vector of W, we obtain the 
estimates by Bayesian method. For prior distributions, following 
hyperparameters are assumed: 

,01.0,01.0,1000, 00
2

00 =λ=ν×=∑=β kI0  

and we ran MCMC algorithm for SAR, SEM, SDM and LRM,5  using 6000 
iterations and discarding the first 1000 iterations. We also calculate AIC, 
BIC, DIC and marginal likelihood. 

(iv) Repeat (i)-(iii) L times, where 1000=L  is taken as mentioned 
above. 

                                                      
5LRM is the linear regression model like ordinary least square in classical method. It is 

reasonable to examine the properties of the models under misspecified. Therefore, we will 
estimate not only three kinds of spatial models but also LRM, which ignore the spatial 
effect. 
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(v) From L estimates, we compute the arithmetic average (AVE), the 
root mean squared error (RMSE), the skewness (SKEW) and kurtosis 
(KURT). For AVE and RMSE, for example in case of ρ, we compute 

( ) ( ( ) ) ,1RMSE,1AVE
2
1

1

2

1













ρ−ρ=ρ= ∑∑

==

L

l

l
L

l

l
LL  

where ( )lρ  represents the estimator of ρ in the l-th simulation run. We 

also choose the maximum values of AIC, BIC and marginal likelihood 
and minimum value of DIC. 

In this section, we compare Bayes estimators through the Monte 
Carlo studies. All the results reported here is generated using Ox version 
4.1 (see Doornik [9]). 

Table 1 contains the basic statistics for ρ. Even in the true model, the 
bias exists and the bias becomes larger as ρ is farther away from 0. 
Moreover, in case that the SAR is true model, RMSEs are smallest 
among true models. On the other hand, in case that the SDM is true 
model, RMSEs are largest among true models and the bias becomes large 
as ρ becomes larger. We can also see that the empirical distribution is 
skewed in every model, as ρ is farther away from 0. In other words, the 
normality condition is not satisfied in case of small sample. As is stated 

below, such bias appears in wββ ,0  and .2σ  

Table 2 shows the basic statistics for .0β  From the table, we can see 

that the RMSEs under the true models are smallest in general, in other 
words, the AVEs are the closest to the true values under true models. 
The exceptions appear, for example, in case of SDM. In this model under 

,9.0=ρ  RMSE of SAR is smaller than that of SDM and AVE of SAR is 

close to that of SDM. In addition, in case that the true model follows SAR 
or SDM, if we ignore the spatial effect, RMSEs become large, that is, 
there exists bias, which may come from ignoring spatial effects and the 
bias becomes larger as ρ is farther away from 0. Also, the empirical 
distribution becomes skewed, as ρ is farther away from 0, that is, the 
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normality is not satisfied. Finally, the behaviors of SEM and LRM are 
similar in case that the true model is SEM. 

Tables 3 and 4 report the basic statistics for 1β  and ,2β  respectively. 

In all cases, AVEs are around true values and RMSEs are very small. In 
other words, the bias does not appear even if we ignore the spatial effects 
or misspecify the model. Therefore, in empirical analysis if we find the 
differences in the slope parameters among models, we need to doubt that 
it may come from errors-in-variables or endogeniety, in other words, it 
does not come from ignoring spatial effects or misspecifying models. 

Table 5 contains the basic statistics for .wβ  Even in case that the 

true model is SDM, AVEs are biased and the bias becomes larger as ρ 
increases. Needless to say, under misspecified model like true model is 
SAR or SEM, wβ  are estimated far from 0. Therefore, such bias appears 

in different parameters like 0β  or ρ. 

Table 6 shows the basic statistics for .2σ  From the table, we find that 
the AVEs come around the true values and the RMSEs are smallest 
under the true model in general. In addition, if we ignore the spatial 

effects, 2σ  becomes larger. In other words, there exists bias, which comes 
from ignoring spatial effects and the bias becomes larger as ρ is farther 
away from 0. Finally, the AVEs and RMSEs of SAR and SEM are similar 
with those of SDM and LRM, respectively. 

Summarizing the Monte Carlo results, the bias, which comes from 
ignoring the spatial effects or misspecifying the model, appears in 0β  and 

,2σ  and β remains unbiased. In addition, ρ also has bias, which may 
come from small sample problem. It has the tendency that the bias 
shrinks to zero. 

Table 7 reports the number of selections for each model. From the 
table, all the model choice procedures in all cases except for 9.0=ρ  by 
marginal likelihood, SAR model is chosen appropriately. Moreover, in 
case of SEM, the performance of information criterion and marginal 
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likelihood is not as good as that in case of SAR, however, we can see that 
we can choose the true model to a certain extent. On the other hand, we 
cannot choose the true model appropriately in case of SDM, especially if ρ 
becomes large, such tendencies appear. However, in large ρ cases, 
distinct difference appears in DIC. The performance of DIC is better than 
other procedures. Therefore, we can conclude that if we want to 
implement the model choice, we recommend using DIC as a whole. 
However, we have to mention that DIC is still not perfect procedure in 
model choice because it cannot choose the true model perfectly. 

5. Concluding Remarks 

This article considers the small sample properties and model choice 
problem in spatial models from a Bayesian point of view. From the Monte 
Carlo simulations, we found that the bias, which comes from ignoring 

spatial effects or misspecifying the models, appears in wββ ,0  and .2σ  In 

addition, even in the true model, the bias of ρ exists and the bias becomes 
larger if ρ is farther away from 0. In case that the SAR is true model, 
RMSEs of ρ are smallest among true models. On the other hand, in case 
that the SDM is true model, RMSEs of ρ are largest among true models 
and the bias becomes large if ρ becomes larger. From the Monte Carlo 
studies for model choice, we found that the performance of DIC is the 
best among the model choice procedures, which we picked up. Therefore, 
we recommend using DIC for model choice in spatial models. 

Finally, we discuss the remaining issue. We examined the basic three 
spatial models like SAR, SEM and SDM. However, we have to mention 
that these are not all the spatial models. In spatial statistics, conditional 
autoregressive model (CAR) is widely used and it may also be useful in 
econometrics. Therefore, we need to examine the properties of CAR and 
compare the properties of CAR and different models. In addition, as is 
stated above, although DIC performs best to choose the true model, it is 
not perfect procedure. Therefore, we have to consider alternative 
procedure to choose the true model. 
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Appendix A: Posterior simulation 

This appendix explains our MCMC algorithm which was applied for 
the analysis in Section 4.6  

Sampling ρ: Let ( )′σρβ′=θ 2,,  and let ( )θπ  denote a prior 

distribution of ,θ  which is induced from the priors of β, ρ and .2σ  The 
full conditional distribution of θ  is proportional to 

( ) ( ),,, WXy θθ |π L  (11) 

where ( )WXy ,,θ|L  is a likelihood function of the model given in (2). 

Since the full conditional distribution of ρ is not a standard distribution, 
we update ρ using random walk Metropolis-Hasting (MH) step (see [21]). 

Sample newρ  from 

( ).1,0~,oldnew Nφφ+ρ=ρ c  (12) 

The scaler c is called tuning parameter and oldρ  is the parameter of 

the previous sampling. Next, we evaluate the acceptance probability 

( ) ,1,

2
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2
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2
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2
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
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
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WI
 (13) 

where β−ρ−= XWyy newnewe  and .oldold β−ρ−= XWyye  Finally, 

we set newρ=ρ  with probability ( )newold , ρρα  otherwise, .oldρ=ρ  The 

scalar c is tuned to produce an acceptance rate between 40% and 60% as 
is suggested in Holloway et al. [11]. It should be mentioned that the 
proposal density of ρ is not truncated to the interval ( )1,1−  since the 

constraint is part of the target density. Thus, if the proposal value of ρ is 

                                                      
6In this Appendix, we explain the MCMC algorithm for SAR. However, it is easy to 

implement the MCMC algorithm for SEM and SDM with a few changes. 
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not within the interval, the conditional posterior is zero and the proposal 
value is rejected with probability one (see [5]). 

Sampling β and :2σ  The full conditional distributions for β and 2σ  
are as follows: 

( ) ( ),ˆ,ˆ,,,| ,2 ∑β∝σρβπ NWXy  

( ) ( ),2ˆ,2ˆ,,,,|2 λν∝ρβσπ IGWXy  

where ,Wyyy ρ−=  ( ),ˆˆ 0
1

0
2 β−− ∑+′σ∑=β yX  ( ) ,ˆ 11

0
2 −−− ∑+′σ=∑ XX  

0ˆ ν+=ν N  and .ˆ 0λ+′=λ ee  

Since the full conditional distributions follow standard distributions, 

we update β and 2σ  using Gibbs’ sampler (see [10]). 
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Table 1. The basic statistics for ρ 
 SAR SEM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 -0.863 0.075 1.061 4.216 -0.868 0.079 3.834 27.698 

 -0.6 -0.597 0.134 0.384 3.064 -0.504 0.273 1.033 3.782 

 -0.3 -0.302 0.084 0.069 3.058 -0.254 0.342 0.542 2.639 

SAR 0.0 -0.007 0.093 0.144 2.953 0.017 0.291 -0.032 2.461 

 0.3 0.269 0.134 -0.024 2.926 0.239 0.304 -0.445 2.502 

 0.6 0.554 0.117 -0.248 3.038 0.465 0.303 -1.068 3.899 

 0.9 0.803 0.122 -0.981 4.698 0.873 0.048 -4.612 47.038 

 -0.9 -0.118 0.793 0.018 3.006 -0.642 0.320 1.386 5.513 

 -0.6 -0.153 0.474 -0.089 2.566 -0.451 0.291 0.726 3.013 

 -0.3 -0.026 0.288 -0.021 2.726 -0.240 0.297 0.401 2.691 

SEM 0.0 -0.015 0.094 0.081 2.976 -0.021 0.299 0.005 2.383 

 0.3 0.026 0.307 -0.024 2.874 0.243 0.295 -0.480 2.768 

 0.6 0.059 0.556 -0.017 2.791 0.467 0.268 -0.992 4.121 

 0.9 0.044 0.862 -0.099 3.003 0.616 0.335 -1.338 5.559 

 -0.9 -0.967 0.067 0.966 3.997 -0.911 0.033 7.134 114.388 

 -0.6 -0.838 0.250 1.264 5.316 -0.557 0.244 1.338 5.022 

 -0.3 -0.730 0.436 0.156 2.707 -0.353 0.458 0.893 2.725 

SDM 0.0 -0.446 0.454 -0.042 3.122 -0.205 0.444 0.442 2.193 

 0.3 -0.138 0.460 -0.043 3.002 0.238 0.292 -0.431 2.736 

 0.6 0.148 0.469 -0.024 2.973 0.449 0.282 -0.824 3.429 

 0.9 0.419 0.492 -0.120 3.054 0.759 0.206 -2.948 14.952 
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 SDM LRM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 -0.731 0.214 1.095 4.410 .NaN .NaN .NaN .NaN 

 -0.6 -0.524 0.223 0.817 3.382 .NaN .NaN .NaN .NaN 

 -0.3 -0.304 0.256 0.348 2.640 .NaN .NaN .NaN .NaN 

SAR 0.0 -0.109 0.279 0.091 2.486 .NaN .NaN .NaN .NaN 

 0.3 0.105 0.334 -0.363 2.644 .NaN .NaN .NaN .NaN 

 0.6 0.336 0.357 -0.616 3.228 .NaN .NaN .NaN .NaN 

 0.9 0.221 0.702 0.145 2.782 .NaN .NaN .NaN .NaN 

 -0.9 -0.663 0.293 1.306 4.949 .NaN .NaN .NaN .NaN 

 -0.6 -0.495 0.245 0.792 3.220 .NaN .NaN .NaN .NaN 

 -0.3 -0.321 0.271 0.504 2.992 .NaN .NaN .NaN .NaN 

SEM 0.0 -0.140 0.297 0.073 2.510 .NaN .NaN .NaN .NaN 

 0.3 0.101 0.336 -0.352 2.730 .NaN .NaN .NaN .NaN 

 0.6 0.304 0.376 -0.626 3.450 .NaN .NaN .NaN .NaN 

 0.9 0.449 0.494 -0.921 4.123 .NaN .NaN .NaN .NaN 

 -0.9 -0.780 0.161 1.147 4.903 .NaN .NaN .NaN .NaN 

 -0.6 -0.542 0.210 0.916 3.838 .NaN .NaN .NaN .NaN 

 -0.3 -0.310 0.238 0.359 2.834 .NaN .NaN .NaN .NaN 

SDM 0.0 -0.108 0.282 0.027 2.443 .NaN .NaN .NaN .NaN 

 0.3 0.097 0.335 -0.332 2.812 .NaN .NaN .NaN .NaN 

 0.6 0.282 0.419 -0.598 3.010 .NaN .NaN .NaN .NaN 

 0.9 0.150 0.771 0.214 3.021 .NaN .NaN .NaN .NaN 
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Table 2. The basic statistics for 0β  

 SAR SEM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 0.975 0.068 -0.327 3.137 0.439 0.562 0.006 2.827 

 -0.6 1.000 0.080 -0.107 2.885 0.708 0.294 -0.171 2.994 

 -0.3 1.000 0.107 0.000 2.968 0.666 0.336 -0.213 3.561 

SAR 0.0 1.006 0.089 0.082 2.809 1.001 0.048 0.055 2.857 

 0.3 1.035 0.166 0.115 2.865 1.349 0.356 0.014 3.126 

 0.6 1.107 0.281 0.343 3.202 2.448 1.453 0.091 3.015 

 0.9 2.041 1.325 0.971 4.397 10.443 9.453 -0.011 3.016 

 -0.9 1.144 0.218 0.052 3.078 1.000 0.026 0.004 3.383 

 -0.6 1.120 0.176 0.160 2.657 1.001 0.030 0.090 3.153 

 -0.3 1.039 0.141 0.042 2.764 1.001 0.039 -0.004 3.714 

SEM 0.0 1.014 0.089 0.067 3.058 1.003 0.046 -0.047 3.433 

 0.3 0.974 0.131 0.204 3.049 0.995 0.069 -0.037 3.166 

 0.6 0.948 0.177 0.152 2.799 1.004 0.117 -0.127 3.063 

 0.9 0.956 0.458 0.145 3.361 1.003 0.451 0.003 3.046 

 -0.9 0.933 0.083 -0.030 2.825 0.392 0.608 0.039 2.803 

 -0.6 1.243 0.252 -0.221 3.423 0.774 0.228 0.031 2.993 

 -0.3 1.214 0.236 0.070 2.945 0.509 0.495 -0.975 4.837 

SDM 0.0 1.493 0.502 0.065 3.038 1.098 0.110 0.415 3.476 

 0.3 1.659 0.687 0.155 3.093 1.480 0.485 -0.031 3.039 

 0.6 2.121 1.167 0.067 2.810 2.487 1.491 0.034 3.344 

 0.9 5.949 5.066 0.239 3.321 10.208 9.219 -0.017 2.795 

 



SMALL SAMPLE PROPERTIES AND MODEL CHOICE …  47 

 SDM LRM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 0.932 0.101 -0.407 3.333 0.407 0.593 -0.020 2.790 

 -0.6 0.948 0.169 -0.598 3.167 0.710 0.291 -0.180 2.954 

 -0.3 0.999 0.185 -0.233 2.721 0.659 0.343 -0.125 3.179 

SAR 0.0 1.110 0.284 -0.027 2.529 1.001 0.046 0.107 2.878 

 0.3 1.263 0.459 0.421 2.796 1.351 0.357 -0.024 2.927 

 0.6 1.634 0.861 0.658 3.380 2.418 1.422 0.035 2.883 

 0.9 8.243 7.505 -0.116 2.772 10.640 9.651 -0.066 2.977 

 -0.9 1.661 0.684 -1.138 4.695 1.000 0.027 -0.072 3.211 

 -0.6 1.496 0.546 -0.698 3.247 1.001 0.030 0.058 3.076 

 -0.3 1.322 0.426 -0.425 2.947 1.001 0.037 0.130 3.114 

SEM 0.0 1.142 0.304 0.029 2.599 1.002 0.045 -0.012 3.148 

 0.3 0.896 0.297 0.393 2.874 0.996 0.065 0.047 3.105 

 0.6 0.699 0.389 0.721 3.810 1.003 0.114 -0.102 3.072 

 0.9 0.551 0.561 1.141 5.787 1.003 0.462 -0.037 3.144 

 -0.9 0.959 0.074 -0.120 3.258 0.342 0.658 -0.014 2.785 

 -0.6 0.957 0.172 -0.612 3.375 0.779 0.223 0.005 3.163 

 -0.3 1.008 0.145 -0.152 2.774 0.484 0.517 0.017 2.921 

SDM 0.0 1.118 0.313 -0.044 2.437 1.098 0.108 0.155 3.295 

 0.3 1.301 0.503 0.370 2.855 1.480 0.484 -0.012 2.837 

 0.6 1.788 1.040 0.612 3.065 2.483 1.487 -0.078 3.193 

 0.9 8.705 7.938 -0.150 2.989 10.267 9.279 0.025 2.767 
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Table 3. The basic statistics for 1β  

 SAR SEM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 1.005 0.059 0.052 3.309 0.949 0.076 0.101 3.339 

 -0.6 0.998 0.046 -0.036 3.273 1.001 0.048 0.076 3.373 

 -0.3 0.997 0.052 -0.011 2.964 0.995 0.058 0.106 2.898 

SAR 0.0 0.998 0.051 0.020 2.994 0.999 0.052 -0.017 3.086 

 0.3 1.001 0.049 0.036 3.019 1.000 0.050 0.045 2.921 

 0.6 1.003 0.047 -0.070 3.069 1.025 0.056 0.028 3.099 

 0.9 1.002 0.038 -0.022 2.825 0.859 0.146 0.022 2.883 

 -0.9 0.994 0.060 0.064 3.265 0.997 0.054 0.070 3.487 

 -0.6 0.996 0.048 -0.130 2.855 1.000 0.047 -0.079 2.874 

 -0.3 0.998 0.053 -0.011 2.831 0.999 0.052 -0.009 2.855 

SEM 0.0 1.000 0.050 -0.010 3.054 1.001 0.051 -0.012 3.007 

 0.3 0.997 0.048 -0.096 3.223 0.998 0.048 -0.083 3.173 

 0.6 0.996 0.045 -0.107 3.030 1.001 0.044 -0.086 3.044 

 0.9 1.004 0.042 -0.029 2.934 1.001 0.034 0.033 2.991 

 -0.9 0.991 0.057 -0.079 2.922 0.907 0.107 -0.018 3.043 

 -0.6 0.995 0.045 -0.013 3.150 1.000 0.049 0.088 3.217 

 -0.3 0.952 0.071 -0.056 2.920 0.974 0.108 0.544 2.787 

SDM 0.0 0.975 0.060 -0.020 3.006 0.986 0.074 0.080 2.803 

 0.3 0.994 0.048 -0.073 3.052 1.001 0.047 -0.054 3.135 

 0.6 0.999 0.045 0.054 2.965 1.005 0.045 0.055 3.174 

 0.9 1.021 0.043 0.051 2.820 0.943 0.066 0.201 3.242 
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 SDM LRM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 1.020 0.066 0.072 3.178 1.106 0.123 0.071 3.251 

 -0.6 1.001 0.046 -0.039 3.327 1.027 0.054 -0.035 3.344 

 -0.3 0.999 0.052 -0.004 2.879 1.015 0.055 -0.004 2.969 

SAR 0.0 0.999 0.051 -0.008 3.022 1.000 0.051 0.022 3.028 

 0.3 1.005 0.049 0.018 2.995 1.008 0.050 0.033 3.053 

 0.6 1.008 0.048 -0.038 3.048 1.056 0.074 -0.057 3.102 

 0.9 1.077 0.090 -0.026 2.668 1.021 0.044 -0.047 2.833 

 -0.9 0.997 0.059 0.094 3.274 0.997 0.061 0.078 3.223 

 -0.6 1.000 0.047 -0.107 2.850 1.000 0.048 -0.126 2.882 

 -0.3 0.999 0.052 -0.008 2.880 1.000 0.053 -0.020 2.816 

SEM 0.0 1.001 0.050 -0.004 3.046 1.001 0.050 0.008 3.075 

 0.3 0.998 0.048 -0.113 3.192 0.998 0.048 -0.094 3.227 

 0.6 1.000 0.044 -0.098 3.019 1.000 0.046 -0.077 3.032 

 0.9 1.001 0.041 0.076 2.913 1.001 0.039 0.036 2.904 

 -0.9 1.017 0.063 -0.006 2.905 1.161 0.171 -0.037 2.952 

 -0.6 1.003 0.046 -0.056 3.089 1.052 0.070 -0.021 3.094 

 -0.3 1.000 0.058 -0.004 2.804 1.045 0.069 -0.103 2.972 

SDM 0.0 0.996 0.055 -0.037 3.046 1.009 0.052 -0.039 2.967 

 0.3 0.998 0.047 -0.045 3.023 0.996 0.047 -0.068 3.052 

 0.6 1.002 0.045 0.063 2.976 1.010 0.047 0.031 2.993 

 0.9 1.038 0.057 0.231 2.916 1.009 0.039 0.111 2.826 
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Table 4. The basic statistics for 2β  

 SAR SEM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 1.007 0.052 0.087 2.907 0.979 0.058 0.128 3.040 

 -0.6 1.000 0.062 0.010 2.942 0.981 0.065 0.100 2.995 

 -0.3 1.001 0.047 0.083 2.880 1.013 0.053 0.110 2.864 

SAR 0.0 0.999 0.044 0.013 2.918 1.000 0.045 0.026 3.004 

 0.3 1.001 0.043 0.015 2.752 1.002 0.044 0.036 2.695 

 0.6 1.001 0.045 -0.020 2.754 0.978 0.053 0.101 2.752 

 0.9 1.015 0.045 0.008 3.079 0.986 0.045 0.034 3.188 

 -0.9 0.986 0.059 0.006 3.236 0.999 0.052 0.101 3.157 

 -0.6 1.001 0.063 -0.071 2.980 0.998 0.061 -0.021 2.917 

 -0.3 0.998 0.050 -0.019 3.319 1.000 0.049 -0.030 3.316 

SEM 0.0 0.999 0.045 -0.055 3.083 0.999 0.045 -0.077 3.068 

 0.3 0.997 0.042 0.120 3.110 0.998 0.042 0.126 2.989 

 0.6 0.999 0.048 -0.028 2.912 0.999 0.045 -0.013 2.893 

 0.9 0.994 0.047 -0.026 2.871 0.998 0.041 0.060 2.976 

 -0.9 1.020 0.055 -0.140 3.593 0.953 0.072 -0.002 3.742 

 -0.6 0.989 0.062 0.043 2.888 0.962 0.074 0.129 3.155 

 -0.3 0.968 0.061 -0.085 2.921 1.010 0.089 0.441 2.941 

SDM 0.0 0.984 0.047 0.125 2.806 0.975 0.058 0.019 2.904 

 0.3 0.996 0.044 0.028 2.978 1.000 0.044 0.003 3.009 

 0.6 1.003 0.049 0.036 3.119 0.997 0.046 0.055 3.105 

 0.9 1.024 0.049 -0.020 3.081 1.004 0.043 -0.027 3.023 
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 SDM LRM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 1.022 0.059 0.101 2.859 1.210 0.220 0.119 2.856 

 -0.6 1.002 0.063 0.052 2.935 0.999 0.064 0.002 2.892 

 -0.3 1.002 0.047 0.078 2.909 1.030 0.056 0.050 2.895 

SAR 0.0 1.000 0.044 0.020 2.964 1.000 0.044 0.018 2.910 

 0.3 1.003 0.043 0.020 2.752 1.009 0.044 0.012 2.803 

 0.6 1.012 0.050 0.011 2.798 1.016 0.048 -0.030 2.832 

 0.9 1.068 0.082 0.036 3.162 1.157 0.165 -0.045 2.879 

 -0.9 0.999 0.051 0.070 3.145 0.998 0.064 0.064 3.200 

 -0.6 0.999 0.063 -0.054 2.937 0.999 0.064 -0.073 2.940 

 -0.3 1.000 0.049 -0.025 3.302 1.001 0.050 -0.013 3.338 

SEM 0.0 0.999 0.045 -0.024 3.048 0.999 0.045 -0.042 3.073 

 0.3 0.998 0.042 0.111 2.997 0.998 0.042 0.112 3.148 

 0.6 0.999 0.050 -0.064 2.930 0.999 0.048 -0.018 2.897 

 0.9 0.998 0.041 0.066 2.949 0.998 0.048 0.012 2.826 

 -0.9 1.028 0.064 0.010 3.397 1.332 0.339 -0.183 3.310 

 -0.6 1.005 0.063 0.109 2.988 1.001 0.063 0.051 2.930 

 -0.3 0.999 0.054 -0.054 3.044 1.075 0.091 -0.052 3.036 

SDM 0.0 0.997 0.044 0.112 2.823 0.990 0.044 0.128 2.767 

 0.3 0.999 0.043 0.041 2.814 0.996 0.044 0.049 2.925 

 0.6 1.002 0.052 0.083 3.162 1.003 0.049 0.050 3.144 

 0.9 1.035 0.056 -0.005 3.034 1.071 0.086 -0.012 3.144 
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Table 5. The basic statistics for wβ  

 
1wβ  2wβ  

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 -0.211 0.377 -0.329 3.116 -0.203 0.364 -0.221 3.080 

 -0.6 -0.078 0.516 -0.350 3.186 -0.074 0.559 -0.140 2.953 

 -0.3 0.007 0.596 -0.075 2.826 0.007 0.588 -0.279 2.785 

SAR 0.0 0.110 0.675 0.012 2.885 0.108 0.678 0.024 2.611 

 0.3 0.197 0.771 0.191 2.983 0.194 0.768 0.107 2.784 

 0.6 0.272 0.831 0.327 3.216 0.261 0.813 0.249 2.791 

 0.9 0.790 1.310 -0.070 2.930 0.834 1.359 -0.004 2.853 

 -0.9 0.666 1.195 -0.383 3.244 0.667 1.190 -0.648 3.862 

 -0.6 0.494 1.037 -0.329 3.033 0.489 1.050 -0.262 3.282 

 -0.3 0.321 0.876 -0.455 3.002 0.318 0.873 -0.417 2.946 

SEM 0.0 0.137 0.707 0.006 2.866 0.132 0.696 0.034 2.753 

 0.3 -0.095 0.521 0.143 2.752 -0.104 0.513 0.159 3.021 

 0.6 -0.308 0.359 0.275 3.236 -0.302 0.346 0.433 3.338 

 0.9 -0.448 0.234 0.720 3.832 -0.448 0.257 0.479 3.098 

 -0.9 -0.656 0.284 -0.369 3.268 -0.662 0.263 -0.488 3.615 

 -0.6 -0.551 0.306 -0.261 3.104 -0.553 0.337 0.037 2.920 

 -0.3 -0.487 0.305 -0.247 2.861 -0.486 0.286 -0.164 2.829 

SDM 0.0 -0.379 0.340 -0.065 2.550 -0.387 0.328 0.000 2.701 

 0.3 -0.292 0.394 0.155 2.941 -0.295 0.402 0.231 2.868 

 0.6 -0.172 0.470 0.312 2.808 -0.178 0.455 0.339 2.851 

 0.9 0.312 0.842 0.051 2.953 0.326 0.864 0.055 3.200 
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Table 6. The basic statistics for 2σ  
 SAR SEM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 0.103 0.022 0.388 3.228 0.231 0.136 0.151 2.901 

 -0.6 0.104 0.022 0.588 4.322 0.128 0.038 0.522 3.737 

 -0.3 0.104 0.022 0.462 3.592 0.125 0.036 0.480 3.438 

SAR 0.0 0.104 0.022 0.348 2.981 0.102 0.022 0.376 3.065 

 0.3 0.105 0.023 0.479 3.160 0.112 0.027 0.515 3.306 

 0.6 0.105 0.023 0.526 3.516 0.149 0.058 0.456 3.231 

 0.9 0.111 0.025 0.623 4.898 0.324 0.229 0.105 3.146 

 -0.9 0.130 0.043 0.560 3.949 0.110 0.025 0.361 3.141 

 -0.6 0.113 0.027 0.486 3.319 0.104 0.023 0.413 3.196 

 -0.3 0.106 0.022 0279 2.808 0.102 0.021 0.287 2.879 

SEM 0.0 0.104 0.021 0.377 3.193 0.102 0.021 0.362 3.209 

 0.3 0.106 0.023 0.341 3.121 0.103 0.022 0.237 2.832 

 0.6 0.114 0.028 0.486 3.171 0.105 0.022 0.402 3.089 

 0.9 0.127 0.041 0.603 3.484 0.109 0.024 0.499 3.517 

 -0.9 0.128 0.039 0.510 3.218 0.404 0.309 0.360 3.066 

 -0.6 0.106 0.023 0.467 3.431 0.183 0.090 0.315 2.966 

 -0.3 0.107 0.024 0.337 3.040 0.255 0.161 0.351 2.950 

SDM 0.0 0.106 0.023 0.422 3.087 0.153 0.060 0.432 3.196 

 0.3 0.107 0.024 0.387 3.219 0.106 0.023 0.323 2.986 

 0.6 0.109 0.025 0.459 3.870 0.105 0.022 0.287 3.203 

 0.9 0.116 0.029 0.437 3.355 0.153 0.061 0.359 3.032 



KAZUHIKO KAKAMU 54 

 
 SDM LRM 

True Model ρ AVE RMSE SKEW KURT AVE RMSE SKEW KURT 

 -0.9 0.106 0.023 0.402 3.292 0.342 0.251 0.321 2.981 

 -0.6 0.104 0.023 0.601 4.334 0.145 0.055 0.602 3.758 

 -0.3 0.103 0.022 0.409 3.223 0.133 0.043 0.473 3.258 

SAR 0.0 0.103 0.022 0.389 3.065 0.104 0.022 0.343 2.957 

 0.3 0.104 0.024 0.497 3.161 0.116 0.030 0.538 3.413 

 0.6 0.107 0.024 0.511 3.447 0.165 0.074 0.644 3.898 

 0.9 0.129 0.039 0.486 3.398 0.498 0.408 0.285 3.458 

 -0.9 0.109 0.025 0.330 3.076 0.134 0.047 0.559 3.695 

 -0.6 0.104 0.023 0.414 3.220 0.115 0.030 0.471 3.139 

 -0.3 0.102 0.022 0.328 2.803 0.106 0.023 0.251 2.895 

SEM 0.0 0.102 0.021 0.336 3.130 0.104 0.021 0.385 3.269 

 0.3 0.104 0.022 0.252 2.861 0.107 0.023 0.346 3.140 

 0.6 0.107 0.023 0.435 3.110 0.115 0.029 0.496 3.210 

 0.9 0.113 0.027 0.459 3.346 0.129 0.042 0.605 3.510 

 -0.9 0.106 0.024 0.400 3.007 0.644 0.554 0.412 3.093 

 -0.6 0.105 0.023 0.444 3.322 0.212 0.120 0.348 2.822 

 -0.3 0.104 0.023 0.306 2.867 0.293 0.200 0.335 3.179 

SDM 0.0 0.103 0.022 0.446 3.152 0.163 0.070 0.478 3.376 

 0.3 0.103 0.022 0.395 3.099 0.110 0.025 0.359 3.092 

 0.6 0.105 0.023 0.346 3.572 0.114 0.029 0.441 3.647 

 0.9 0.124 0.037 0.528 3.438 0.203 0.114 0.584 3.169 
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Table 7. Results of model choice 
AIC 

 SAR SEM SDM 

ρ SAR SEM SDM LRM SAR SEM SDM LRM SAR SEM SDM LRM 

-0.9 894 0 106 0 53 743 138 66 51 0 949 0 

-0.6 846 18 132 4 103 542 93 262 577 0 423 0 

-0.3 835 12 141 12 129 316 69 486 581 0 419 0 

0.0 142 112 52 694 135 121 60 684 700 0 300 0 

0.3 608 41 124 227 126 157 50 667 249 119 148 484 

0.6 844 1 155 0 130 365 83 422 285 282 71 362 

0.9 845 0 155 0 98 585 111 206 938 10 52 0 

 
BIC 

 SAR SEM SDM 

ρ SAR SEM SDM LRM SAR SEM SDM LRM SAR SEM SDM LRM 

-0.9 982 0 18 0 49 737 17 197 227 0 773 0 

-0.6 944 22 17 17 72 444 12 472 855 0 145 0 

-0.3 914 14 23 49 59 190 6 745 851 0 149 0 

0.0 59 47 4 890 50 51 6 893 913 0 87 0 

0.3 484 23 20 473 49 58 6 887 160 46 25 769 

0.6 965 1 31 3 69 216 4 711 182 178 15 625 

0.9 951 0 49 0 60 484 16 440 980 10 7 3 

 
DIC 

 SAR SEM SDM 

ρ SAR SEM SDM LRM SAR SEM SDM LRM SAR SEM SDM LRM 

-0.9 878 0 122 0 46 743 154 57 58 0 942 0 

-0.6 793 25 178 4 88 553 118 241 623 0 377 0 

-0.3 778 17 194 11 121 336 94 449 552 0 448 0 

0.0 148 125 61 666 131 135 72 662 658 0 342 0 

0.3 584 41 163 212 127 161 59 653 254 113 183 450 

0.6 808 1 191 0 131 355 100 414 296 268 111 325 

0.9 751 0 249 0 93 578 130 199 843 9 148 0 
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Marginal likelihood 

 SAR SEM SDM 

ρ SAR SEM SDM LRM SAR SEM SDM LRM SAR SEM SDM LRM 

-0.9 925 0 75 0 44 103 821 32 424 0 576 0 

-0.6 840 58 90 12 211 308 370 111 916 1 83 0 

-0.3 649 15 313 23 175 26 588 211 912 0 88 0 

0.0 284 250 142 324 293 223 166 318 904 0 96 0 

0.3 236 50 224 490 327 202 62 409 610 10 84 296 

0.6 215 0 391 394 260 215 21 504 155 0 66 779 

0.9 59 0 941 0 206 526 17 251 903 0 50 47 

 
g 


