ON THE DIOPHANTINE EQUATION $5 x^{2}+1=6^{n}$

FADWA S. ABU MURIEFAH and AMAL AL-RASHED

Riyadh University for Women in Saudi Arabia
P. O. Box 60561, Riyadh 11555, Saudi Arabia
e-mail: abumuriefah@yahoo.com; Amal_dfr@hotmail.com

Abstract

Let x and n be positive integers. In this paper, we solve the title equation completely.

Introduction

Let a, b, x, y, n be positive integers, where $\operatorname{gcd}(a, b)=1$. The history of the diophantine equation $a x^{2}+b=y^{n}, n \geq 1$ is very rich. Lebesgue [5] was the first to obtain a non-trivial result, he proved that the above equation has no solutions if $a=b=1$. In 1993, Cohn [4] solved this equation for $a=1$ and a several values of the parameter b in the range $1 \leq b \leq 100$. Recently the first author proved that the diophantine equation $a x^{2}+4 d=y^{n}$ has no solution under some conditions [1], and in 2008 she solved the diophantine equation $p x^{2}+q^{2 m}=y^{n}$ completely [2]. Also she found with Luca and Togbe all the solutions of the diophantine equation $x^{2}+5^{a} 13^{b}=y^{n}[3]$.

In this paper we study the equation $5 x^{2}+1=6^{n}, n \geq 1$, we apply the unique factorization in the imaginary quadratic field $\mathbb{Q}(\sqrt{-5})$ to reduce the problem to a question about a Fibonacci-type integer sequence.

[^0]Received July 21, 2008

We need the following lemma to prove our main result:
Lemma. Let $\theta=1+\sqrt{-5}$ and $\alpha=\sqrt{-5}$. Then the only rational integral solutions $n \geq 1$ of the equation $\alpha \theta^{n}-\bar{\alpha} \bar{\theta}^{n}=\alpha-\bar{\alpha}$ or $-(\alpha-\bar{\alpha})$ is $n=1$, where $\bar{\theta}$ and $\bar{\alpha}$ denote the algebraic conjugates of θ and α respectively.

Proof. It is easy to check that the equation

$$
\sqrt{-5}(1+\sqrt{-5})^{n}+\sqrt{-5}(1-\sqrt{-5})^{n}=2 \sqrt{-5} \text { or }-2 \sqrt{-5},
$$

is true only if $n=1$.
Now we give the main result:
Theorem. The diophantine equation

$$
\begin{equation*}
5 x^{2}+1=6^{n} \tag{1}
\end{equation*}
$$

has a unique solution in positive integers (x, n) given by $(1,1)$.
Proof. Let \mathbb{Z} be the set of rational integers and R denotes the ring of algebraic integers in the quadratic field $\mathbb{Q}(\sqrt{-5})$. Then $R=\{a+b \sqrt{-5} \mid a$, $b \in \mathbb{Z}\}$, which is a unique factorization domain [6].

Let $\theta=1+\sqrt{-5}$ and $\bar{\theta}=1-\sqrt{-5}$. Then $\theta \bar{\theta}=6$ and $\theta^{2}=2 \theta-6$.
We can factorize equation (1) in the ring R as

$$
(1+x \sqrt{-5})(1-x \sqrt{-5})=\theta^{n} \bar{\theta}^{n} .
$$

Note that θ and $\bar{\theta}$ are irreducible in R. If $\theta \bar{\theta} \mid 1+x \sqrt{-5}$, then there exist rational integers $i, j, 1 \leq i, j \leq n$ such that

$$
1+x \sqrt{-5}= \pm \theta^{i} \bar{\theta}^{j}
$$

Suppose $i \leq j$, then
$1+x \sqrt{-5}= \pm(\theta \bar{\theta})^{i} \bar{\theta}^{j-i}, \quad(\bar{\theta}=2-\theta)$

$$
\begin{aligned}
& = \pm 6^{i}(2-\theta)^{i-j} \\
& = \pm 6^{i}\left(2^{i-j}-\binom{i-j}{1} 2^{i-j-1} \theta+\binom{i-j}{1} 2^{i-j-2} \theta^{2}+\cdots+(-1)^{i-j} \theta^{i-j}\right) \\
& = \pm 6^{i}(A+B \sqrt{-5})
\end{aligned}
$$

where A and B are rational integers.
Since $\{1, \sqrt{-5}\}$ is an integral basis of R, the equality $1+x \sqrt{-5}=$ $= \pm 6^{i}(A+B \sqrt{-5})$ is impossible. Similarly if $j<i$, we get a contradiction.

This implies that $\theta \bar{\theta}$ does not divide $1+x \sqrt{-5}$, similarly $\theta \bar{\theta}$ does not divide $1-x \sqrt{-5}$, hence we have

$$
\theta^{n}= \pm(1+x \sqrt{-5}) \text { or } \theta^{n}= \pm(1-x \sqrt{-5})
$$

So

$$
\sqrt{-5} \theta^{n}= \pm(\sqrt{-5}-5 x) \text { or } \sqrt{-5} \theta^{n}= \pm(\sqrt{-5}+5 x)
$$

which can be written as

$$
\sqrt{-5} \theta^{n}=a+\theta \text { or } \sqrt{-5} \theta^{n}=a-\theta
$$

Now

$$
\begin{gathered}
\sqrt{-5} \theta^{m}=a+\theta \\
a+1=\sqrt{-5} \theta^{m}-\sqrt{-5} \\
(a+1)^{2}+5=56^{m}
\end{gathered}
$$

So $\left(\frac{a+1}{5}, m\right)$ is a solution of $5 x^{2}+1=6^{n}$. This means that equation (1) has a positive rational solution (x, n) for $n=m$ if and only if

$$
\sqrt{-5} \theta^{m}=a+\theta \text { or } \sqrt{-5} \theta^{m}=a-\theta \text { for } a \in \mathbb{Z}
$$

The problem now is to determine exactly those powers n such that $\sqrt{-5} \theta^{m}$ can be written either in the form $a+\theta$ or $a-\theta$ for $a \in \mathbb{Z}$.

Since $\{1, \sqrt{-5}\}$ is also an integral basis of R, then we can write

$$
\sqrt{-5} \theta^{n}=a_{n}+b_{n} \sqrt{-5}, \quad a_{n}, b_{n} \in \mathbb{Z}
$$

We have

$$
\begin{aligned}
a_{n+1}+b_{n+1} \theta & =\sqrt{-5} \theta^{n+1} \\
& =\left(\sqrt{-5} \theta^{n}\right) \theta \\
& =\left(a_{n}+b_{n} \theta\right) \theta \\
& =-6 b_{n}+\left(a_{n}+2 b_{n}\right) \theta
\end{aligned}
$$

which implies that

$$
b_{n+2}=2 b_{n+1}-6 b_{n}
$$

The first terms of the sequence b_{n} are

$$
1,-4,-14,-4,76,176, \ldots
$$

Since $b_{1}=1$ we find one solution $(x, n)=(1,1)$. Now we will prove there are no further occurrences of $1,-1$ in the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$. Now for $\alpha=\sqrt{-5}, \theta=1+\sqrt{-5}$, we have $\alpha \theta=\sqrt{-5}(1+\sqrt{-5})=b_{2}-b_{1} \bar{\theta}$.

Suppose for all rational integers $k, 1 \leq k \leq n$, that $\alpha \theta^{k}=b_{k+1}-b_{k} \bar{\theta}$. Then we have

$$
\begin{aligned}
\alpha \theta^{n+1} & =\left(\alpha \theta^{n}\right) \theta \\
& =\left(b_{k+1}-b_{k} \bar{\theta}\right)(2-\bar{\theta}) \\
& =2 b_{k+1}-2 b_{k} \bar{\theta}-b_{k+1} \bar{\theta}+2 b_{k} \bar{\theta}-6 b_{k} \\
& =\left(2 b_{k+1}-6 b_{k}\right)-b_{k+1} \bar{\theta} \\
& =b_{k+2}-b_{k+1} \bar{\theta} .
\end{aligned}
$$

So $\alpha \theta^{n}=b_{n+1}-b_{n} \bar{\theta}$, for $n \geq 1$. Similarly $\bar{\alpha}^{n}=b_{n+1}-b_{n} \theta$, it follows that

$$
\alpha \theta^{n}-\bar{\alpha} \bar{\theta}^{n}=b_{n}(\theta-\bar{\theta})=b_{n}(\alpha-\bar{\alpha}),
$$

which implies that

$$
b_{n}=\frac{\alpha \theta^{n}-\bar{\alpha} \bar{\theta}^{n}}{\alpha-\bar{\alpha}}
$$

By the Lemma $b_{n}=1$ or -1 only for $n=1$, so the equation (1) has a unique positive solution $(1,1)$.

References

[1] F. S. Abu Muriefah, The diophantine equation $d_{1} x^{2}+4 d_{2}=y^{n}$, Arab J. Math. Sci. 12 (2006), 1-6.
[2] F. S. Abu Muriefah, On the diophantine equation $p x^{2}+q^{2 m}=y^{p}$, J. Number Theory 128 (2008), 1670-1675.
[3] F. S. Abu Muriefah, On the diophantine equation $x^{2}+5^{a} 13^{b}=y^{n}$, Glasgow Math. J. 50 (2008), 1-7.
[4] J. H. E. Cohn, The diophantine equation $x^{2}+C=y^{n}$, Acta Arith. 65 (1993), 367381.
[5] V. A. Lebesgue, Sur l'impossibilite en numbers entiers de l'equation $x^{m}=y^{2}+1$, Nouv. Annal. Des Math. 9 (1850), 178-181.
[6] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.

[^0]: 2000 Mathematics Subject Classification: 11D61, 11Y50.
 Keywords and phrases: diophantine equation, integral basis, quadratic field.

