ON THE DIOPHANTINE EQUATION $5x^2 + 1 = 6^n$

FADWAS. ABU MURIEFAH and AMAL AL-RASHED

Riyadh University for Women in Saudi Arabia P. O. Box 60561, Riyadh 11555, Saudi Arabia e-mail: abumuriefah@yahoo.com; Amal_dfr@hotmail.com

Abstract

Let x and n be positive integers. In this paper, we solve the title equation completely.

Introduction

Let a, b, x, y, n be positive integers, where $\gcd(a, b) = 1$. The history of the diophantine equation $ax^2 + b = y^n$, $n \ge 1$ is very rich. Lebesgue [5] was the first to obtain a non-trivial result, he proved that the above equation has no solutions if a = b = 1. In 1993, Cohn [4] solved this equation for a = 1 and a several values of the parameter b in the range $1 \le b \le 100$. Recently the first author proved that the diophantine equation $ax^2 + 4d = y^n$ has no solution under some conditions [1], and in 2008 she solved the diophantine equation $px^2 + q^{2m} = y^n$ completely [2]. Also she found with Luca and Togbe all the solutions of the diophantine equation $x^2 + 5^a 13^b = y^n$ [3].

In this paper we study the equation $5x^2 + 1 = 6^n$, $n \ge 1$, we apply the unique factorization in the imaginary quadratic field $\mathbb{Q}(\sqrt{-5})$ to reduce the problem to a question about a Fibonacci-type integer sequence.

 $2000\ Mathematics\ Subject\ Classification:\ 11D61,\ 11Y50.$

Keywords and phrases: diophantine equation, integral basis, quadratic field.

Received July 21, 2008

We need the following lemma to prove our main result:

Lemma. Let $\theta = 1 + \sqrt{-5}$ and $\alpha = \sqrt{-5}$. Then the only rational integral solutions $n \ge 1$ of the equation $\alpha \theta^n - \overline{\alpha} \overline{\theta}^n = \alpha - \overline{\alpha}$ or $-(\alpha - \overline{\alpha})$ is n = 1, where $\overline{\theta}$ and $\overline{\alpha}$ denote the algebraic conjugates of θ and α respectively.

Proof. It is easy to check that the equation

$$\sqrt{-5}(1+\sqrt{-5})^n + \sqrt{-5}(1-\sqrt{-5})^n = 2\sqrt{-5} \text{ or } -2\sqrt{-5}$$

is true only if n = 1.

Now we give the main result:

Theorem. The diophantine equation

$$5x^2 + 1 = 6^n, (1)$$

has a unique solution in positive integers (x, n) given by (1, 1).

Proof. Let \mathbb{Z} be the set of rational integers and R denotes the ring of algebraic integers in the quadratic field $\mathbb{Q}(\sqrt{-5})$. Then $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$, which is a unique factorization domain [6].

Let
$$\theta = 1 + \sqrt{-5}$$
 and $\overline{\theta} = 1 - \sqrt{-5}$. Then $\theta \overline{\theta} = 6$ and $\theta^2 = 2\theta - 6$.

We can factorize equation (1) in the ring R as

$$(1+x\sqrt{-5})(1-x\sqrt{-5})=\theta^n\overline{\theta}^n.$$

Note that θ and $\overline{\theta}$ are irreducible in R. If $\theta\overline{\theta}\,|\,1+x\sqrt{-5}$, then there exist rational integers $i,j,\,1\leq i,\,\,j\leq n$ such that

$$1 + x\sqrt{-5} = \pm \theta^i \overline{\theta}^j$$
.

Suppose $i \leq j$, then

$$1 + x\sqrt{-5} = \pm(\theta\overline{\theta})^i\overline{\theta}^{j-i}, \qquad (\overline{\theta} = 2 - \theta)$$

$$\begin{split} &= \pm 6^{i} (2 - \theta)^{i - j} \\ &= \pm 6^{i} \left(2^{i - j} - \binom{i - j}{1} 2^{i - j - 1} \theta + \binom{i - j}{1} 2^{i - j - 2} \theta^{2} + \dots + (-1)^{i - j} \theta^{i - j} \right) \\ &= \pm 6^{i} (A + B\sqrt{-5}), \end{split}$$

where A and B are rational integers.

Since $\{1, \sqrt{-5}\}$ is an integral basis of R, the equality $1 + x\sqrt{-5} = \pm 6^{i}(A + B\sqrt{-5})$ is impossible. Similarly if j < i, we get a contradiction.

This implies that $\theta\overline{\theta}$ does not divide $1+x\sqrt{-5}$, similarly $\theta\overline{\theta}$ does not divide $1-x\sqrt{-5}$, hence we have

$$\theta^n = \pm (1 + x\sqrt{-5}) \text{ or } \theta^n = \pm (1 - x\sqrt{-5}).$$

So

$$\sqrt{-5}\theta^n = \pm(\sqrt{-5} - 5x) \text{ or } \sqrt{-5}\theta^n = \pm(\sqrt{-5} + 5x)$$

which can be written as

$$\sqrt{-5}\theta^n = a + \theta \text{ or } \sqrt{-5}\theta^n = a - \theta.$$

Now

$$\sqrt{-5}\theta^{m} = a + \theta,$$

$$a + 1 = \sqrt{-5}\theta^{m} - \sqrt{-5},$$

$$(a + 1)^{2} + 5 = 56^{m}.$$

So $\left(\frac{a+1}{5}, m\right)$ is a solution of $5x^2 + 1 = 6^n$. This means that equation (1) has a positive rational solution (x, n) for n = m if and only if

$$\sqrt{-5}\theta^m = a + \theta \text{ or } \sqrt{-5}\theta^m = a - \theta \text{ for } a \in \mathbb{Z}.$$

The problem now is to determine exactly those powers n such that $\sqrt{-5}\theta^m$ can be written either in the form $a + \theta$ or $a - \theta$ for $a \in \mathbb{Z}$.

Since $\{1, \sqrt{-5}\}$ is also an integral basis of R, then we can write

$$\sqrt{-5}\theta^n = a_n + b_n \sqrt{-5}, \quad a_n, b_n \in \mathbb{Z}.$$

We have

$$a_{n+1} + b_{n+1}\theta = \sqrt{-5}\theta^{n+1}$$

$$= (\sqrt{-5}\theta^n)\theta$$

$$= (a_n + b_n\theta)\theta$$

$$= -6b_n + (a_n + 2b_n)\theta,$$

which implies that

$$b_{n+2} = 2b_{n+1} - 6b_n.$$

The first terms of the sequence b_n are

$$1, -4, -14, -4, 76, 176, \dots$$

Since $b_1=1$ we find one solution (x,n)=(1,1). Now we will prove there are no further occurrences of 1, -1 in the sequence $\{b_n\}_{n=1}^{\infty}$. Now for $\alpha=\sqrt{-5},\ \theta=1+\sqrt{-5}$, we have $\alpha\theta=\sqrt{-5}(1+\sqrt{-5})=b_2-b_1\overline{\theta}$.

Suppose for all rational integers $k,\ 1\leq k\leq n,\$ that $\alpha\theta^k=b_{k+1}-b_k\overline{\theta}.$ Then we have

$$\alpha \theta^{n+1} = (\alpha \theta^n) \theta$$

$$= (b_{k+1} - b_k \overline{\theta}) (2 - \overline{\theta})$$

$$= 2b_{k+1} - 2b_k \overline{\theta} - b_{k+1} \overline{\theta} + 2b_k \overline{\theta} - 6b_k$$

$$= (2b_{k+1} - 6b_k) - b_{k+1} \overline{\theta}$$

$$= b_{k+2} - b_{k+1} \overline{\theta}.$$

So $\alpha \theta^n = b_{n+1} - b_n \overline{\theta}$, for $n \ge 1$. Similarly $\overline{\alpha} \overline{\theta}^n = b_{n+1} - b_n \theta$, it follows that

$$\alpha \theta^n - \overline{\alpha} \overline{\theta}^n = b_n(\theta - \overline{\theta}) = b_n(\alpha - \overline{\alpha}),$$

which implies that

$$b_n = \frac{\alpha \theta^n - \overline{\alpha} \overline{\theta}^n}{\alpha - \overline{\alpha}}.$$

By the Lemma $b_n = 1$ or -1 only for n = 1, so the equation (1) has a unique positive solution (1, 1).

References

- [1] F. S. Abu Muriefah, The diophantine equation $d_1x^2 + 4d_2 = y^n$, Arab J. Math. Sci. 12 (2006), 1-6.
- [2] F. S. Abu Muriefah, On the diophantine equation $px^2 + q^{2m} = y^p$, J. Number Theory 128 (2008), 1670-1675.
- [3] F. S. Abu Muriefah, On the diophantine equation $x^2 + 5^a 13^b = y^n$, Glasgow Math. J. 50 (2008), 1-7.
- [4] J. H. E. Cohn, The diophantine equation $x^2 + C = y^n$, Acta Arith. 65 (1993), 367-381.
- [5] V. A. Lebesgue, Sur l'impossibilite en numbers entiers de l'equation $x^m=y^2+1$, Nouv. Annal. Des Math. 9 (1850), 178-181.
- [6] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.