ON PROJECTIVE GROUP RINGS WITH AN INNER AUTOMORPHISM GROUP

GEORGE SZETO and LIANYONG XUE

Department of Mathematics
Bradley University
Peoria, Illinois 61625, U. S. A.

e-mail: szeto@bradley.edu; lxue@bradley.edu

Abstract

Let RG_f be a projective group ring of a finite group G over a ring R with 1 with a factor set $f: G \times G \to \text{units}$ of the center of R and \overline{G} be the inner automorphism group induced by the generators of RG_f . Characterizations of a Galois RG_f with inner Galois group \overline{G} in terms of the center of RG_f are given.

1. Introduction

Galois extensions with an inner Galois group have been intensively investigated [1, 4-7]. In [1], it was shown that any central Galois algebra A with an inner Galois group G is a projective group algebra RG_f over R; that is, $A = RG_f = \bigoplus \sum_{g \in G} RU_g$, where $\{U_g \mid g \in G\}$ are free generators such that $U_gU_{g'} = U_{gg'}f(g,g')$, $f:G\times G \to \text{units of } R$ is a factor set, and $A^G = R$ [1, Theorem 6]. The converse also holds: If $A = RG_f = \bigoplus \sum_{g \in G} RU_g$ is an Azumaya R-algebra, then A is a central Galois

2000 Mathematics Subject Classification: 13B05, 16S35.

Keywords and phrases: projective group rings, Galois algebras, inner Galois groups.

Received January 10, 2008

algebra over R with an inner Galois group \overline{G} induced by $\{U_g \mid g \in G\}$ [2, Theorem 3]. In the present paper, we consider two general cases: (1) the center of RG_f is not necessarily R, and (2) R is noncommutative. We shall give equivalent conditions for a Galois projective group algebra and for a Galois projective group ring respectively. Let Z be the center of G, $K = \{g \in Z \mid f(g,g') = f(g',g) \text{ for all } g' \in G\}$, and C be the center of RG_f . Then it will be shown that a projective group algebra RG_f is a central Galois algebra over C with an inner Galois group \overline{G} if and only if $\{U_{\overline{g}} \mid \overline{g} \in \overline{G}\}$ are free over C and $C = \bigoplus \sum_{g \in K} RU_g$, where $U_{\overline{g}} = U_g$ for each $g \in G$. In particular, when $K = \langle 1 \rangle$, this result recovers Theorem 3 in [2]. Moreover, characterizations for a Galois projective group ring and examples are given in Section 3.

2. Galois Projective Group Algebras

In this section, let $RG_f = \bigoplus \sum_{g \in G} RU_g$ be a projective group algebra over a commutative ring R with 1 and $f: G \times G \to \text{units of } R$ be a factor set, C be the center of RG_f , Z be the center of G, and $K = \{g \in Z \mid f(g,g') = f(g',g) \text{ for all } g' \in G\}$. We shall characterize a Galois projective group algebra RG_f with an inner Galois group \overline{G} induced by $\{U_g \mid g \in G\}$ in terms of C. We begin to describe \overline{G} and C.

Lemma 2.1. Let $\overline{G} = \{\overline{g} \mid \overline{g}(x) = U_g x U_g^{-1} \text{ for all } x \in RG_f\}$. Then \overline{G} is an inner automorphism group of RG_f .

Proof. Since $\{\overline{g} \mid g \in G\}$ is a finite set, it suffices to show that $\overline{g} \cdot \overline{g'} = \overline{gg'}$ for $g, g' \in G$. In fact, for each $x \in RG_f$, $(\overline{g} \cdot \overline{g'})(x) = U_g U_{g'} x U_{g'}^{-1} U_g^{-1} = U_{gg'} f(g, g') x U_{gg'}^{-1} f(g, g')^{-1} = U_{gg'} x U_{gg'}^{-1} = \overline{gg'}(x)$. Thus $\overline{g} \cdot \overline{g'} = \overline{gg'}$. Also (\overline{G}, \cdot) is associative, so \overline{G} is a group.

Lemma 2.2. Let $\pi: G \to \overline{G}$ by $\pi(g) = \overline{g}$ for each $g \in G$. Then π is a group homomorphism from G onto \overline{G} with kernel $K = \{g \in Z \mid f(g, g') = f(g', g) \text{ for all } g' \in G\}.$

Proof. For $g, g' \in G$, $\pi(gg') = \overline{gg'} = \overline{g} \cdot \overline{g'} = \pi(g) \cdot \pi(g')$, so π is a group homomorphism from G onto \overline{G} . Next, let $\overline{g} = \overline{1}$ in \overline{G} . Then $\overline{g}(x) = x$ for all $x \in RG_f$. Hence $U_g x U_g^{-1} = x$, and so, $U_g x = x U_g$. In particular, let $x = U_{g'}$ for each $g' \in G$, we have that $U_g U_{g'} = U_{g'} U_g$. Thus $U_{gg'} f(g, g') = U_{g'g} f(g', g)$. This is equivalent to that gg' = g'g and f(g, g') = f(g', g) for each $g' \in G$, and so $g \in K$. Therefore the kernel of $\pi = K$.

Theorem 2.3. Let C be the center of RG_f . Then (1) $(RG_f)^{\overline{G}} = C$, and (2) RG_f is a Galois C-algebra with an inner Galois group \overline{G} if and only if $\{U_{\overline{g}} \mid \overline{g} \in \overline{G}\}$ are free over C and $C = \bigoplus \sum_{g \in K} RU_g$, where $U_{\overline{g}} = U_g$ for each $g \in G$.

Proof. (1) Since R is commutative and $rU_g=U_gr$ for each $r\in R$ and $g\in G,\ (RG_f)^{\overline{G}}=C.$

(2) (\Rightarrow) Since $(RG_f)^{\overline{G}}=C$ by part (1), the Galois algebra RG_f is a central Galois algebra over C with an inner Galois group \overline{G} by Lemma 2.1. Hence by Theorem 6 in [1], $RG_f=C\overline{G}_f$, a projective group algebra of \overline{G} over C with a factor set $f:\overline{G}\times\overline{G}\to \mathrm{units}$ of the center of C induced by $f:G\times G\to \mathrm{units}$ of R. This implies that $\{U_{\overline{g}}\mid \overline{g}\in\overline{G}\}$ are free over C and $RG_f(=C\overline{G}_f)$ is an Azumaya C-algebra. Thus C is a direct summand of RG_f as C-bimodule [3, Lemma 3.1, page 51]. Since $\mathrm{rank}_R(RG_f)=|G|$, the order of G, and $\mathrm{rank}_C(C\overline{G}_f)=|\overline{G}|$, we have that $\mathrm{rank}_R(RG_f)=\mathrm{rank}_C(RG_f)\cdot\mathrm{rank}_R(C)$ so that $\mathrm{rank}_R(C)$ is well defined and

 $\operatorname{rank}_R(C) = |G|/|\overline{G}| = |K|. \quad \operatorname{Moreover}, \ \operatorname{since} \ \oplus \sum\nolimits_{g \in K} RU_g \ \subset C \ \operatorname{and}$ $\operatorname{rank}_R\Big(\oplus \sum\nolimits_{g \in K} RU_g\Big) = |K| = \operatorname{rank}_R(C), \ \operatorname{we have that} \ C = \oplus \sum\nolimits_{g \in K} RU_g.$

 $(\Leftarrow) \ \, \text{By hypothesis,} \ \, \{U_{\overline{g}} \, | \, \overline{g} \in \overline{G}\} \quad \text{are free over } C, \ \, \text{so} \ \, C\overline{G}_f = \\ \oplus \sum_{\overline{g} \in \overline{G}} CU_{\overline{g}} \ \, \text{is a projective group algebra of } \overline{G} \ \, \text{over } C \ \, \text{with factor set} \\ f: \overline{G} \times \overline{G} \to \text{ units of } C \ \, \text{induced by } f: G \times G \to \text{ units of } R. \ \, \text{Also, since} \\ C = \oplus \sum_{g' \in K} RU_{g'},$

$$\begin{split} C\overline{G}_f &= \sum_{\overline{g} \in \overline{G}} \Biggl(\sum_{g' \in K} RU_{g'} \Biggr) U_{\overline{g}} = \sum_{i=1}^k \Biggl(\sum_{g' \in K} RU_{g'} \Biggr) U_{g_i} \\ &= \sum_{i=1}^k \sum_{g' \in K} RU_{g'g_i} = \sum_{g \in G} RU_g = RG_f, \end{split}$$

where $G = \sum_{i=1}^{k} Kg_i$. Thus $RG_f (= C\overline{G}_f)$ is an Azumaya C-algebra; and so RG_f is a central Galois C-algebra with an inner Galois group \overline{G} [2, Theorem 3].

We note that Theorem 3 in [2] is a special case of Theorem 2.3.

Corollary 2.4. Let RG_f be a projective group algebra of a finite group G over a commutative ring R with a factor set $f: G \times G \to units$ of R. Then the following are equivalent: (1) RG_f is a Galois R-algebra with an inner Galois group \overline{G} ; (2) RG_f is an Azumaya R-algebra; and (3) $K = \langle 1 \rangle$.

3. Galois Projective Group Rings

Let R be a ring with 1 with center R_0 , G be a finite group, RG_f be a projective group ring of G over R with a factor set $f: G \times G \to \text{units of } R_0$, and G be the center of RG_f . We shall characterize a Galois projective group ring RG_f in terms of G. As given in Section 2, the center

of G is denoted by Z and $K = \{g \in Z \mid f(g, g') = f(g', g) \text{ for all } g' \in G\}$. Clearly, the projective group algebra $R_0K_f \subset C$.

Lemma 3.1. If RG_f is a Galois extension of $(RG_f)^{\overline{G}}$ with an inner Galois group \overline{G} , then $\{U_{\overline{g}} \mid \overline{g} \in \overline{G}\}$ are free over RC where $U_{\overline{g}} = U_g$ for each $g \in G$.

Proof. Since RG_f is a Galois extension of $(RG_f)^{\overline{G}}$ with an inner Galois group \overline{G} , there exists a \overline{G} -Galois system for RG_f , $\{x_i, y_i \in RG_f, i=1, 2, ..., m \text{ for some integer } m\}$ such that $\sum_{i=1}^m x_i \overline{g}(b_i) = \delta_{\overline{1}, \overline{g}}$ for each $\overline{g} \in \overline{G}$. Let $\sum_{\overline{g} \in \overline{G}} a_{\overline{g}} U_{\overline{g}} = 0$ for some $a_{\overline{g}} \in C$. Then for each $\overline{h} \in \overline{G}$.

$$\begin{split} 0 &= \sum_{i=1}^m x_i \bigg(\sum_{\overline{g} \in \overline{G}} a_{\overline{g}} U_{\overline{g}} \bigg) \overline{h}^{-1}(y_i) = \sum_{\overline{g} \in \overline{G}} a_{\overline{g}} \sum_{i=1}^m x_i U_{\overline{g}} \overline{h}^{-1}(y_i) \\ &= \sum_{\overline{g} \in \overline{G}} a_{\overline{g}} \sum_{i=1}^m x_i \overline{g}(\overline{h}^{-1}(y_i)) U_{\overline{g}} = \sum_{\overline{g} \in \overline{G}} a_{\overline{g}} \bigg(\sum_{i=1}^m x_i (\overline{g} \cdot \overline{h}^{-1})(y_i) \bigg) U_{\overline{g}} \\ &= \sum_{\overline{g} \in \overline{G}} a_{\overline{g}} \delta_{\overline{1}, \overline{g} \cdot \overline{h}^{-1}} U_{\overline{g}} = a_{\overline{h}} U_{\overline{h}}. \end{split}$$

Thus $a_{\overline{h}}=0$ for each $\overline{h}\in \overline{G}$. This proves that $\{U_{\overline{g}}\mid \overline{g}\in \overline{G}\}$ are free over C. But then $CU_{\overline{1}}\cap \sum_{\overline{g}\neq \overline{1}}CU_{\overline{g}}=\{0\}$. Thus $RCU_{\overline{1}}\cap \sum_{\overline{g}\neq \overline{1}}RCU_{\overline{g}}=\{0\}$. Therefore $\{U_{\overline{g}}\mid \overline{g}\in \overline{G}\}$ are free over RC.

Theorem 3.2. Let RG_f be a Galois projective group ring of G over a ring R. Then the following are equivalent: (1) RG_f is a Galois extension of $(RG_f)^{\overline{G}}$ with an inner Galois group \overline{G} ; (2) $C\overline{G_f}$ is a central Galois projective group algebra of \overline{G} over C with factor set $\overline{f}: \overline{G} \times \overline{G} \to \text{units of } C$ induced by $f: G \times G \to \text{units of } R_0$; and (3) $\{U_{\overline{g}} \mid \overline{g} \in \overline{G}\}$ are free over RC and $RC = \bigoplus \sum_{g \in K} RU_g$, where $U_{\overline{g}} = U_g$ for each $g \in G$.

Proof. (1) \Rightarrow (2) Since RG_f is a Galois extension of $(RG_f)^{\overline{G}}$ with an inner Galois group \overline{G} , $\{U_{\overline{g}} \mid \overline{g} \in \overline{G}\}$ are free over RC by Lemma 3.1. Let R_0 be the center R. Then $R_0 \subset C$. Noting that $\overline{f} : \overline{G} \times \overline{G} \to \text{units of } R_0$, we have that $C\overline{G}_{\overline{f}}$ is a projective group algebra of \overline{G} over C with factor set $\overline{f} : \overline{G} \times \overline{G} \to \text{units of } C$ where \overline{f} is induced by $f : G \times G \to \text{units of } R_0$. Moreover, since $R_0K_f \subset C$, $\sum_{\overline{g} \in \overline{G}} (R_0K_f)U_{\overline{g}} \subset C\overline{G}_{\overline{f}}$. But $\overline{G} = G/K$ by Lemma 2.2, so

$$RG_f = \sum_{g \in G} RU_g = R(R_0G_f) \subset R\left(\sum_{\overline{g} \in \overline{G}} CU_{\overline{g}}\right) = R(C\overline{G}_{\overline{f}}) \subset RG_f.$$

Hence $RG_f = R(C\overline{G}_{\overline{f}})$. Thus $\overline{G} \mid_{C\overline{G}_{\overline{f}}} \cong \overline{G}$. Next we claim that C is also the center of $\sum_{\overline{g} \in \overline{G}} CU_{\overline{g}} (= C\overline{G}_{\overline{f}})$. In fact, clearly, C is contained in the center of $C\overline{G}_{\overline{f}}$. Conversely, for any $x \in$ the center of $C\overline{G}_{\overline{f}}$, x is in the center of $\sum_{\overline{g} \in \overline{G}} CU_{\overline{g}}$. Also, for any $r \in R$, rx = xr, so x is in the center of $R\left(\sum_{\overline{g} \in \overline{G}} CU_{\overline{g}}\right)$ which is RG_f . Thus $x \in C$. Therefore $C\overline{G}_f$ is an Azumaya C-algebra; and so $C\overline{G}_f$ is a central Galois C-algebra with an inner Galois group $\overline{G} \mid_{C\overline{G}_{\overline{f}}} \cong \overline{G}$ [2, Theorem 3].

- $(2) \Rightarrow (1) \text{ Since } C\overline{G}_{\overline{f}} \subset R(C\overline{G}_{\overline{f}}) = RG_f \text{ and } R \subset (RG_f)^{\overline{G}} \text{ such that } \overline{G} \mid_{C\overline{G}_{\overline{f}}} \cong \overline{G}, \text{ a } \overline{G} \text{ -Galois system for } C\overline{G}_{\overline{f}} \text{ can be taken as a } \overline{G} \text{ -Galois system for } RG_f. \text{ Thus } RG_f \text{ is a Galois extension of } (RG_f)^{\overline{G}} \text{ with an inner Galois group } \overline{G}.$
- $(2) \Rightarrow (3) \text{ Since } C\overline{G}_{\overline{f}} \text{ is a central Galois algebra over } C \text{ with Galois}$ group \overline{G} and since rx = xr for each $r \in R$ and $x \in C\overline{G}_{\overline{f}}$, $\{U_{\overline{g}} \mid \overline{g} \in \overline{G}\}$ are free over RC by Lemma 3.1. Moreover, since $C\overline{G}_{\overline{f}}$ is a central Galois

algebra over C with Galois group $\overline{G} \mid_{C\overline{G}_{\overline{f}}} \cong \overline{G}$ again, $C = \bigoplus \sum_{g \in K} R_0 U_g$ by Theorem 2.3. Thus $RC = R \Big(\oplus \sum_{g \in K} R_0 U_g \Big) = \oplus \sum_{g \in K} R U_g$.

 $(3) \ \Rightarrow \ (2) \ \text{ By hypothesis, } \ \{U_{\overline{g}} \,|\, \overline{g} \in \overline{G}\} \ \text{ are free over } RC, \ \text{ so} \\ \{U_{\overline{g}} \,|\, \overline{g} \in \overline{G}\} \ \text{ are free over } C. \ \text{Also since } RC = \bigoplus \sum_{g \in K} RU_g, \ C = \bigoplus \sum_{g \in K} R_0U_g, \ \text{ where } R_0 \ \text{ is the center of } R. \ \text{Thus } C\overline{G}_f \ \text{ is a central Galois C-algebra with an inner Galois group } \overline{G} \,|\, {}_{C\overline{G}_{\overline{f}}} \cong \overline{G} \ \text{ by Theorem 2.3.}$

We conclude the present paper with three kinds of projective group rings.

Example 1. Let R[i, j, k] be the real quaternion algebra over real field R with inner automorphism group $G = \{1, \bar{i}, \bar{j}, \bar{k}\}$, where $\bar{i}(x) = ixi^{-1}$, $\bar{j}(x) = jxj^{-1}$, and $\bar{k}(x) = kxk^{-1}$ for $x \in R[i, j, k]$. Then $R[i, j, k] = R \oplus Ri \oplus Rj \oplus Rk$, a projective group algebra RG_f with center R; and so it is a central Galois algebra over R with an inner Galois group G.

Example 2. Let $T = R[i] \subset R[i, j, k]$ as given in Example 1 and H_i = $\{1, \overline{i}\} \subset G$. Then $(R[i, j, k])^{H_i} = R[i]$ and R[i, j, k] is a noncommutative Galois extension of R[i] with a cyclic Galois group H_i . We note that any Galois algebra with a cyclic Galois group is commutative [1, Theorem 11].

Example 3. Let $M_{2\times 2}(R[i,\,j,\,k])$ be the 2×2 matrix ring over $R[i,\,j,\,k]$ with inner automorphism group \overline{G} induced by $i,\,j,\,k$. Then $M_{2\times 2}(R[i,\,j,\,k])\cong M_{2\times 2}(R)\otimes_R R[i,\,j,\,k]\cong M_{2\times 2}(R)\overline{G}_f$, a Galois projective group ring of \overline{G} over $M_{2\times 2}(R)$.

Acknowledgements

This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

References

- F. R. DeMeyer, Some notes on the general Galois theory of rings, Osaka J. Math. 2 (1965), 117-127.
- [2] F. R. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J. Math. 10 (1966), 287-295.
- [3] F. R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Volume 181, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
- [4] K. Sugano, On a special type of Galois extensions, Hokkaido Math. J. 9 (1980), 123-128.
- [5] G. Szeto and Y.-F. Wong, On Azumaya projective group rings, Azumaya algebras, actions, and modules, Bloomington, IN, 1990, Contemp. Math., 124, Amer. Math. Soc., Providence, RI, 1992, pp. 251-256.
- [6] G. Szeto and L. Xue, Skew group rings which are Galois, Int. J. Math. Math. Sci. 23 (1999), 279-283.
- [7] G. Szeto and L. Xue, On Galois algebras with an inner Galois group, East-West J. Math. Special Vol. (2004), 101-106.