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Abstract 

Let fRG  be a projective group ring of a finite group G over a ring R 

with 1 with a factor set →× GGf :  units of the center of R and G  be 

the inner automorphism group induced by the generators of .fRG  

Characterizations of a Galois fRG  with inner Galois group G  in terms 

of the center of fRG  are given. 

1. Introduction 

Galois extensions with an inner Galois group have been intensively 

investigated [1, 4-7]. In [1], it was shown that any central Galois algebra 

A with an inner Galois group G is a projective group algebra fRG  over R; 

that is, ,∑ ∈
⊕==

Gg gf RURGA  where { }GgUg ∈|  are free generators 

such that ( ),, ggfUUU gggg ′= ′′  →× GGf :  units of R is a factor set, 

and RAG =  [1, Theorem 6]. The converse also holds: If fRGA =  

∑ ∈
⊕=

Gg gRU  is an Azumaya R-algebra, then A is a central Galois 
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algebra over R with an inner Galois group G  induced by { }GgUg ∈|  

[2, Theorem 3]. In the present paper, we consider two general cases: (1) 

the center of fRG  is not necessarily R, and (2) R is noncommutative. We 

shall give equivalent conditions for a Galois projective group algebra and 

for a Galois projective group ring respectively. Let Z be the center of G, 

{ ( ) ( )ggfggfZgK ,, ′=′|∈=  for all },Gg ∈′  and C be the center of 

.fRG  Then it will be shown that a projective group algebra fRG  is a 

central Galois algebra over C with an inner Galois group G  if and only if 

{ }GgUg ∈|  are free over C and ,∑ ∈
⊕=

Kg gRUC  where gg UU =  for 

each .Gg ∈  In particular, when ,1=K  this result recovers Theorem 3 

in [2]. Moreover, characterizations for a Galois projective group ring and 

examples are given in Section 3. 

2. Galois Projective Group Algebras 

In this section, let ∑ ∈
⊕=

Gg gf RURG  be a projective group algebra 

over a commutative ring R with 1 and →× GGf :  units of R be a factor 

set, C be the center of ,fRG  Z be the center of G, and =K  

( ) ( ){ }.allfor,, GgggfggfZg ∈′′=′|∈  We shall characterize a Galois 

projective group algebra fRG  with an inner Galois group G  induced by 

{ }GgUg ∈|  in terms of C. We begin to describe G  and C. 

Lemma 2.1. Let { ( ) }.1
fgg RGxallforxUUxggG ∈=|= −  Then G  

is an inner automorphism group of .fRG  

Proof. Since { }Ggg ∈|  is a finite set, it suffices to show that 

gggg ′=′⋅  for ., Ggg ∈′  In fact, for each ,fRGx ∈  ( ) ( ) =′⋅ xgg  

( ) ( ) ( ).,, 11111 xggxUUggfxUggfUUxUUU gggggggggggg ′==′′= −
′′

−−
′′

−−
′′  Thus 

.gggg ′=′⋅  Also ( )⋅,G  is associative, so G  is a group. 
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Lemma 2.2. Let GG →π :  by ( ) gg =π  for each .Gg ∈  Then π is a 

group homomorphism from G onto G  with kernel { ( ) =′|∈= ggfZgK ,  

( ) }., Ggallforggf ∈′′  

Proof. For ,, Ggg ∈′  ( ) ( ) ( ),gggggggg ′π⋅π=′⋅=′=′π  so π is a 

group homomorphism from G onto .G  Next, let 1=g  in .G  Then 

( ) xxg =  for all .fRGx ∈  Hence ,1 xxUU gg =−  and so, .gg xUxU =  In 

particular, let gUx ′=  for each ,Gg ∈′  we have that .gggg UUUU ′′ =  

Thus ( ) ( ).,, ggfUggfU gggg ′=′ ′′  This is equivalent to that gggg ′=′  and 

( ) ( )ggfggf ,, ′=′  for each ,Gg ∈′  and so .Kg ∈  Therefore the kernel 

of .K=π  

Theorem 2.3. Let C be the center of .fRG  Then (1) ( ) ,CRG G
f =  and 

(2) fRG  is a Galois C-algebra with an inner Galois group G  if and only 

if { }GgUg ∈|  are free over C and ,∑ ∈
⊕=

Kg gRUC  where gg UU =  

for each .Gg ∈  

Proof. (1) Since R is commutative and rUrU gg =  for each Rr ∈  

and ,Gg ∈  ( ) .CRG G
f =  

(2) (⇒) Since ( ) CRG G
f =  by part (1), the Galois algebra fRG  is a 

central Galois algebra over C with an inner Galois group G  by Lemma 

2.1. Hence by Theorem 6 in [1], ,ff GCRG =  a projective group algebra of 

G  over C with a factor set →× GGf :  units of the center of C induced 

by →× GGf :  units of R. This implies that { }GgUg ∈|  are free over C 

and ( )ff GCRG =  is an Azumaya C-algebra. Thus C is a direct summand 

of fRG  as C-bimodule [3, Lemma 3.1, page 51]. Since ( ) =fR RGrank  

,G  the order of G, and ( ) ,rank GGC fC =  we have that ( )fR RGrank  

( ) ( )CRG RfC rankrank ⋅=  so that ( )CRrank  is well defined and 
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( ) .rank KGGCR ==  Moreover, since ∑ ∈
⊕

Kg gRU  C⊂  and 

( ),rankrank CKRU RKg gR ==




⊕∑ ∈

 we have that .∑ ∈
⊕=

Kg gRUC  

(⇐) By hypothesis, { }GgUg ∈|  are free over C, so =fGC  

∑ ∈
⊕

Gg gCU  is a projective group algebra of G  over C with factor set 

→× GGf :  units of C induced by →× GGf :  units of R. Also, since 

,∑ ∈′ ′⊕=
Kg gRUC  

ig

k

i Kg
g

Gg
g

Kg
gf URUURUGC ∑ ∑∑ ∑

= ∈′
′

∈ ∈′
′ 













=













=

1

 

,
1

∑∑ ∑
∈= ∈′

′ ===
Gg

fg

k

i Kg
gg RGRURU

i
 

where .
1∑ =

=
k
i iKgG  Thus ( )ff GCRG =  is an Azumaya C-algebra; and 

so fRG  is a central Galois C-algebra with an inner Galois group G  

[2, Theorem 3]. 

We note that Theorem 3 in [2] is a special case of Theorem 2.3. 

Corollary 2.4. Let fRG  be a projective group algebra of a finite 

group G over a commutative ring R with a factor set →× GGf :  units of 

R. Then the following are equivalent: (1) fRG  is a Galois R-algebra with 

an inner Galois group ;G  (2) fRG  is an Azumaya R-algebra; and (3) 

.1=K  

3. Galois Projective Group Rings 

Let R be a ring with 1 with center ,0R  G be a finite group, fRG  be a 

projective group ring of G over R with a factor set →× GGf :  units of 

,0R  and C be the center of .fRG  We shall characterize a Galois 

projective group ring fRG  in terms of C. As given in Section 2, the center 
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of G is denoted by Z and ( ) ( ){ }.allfor,, GgggfggfZgK ∈′′=′|∈=  

Clearly, the projective group algebra .0 CKR f ⊂  

Lemma 3.1. If fRG  is a Galois extension of ( )GfRG  with an inner 

Galois group ,G  then { }GgUg ∈|  are free over RC where gg UU =  for 

each .Gg ∈  

Proof. Since fRG  is a Galois extension of ( )GfRG  with an inner 

Galois group ,G  there exists a G -Galois system for ,fRG  { ,, fii RGyx ∈  

mi ...,,2,1=  for some integer }m  such that ( )∑ =
δ=

m
i gii bgx

1 ,1  for 

each .Gg ∈  Let ∑ ∈
=

Gg ggUa 0  for some .Cag ∈  Then for each 

,Gh ∈  

( ) ( )∑ ∑ ∑∑= ∈ =
−−

∈
=







=
m

i Gg

m

i igigiGg ggi yhUxayhUax
1 1

110  

( ( )) ( ) ( ) gGg i
m

i igGg

m

i giig UyhgxaUyhgxa ∑ ∑∑ ∑ ∈ =
−

∈ =
− 






 ⋅==

1
1

1
1  

.1,1∑ ∈ ⋅
=δ= −

Gg hhghgg UaUa  

Thus 0=ha  for each .Gh ∈  This proves that { }GgUg ∈|  are free over 

C. But then { }.0
11 ∑ ≠

=
g gCUCU ∩  Thus { }.0

11 ∑ ≠
=

g gRCURCU ∩  

Therefore { }GgUg ∈|  are free over RC.  

Theorem 3.2. Let fRG  be a Galois projective group ring of G over a 

ring R. Then the following are equivalent: (1) fRG  is a Galois extension of 

( )GfRG  with an inner Galois group ;G  (2) fGC  is a central Galois 

projective group algebra of G  over C with factor set →× GGf :  units of 

C induced by →× GGf :  units of ;0R  and (3) { }GgUg ∈|  are free over 

RC and ,∑ ∈
⊕=

Kg gRURC  where gg UU =  for each .Gg ∈  
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Proof. (1) ⇒ (2) Since fRG  is a Galois extension of ( )GfRG  with an 

inner Galois group ,G  { }GgUg ∈|  are free over RC by Lemma 3.1. Let 

0R  be the center R. Then .0 CR ⊂  Noting that →× GGf :  units of 

,0R  we have that fGC  is a projective group algebra of G  over C with 

factor set →× GGf :  units of C where f  is induced by →× GGf :  

units of .0R  Moreover, since ,0 CKR f ⊂  ( )∑ ∈
⊂

Gg fgf GCUKR .0  But 

KGG =  by Lemma 2.2, so 

( ) ( ) .0 ff
Gg Gg

gfgf RGGCRCURGRRRURG ⊂=













⊂== ∑ ∑

∈ ∈

 

Hence ( ).ff GCRRG =  Thus .GG
fGC ≅|  Next we claim that C is also 

the center of ( ).∑ ∈
=

Gg fg GCCU  In fact, clearly, C is contained in the 

center of .fGC  Conversely, for any ∈x  the center of ,fGC  x is in the 

center of ∑ ∈Gg gCU .  Also, for any ,Rr ∈  ,xrrx =  so x is in the center 

of 




∑ ∈Gg gCUR  which is .fRG  Thus .Cx ∈  Therefore fGC  is an 

Azumaya C-algebra; and so fGC  is a central Galois C-algebra with an 

inner Galois group GG
fGC ≅|  [2, Theorem 3]. 

(2) ⇒ (1) Since ( ) fff RGGCRGC =⊂  and ( )GfRGR ⊂  such that 

,GG
fGC ≅|  a G -Galois system for fGC  can be taken as a G -Galois 

system for .fRG  Thus fRG  is a Galois extension of ( )GfRG  with an 

inner Galois group .G  

(2) ⇒ (3) Since fGC  is a central Galois algebra over C with Galois 

group G  and since xrrx =  for each Rr ∈  and ,fGCx ∈  { }GgUg ∈|  

are free over RC by Lemma 3.1. Moreover, since fGC  is a central Galois 
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algebra over C with Galois group GG
fGC ≅|  again, ∑ ∈

⊕=
Kg gURC 0  

by Theorem 2.3. Thus .0 ∑∑ ∈∈
⊕=





⊕=

Kg gKg g RUURRRC  

(3) ⇒ (2) By hypothesis, { }GgUg ∈|  are free over RC, so 

{ }GgUg ∈|  are free over C. Also since ∑ ∈
⊕=

Kg gRURC ,  =C  

,0∑ ∈
⊕

Kg gUR  where 0R  is the center of R. Thus fGC  is a central 

Galois C-algebra with an inner Galois group GG
fGC ≅|  by Theorem 2.3. 

We conclude the present paper with three kinds of projective group 

rings. 

Example 1. Let [ ]kjiR ,,  be the real quaternion algebra over real 

field R with inner automorphism group { },,,,1 kjiG =  where ( ) ,1−= ixixi  

( ) ,1−= jxjxj  and ( ) 1−= kxkxk  for [ ].,, kjiRx ∈  Then [ ] =kjiR ,,  

,RkRjRiR ⊕⊕⊕  a projective group algebra fRG  with center R; and so 

it is a central Galois algebra over R with an inner Galois group G. 

Example 2. Let [ ] [ ]kjiRiRT ,,⊂=  as given in Example 1 and iH   

{ } .,1 Gi ⊂=  Then [ ]( ) [ ]iRkjiR iH =,,  and [ ]kjiR ,,  is a noncommutative 

Galois extension of [ ]iR  with a cyclic Galois group .iH  We note that any 

Galois algebra with a cyclic Galois group is commutative [1, Theorem 11]. 

Example 3. Let [ ]( )kjiRM ,,22×  be the 22 ×  matrix ring over 

[ ]kjiR ,,  with inner automorphism group G  induced by i, j, k. Then 

[ ]( ) ( ) [ ] ( ) ,,,,, 222222 fR GRMkjiRRMkjiRM ××× ≅⊗≅  a Galois projective 

group ring of G  over ( ).22 RM ×  
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