

Far East Journal of Applied Mathematics
Volume 33, Number 3, December 2008, Pages 395-409
Published online: November 19, 2008
This paper is available online at http://www.pphmj.com
© 2008 Pushpa Publishing House

:tionClassifica jectSub sMathematic 2000 68Wxx, 41-XX.

Keywords and phrases: Grid environments, parallel task scheduling, communication
overhead, performance bound.

Received August 7, 2008

PARALLEL TASKS SCHEDULING IN GRID
ENVIRONMENTS

JIANN-FU LIN

Department of Management Information System
Takming University of Science and Technology
No. 56, Sec. 1, HuanShan Rd., NeiHu
Taipei, 11451, Taiwan
e-mail: alfu@takming.edu.tw

Abstract

With new technological advances in parallel processing and distributed
systems, more and more problems in Grid environments are being
discussed and are gradually setting a new trend of scientific
applications. In this paper, we will investigate the problem of non-
preemptively scheduling independent parallel tasks in a Grid
environment, in which the Grid environment consists of several
machines with each machine containing a number of identical processors
and each parallel task could only be processed in a single machine with
its required number of processors simultaneously. Message
communicating among processors is unavoidable whenever a task is
processed in parallel. Hence, communication overhead among processors
is taken into consideration in this problem. Such a problem of finding an
optimal schedule is NP-hard. Hence, we propose a heuristic scheduling
algorithm to this problem and analyze its performance bound.

1. Introduction

The problems of scheduling tasks in a single machine with multiple
processors have been extensively studied for decades. In the conventional

JIANN-FU LIN 396

scheduling approach, each task is assumed that it can be processed on
only one processor at a time. However, with new technological advances
in parallel processing, the conventional task scheduling problem has
evolved to become parallel task scheduling problem [3, 9, 10, 16, 17]. In
the parallel tasks scheduling problem, each task can be assigned on more
than one processor at a time. This problem assumes that there are n
parallel tasks, ,...,,, 21 nTTT to be scheduled in a single machine with

multiple identical processors, and each task iT has its maximum degree

of parallelism i∆ and computation requirement .it The maximum degree

of parallelism i∆ means that a task iT may be scheduled to process on

up to i∆ processors and this degree of parallelism, once decided for ,iT

will not be altered during its processing. The computation requirement it

denotes that the processing time of the task iT if it is processed on only
one processor, that is, the processing time required by a task is equal to
the computation requirement if it is processed on only one processor.
Thus, under linear speedup assumption, the processing time required by

iT will be ()iit δ if the task iT is scheduled to be processed on iδ

processors, where iδ is called the scheduled parallelism of iT and

.1 ii ∆≤δ≤ For this problem type, a schedule is feasible if the scheduled
parallelism of each task is not greater than its maximum degree of
parallelisms. A feasible schedule is called an optimal schedule if it has
the earliest finish time. Besides, if tasks are scheduled from time 0, the
finish time of a schedule is also the length of that schedule. Thus, an
optimal schedule also means that it has the shortest schedule length.
Finding an optimal schedule for this problem type in a single machine
with p identical processors is NP-hard [3], where .2≥p Hence,
polynomial time heuristic scheduling algorithms are usually used to get
approximate solutions. The performance evaluation of a heuristic
algorithm is the ratio of a heuristic schedule length to the optimal
schedule length. A heuristic scheduling algorithm H is said to have a
performance bound of γ if () γ≤OPTH SS for all problem instances,

where HS and OPTS denote the schedule lengths of heuristic algorithm

H and an optimal schedule, respectively.

PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 397

If message communicating among processors is negligible, any
parallel task can be assigned to the requisite number of processors
simultaneously so that the total processing time is reduced. This
situation may occur in shared memory systems [4] and this is the basis of
many heuristic algorithms that do not consider communication overhead
in scheduling parallel tasks. Under the above assumption, Wang and
Cheng [16] showed that the performance bound of scheduling parallel
tasks in a single machine with p identical processors by applying the
concept of Graham’s List Scheduling (LS) algorithm [7] is ()(),pp ∆−+∆

where { }....,,2,1max nii =|∆=∆ Later, Wang and Cheng [17] proposed

the Earliest Completion Time (ECT) algorithm for the same problem and
derived the performance bound as ().23 p− On the other hand, if

message communicating among processors cannot be neglected [4] such
as message passing systems, scheduling algorithms need to consider the
communication overhead among processors. The problem of scheduling
parallel tasks with the consideration of communication overhead in a
single machine with p identical processors is also an NP-hard problem.
Lin et al. [10] gave a communication overhead assumption and proposed
the Largest Scheduled Parallelism First (LSPF) algorithm for the
problem of scheduling independent parallel tasks with communication
overhead. They showed that the performance bound of the LSPF is
(),224 pk −+ where p is the number of processors in the machine and k

is a given positive constant.

The above studies only discussed the problems of scheduling parallel
tasks on a single machine with multiple identical processors. With the
great improvements in the performance of wide area network and the
technologies of computers, the Grid environment has emerged as a
promising computing platform that can support the execution of next
generation scientific applications and will open up avenues in many
research fields [6, 15]. Grid environment is a large virtual organization
that integrates a large amount of distributed resources and high
performance computing capabilities into a super service, which can
provide huge computing services, storage capability and so on. Grid
environment allows the use of geographically distributed computing

JIANN-FU LIN 398

systems belonging to multiple organizations as a single system. Thus, for
simplicity, a Grid environment can be seen as a multi-machine
environment in which each machine contains multiple processors. In
such a multi-machine environment, users submit their tasks from any
one of machine and the scheduler checks whether the tasks can be
processed on the available resources and meet their requirements before
really assigning them. Thus, instead of processing locally, the scheduler
dispatches tasks to the remote machines. To achieve the potentials of a
multi-machine environment, an effective and efficient scheduling
framework within a multi-machine environment is fundamentally
important.

With the importance of scheduling tasks in a Grid environment,
several studies have discussed the problem of scheduling multiprocessor
tasks [1] in such an environment. In 2001, Braun et al. [2] made a
performance comparison among eleven heuristic algorithms for
scheduling a set of independent tasks onto heterogeneous distributed
computing systems by simulation. In 2004, Martino and Mililotti [11]
developed a simulation Grid environment to study the usefulness of
genetic algorithms for scheduling tasks in a distributed group of parallel
machines. They found that the genetic algorithm for scheduling 32 tasks
does not converge to the optimal schedule within a limited number of trial
performed, only a sub-optimal schedule could be got. In 2005, Weng and
Lu [18] proposed a heuristic to schedule independent tasks in the Grid
environment. According to the experimental results, they showed that
their heuristic algorithm could obtain a better performance compared to
the other four existing heuristic algorithms. In 2007, Pascual et al. [12]
discussed the problem of scheduling multiprocessor tasks (rigid parallel
tasks) in a Grid environment, in which each machine with the same
number of identical processors. They proposed the Multi-Organization
Load Balancing Algorithm (MOLBA) and derived the performance bound
as 3 if the last completed task requires at most half of the available
processors and 4 in the general case. Recently, Lin [8] discussed a similar
problem and proposed the More Processor Required first (MPR)
scheduling algorithm. He showed that the performance of the MPR is

PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 399

bounded by ,13
1 










− ∑

=

M

j
jp where jp is the number of processors in

machine jm and M is the number of machines in the Grid environment.

The above studies discussed the problems of scheduling
multiprocessor tasks in a Grid environment. In this paper, we consider n
independent parallel tasks to be non-preemptively scheduled with the
consideration of communication overhead in a Grid environment with
multiple machines, in which each machine contains a number of
processors and all processors in every machine are identical. The problem
of scheduling parallel tasks is quite similar to the problem of scheduling
multiprocessor tasks. The difference is that the parallelism of the
multiprocessor task is rigid but the parallelism of the parallel task is
malleable. The problem of scheduling independent parallel tasks with
communication overhead in a Grid environment is also NP-hard because
scheduling independent non-preemptive parallel tasks without
considering communication overhead in a single machine with multiple
identical processors, which is a special case of this problem, has been
known as an NP-hard problem [3]. Therefore, we are interested in
developing a polynomial time heuristic algorithm and in deriving its
performance bound. The rest of this paper is organized as follows. Under
the consideration of communication overhead, a policy is employed in
calculating the maximum degree of advantageous parallelism of each
parallel task in each machine in Section 2. In Section 3, we propose the
Just Fit scheduling algorithm and discuss its performance bound.
Finally, some concluding remarks are given in Section 4.

2. The Maximum Degree of Advantageous Parallelism

In this paper, we assume that a set of n independent non-
preemptable parallel tasks { }nTTT ...,,, 21=T are to be scheduled in an

M-machine environment, where each machine ,...,,2,1, Mjmj =

consists of jp identical processors and each parallel task iT can only be

processed in a single machine with its requisite number of processors

JIANN-FU LIN 400

simultaneously. Each parallel task is assumed processable in any
machine with its maximum degree of parallelism, namely,

{ } { }....,,2,1min...,,2,1max Mjpni ji =|≤=|∆ For simplicity, the

term “parallel task” is sometimes denoted by “task”. Whenever a task is
processed in parallel in a machine, message communicating among
processors is unavoidable. Generally, communication overhead depends
on the characteristics of a machine and a task, and the degree of
parallelism adopted by a task [4, 5, 13, 14]. As a consequence, an
assumption of the average communication overhead among processors of

a task in machine jm is given as () jk
jxcjx =,Comm [10], where x is the

degree of parallelism adopted by a task, and jc and jk are two given

positive constants which depend on the characteristics of a machine.
Thus, the total time required for processing the task iT with a degree of

parallelism x in machine jm is defined as below:

()






>+

=
=

,1if,

,1if,
,,

xxcx
t

xt
jixf jk

j
i
i

where it is the computation requirement of task .iT

It may be quite intuitive that it is more advantageous to execute a
task with more processors. However, the more processors involved for
processing a task, the more message communicating also incurred.
Hence, the more processors involved for processing a task is not
necessarily shortening the total processing time. In fact, the total
processing time of a task for different numbers of processors is typically
decreasing if it does not exceed a certain smallest number of processors
[5]. Therefore, we are going to find out the number of processors for
which the total processing time of a task is the smallest in a particular
machine. By simple calculus, we can get that

()






>+
−

=
=

∂
∂

− 1if,

1if,0,, 1
2 xxkc

x
t

x

x
jixf

jk
jj

i

PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 401

and

()
()





>−+

=
=

∂

∂
− .1if,12

,1if,0,, 2
32

2

xxkkc
x
t

x

x
jixf

jk
jjj

i

Since () 0,,
=

∂
∂

x
jixf and () 0,,

2

2
>

∂

∂

x
jixf at

()
,

11 +









=

jk

jj
i
kc

tx

()jixf ,, reaches its minimum value at
()

.
11 +









=

jk

jj
i
kc

tx For the

reason that the degree of parallelism adapted by the task iT must be an

integer, either
()




















+11 jk

jj
i
kc

t or
()




















+11 jk

jj
i
kc

t will make iT with the

smallest total processing time if it is processed in machine .jm Here, we

will always choose
()




















+11 jk

jj
i
kc

t as the maximum degree of

advantageous parallelism of the task iT even though the degree of

parallelism
()




















+11 jk

jj
i
kc

t will really lead to the smallest total

processing time. The reasons are: we try to remain more processors in a
machine for the allocation of the other unassigned tasks and the less
processors used, the less communication overhead required. In addition,
the degree of parallelism adapted by the task iT must obey the

restriction that it cannot be greater than its maximum degree of

parallelism .i∆ Thus,
()














∆




















=φ

+

| i

k

jj
i

ji
j

kc
t ,min

11
 is chosen as the

maximum degree of advantageous parallelism of the task iT for

processing in the machine .jm The procedure of calculating maximum

degree of advantageous parallelism of task iT for processing in the

machine jm is described below.

JIANN-FU LIN 402

Procedure maximum-advantageous-parallelism

{ Let
()














∆




















=φ

+

| i

k

jj
i

ji
j

kc
t ,min

11
 be the maximum degree of

advantageous parallelism of task iT for processing in the machine

,jm where ni ≤≤1 and .1 Mj ≤≤

}

3. The Just Fit Scheduling Algorithm

In order to get a higher utilization of processors in each machine in
the Grid environment, an intuitive way is trying to let processors busy all
the time, that is, do not let any processor idle until tasks are all assigned.
Hence, we propose the Just Fit (JF) scheduling algorithm for the problem
of non-preemptively scheduling independent parallel tasks with
communication overhead in a Grid environment with M-machine, which
let processors in each machine busy all the time until tasks are all
assigned. The major policy of the JF scheduling algorithm is that it
always chooses the first task from the tasks list and assigns the chosen
task to the machine which owns the maximum number of free processors
at this moment. However, the number of free processors in the selected
machine is not always greater than or equal to the degree of maximum
advantageous parallelism of the chosen task. In order to get a higher
utilization of processors in each machine, processors allocation process
needs to be flexible, that is, the number of processors really allocates to a
task is adjusted depending on the state of that machine. Hence, the
processors allocation process of the JF scheduling algorithm is that if the
number of free processors jf in the machine jm is not less than the

maximum degree of advantageous parallelism ji|φ of the task ,iT the

machine jm allocates ji|φ processors to task ;iT otherwise, the machine

jm only allocates jf processors to task .iT After processor allocation

process, the task iT starts to be executed and then to be removed from

the tasks list. This process continues until no more tasks unassigned in

PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 403

the tasks list. The JF scheduling algorithm is described as follows:

Algorithm JF
{

Input the computation requirements it and maximum degree of
parallelisms i∆ of parallel tasks ,iT where ;...,,2,1 ni =

While (task list is not empty) do
{
Choose the first task iT from the task list;

Wait until there exists at least one machine with free processors;
Choose the machine ,im which has the maximum number of free

processors jf at this moment;

Call the maximum-advantageous-parallelism procedure to calculate
the maximum degree of advantageous parallelism ji|φ of the parallel task

iT for processing in the machine ;jm

If ()jijf |φ≥ then the machine jm allocates ji|φ processors to ;iT

 else the machine jm allocates jf processors to ;iT

Execute ,iT and remove iT from the task list;

}
}

Before showing the performance bound of the JF scheduling
algorithm, an assumption and symbol definitions are given as follows:
Tasks are assumed to be assigned from time 0, and JFS and OPTS
denote the finish times of the JF schedule and an optimal schedule of the
task set T, respectively. Since tasks are scheduled from time 0, JFS and

OPTS can also be seen as the schedule lengths of the JF schedule and an
optimal schedule of the task set T, respectively. Let ji|δ be the number of

processors that the machine jm really allocates to the task ,iT that is,

ji|δ is the scheduled parallelism of the task iT in the machine .jm In

addition, from the processor allocation process of the JF scheduling
algorithm, it is obvious that { }.,min jijji f || φ=δ

JIANN-FU LIN 404

Lemma 1. () ,11,, i
j

jiji tkjif 







+≤φ×φ || where ni ≤≤1 and .1 Mj ≤≤

Proof. Since

() ()
.,

1111 +

|

+

| 







≤φ




















=φ

jj k

jj
i

ji

k

jj
i

ji kc
t

kc
t That is, .1

j
ik

jij k
tc j ≤φ

+
|

Thus,

() .11,, i
j

k
jij

ji
i

jijiji tkctjif j








+≤








φ+

φ
×φ=φ×φ |

|
|||

Lemma 2. () .11,, i
j

jiji tkjif 







+≤δ×δ ||

Proof. Since { },,min jijji f || φ=δ we know that ,1 jiji || φ≤δ≤

11 +
|

+
| φ≤δ jj k

ji
k

ji

() ()11 +
|

+
| φ+≤δ+⇒ jj k

jiji
k

jiji ctct









φ+

φ
φ≤








δ+

δ
δ⇒ |

|
||

|
|

jj k
jij

ji
i

ji
k

jij
ji

i
ji ctct

() ().,,,, jifjif jijijiji |||| φ×φ≤δ×δ⇒

By Lemma 1, () .11,, i
j

jiji tkjif 







+≤δ×δ ||

Lemma 3. If the task iT starts to be processed at time iτ in the

machine ,bm then none of the processors are free in any machine jm

before the time ,iτ where .,1,1 Mjbni ≤≤≤≤

Proof. According to the processors allocation process of the JF
scheduling algorithm, none of the processors are free in any machine
before the time ;iτ otherwise; the task iT should have been started
earlier than the time .iτ

PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 405

Lemma 4. If the task zT is finished at time JFS in the machine ,bm
then none of the processors are free before the time (())bzfS bzJF ,,|δ− in

any machine ,jm where nz ≤≤1 and .,1 Mjb ≤≤

Proof. (())bzfS bzJF ,,|δ− is the starting time of zT in the machine

.bm By Lemma 3, none of the processors are free in any machine jm

before the time (()).,, bzfS bzJF |δ−

Lemma 5. () ,,, OPTibi Sbif ⋅∆≤δ | where OPTS is the length of an

optimal schedule, { } ninaa ≤≤=|∆=∆ 1,...,,2,1max and .1 Mb ≤≤

Proof. Since the scheduled parallelism of task iT in the machine bm
is ,1, bibibi ||| φ≤δ≤δ we have () () () ibibi tbifbifbif ≤≤δ≤φ || ,,1,,,,

().iii t ∆∆≤ For that () ,OPTii St ≤∆ we can get that ()iii t ∆∆
.OPTi S⋅∆≤

Lemma 6. The performance bound of JF scheduling algorithm on the
problem of non-preemptively scheduling independent parallel tasks with

communication overhead is () ,1111
1

z
M

j
jp ∆









−+κ+ ∑

=
 where .1 nz ≤≤

Proof. Assume that the task zT finishes at time JFS in the machine

() () ∑∑ ∑
==

|
=

|||











δ×










δ−+δ×δ≤

M

j
j

n

i
bz

M

j
bzjjijiJFb pbzfpjifSm

11 1
,,,,,. where

nz ≤≤1 and .,1 Mjb ≤≤

() () ∑∑ ∑
==

|
=

||











δ×













−+δ×δ≤

M

j
j

n

i
bz

M

j
jjijiJF pbzfpjifS

11 1
.,,1,,

Since ,
11

OPT
M

j
j

n

i
i Spt ≤∑∑

==
 we have () ∑∑

==
|| δ×δ

M

j
j

n

i
jiji pjif

11
,,

() .11 OPTSκ+≤

By Lemma 5, () .1111
1

OPTz
M

j
jOPTJF SpSS ⋅∆×













−+κ+≤ ∑

=

JIANN-FU LIN 406

Hence, () .1111
1

z
M

j
j

OPT
JF pS

S
∆









−+κ+≤ ∑

=

Theorem 1. The derived performance bound of JF scheduling
algorithm on the problem of non-preemptively scheduling independent
parallel tasks with communication overhead falls between











−κ+ ∑

=

M

j
jp

1
112 and () ,1111

1
∆









−+κ+ ∑

=

M

j
jp where { ,1max =|∆=∆ ii

}....,,2 n

Proof. Since ,1 ∆≤∆≤ i the results are obvious.

Example 1. Consider a simple case that there are 3 independent
parallel tasks scheduling in an environment with 2 machines 1m and

.2m Let ()()tpptptccckkppp 1;;; 1
3

212121 −====κ==== +κ

() 11 +κ−− pc and pttp =−=∆ 21 ;1 and 1
32 ; +κ−==∆ cpttp and

.3 p=∆ A possible JF schedule and an optimal schedule are illustrated
in Figure 1 (a) and (b), respectively.

Thus, () () ()
t

tpcpt
t
cppt

pt
cpt

S
S
OPT
JF 1221 −+−

=
−

=−=
+κ+κ+κ

().11
2

−+







−=

+κ
pt

cp

Since { },,max 21 ∆∆=∆=p

()11
2

−+







−

+κ
pt

cp

3

2
because,1111111

+κ

+κ
=∆





 −+





 −=





 −+








−=

p
tcppppt

cp

∆












−+





 −≤∆













−+





 −= ∑∑

==

2

1

2

1
11112111

j
j

j
j pppp

.1111
2

1
∆












−+







κ
+≤ ∑

=j
jp

PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 407

This example shows that the performance bound derived in Theorem
1 is not tight.

Figure 1. (a) A possible JF schedule of Example 1 and (b) an optimal
schedule of Example 1.

JIANN-FU LIN 408

4. Conclusion

In this paper, the problem of scheduling independent parallel tasks
with the consideration of communication overhead in a Grid environment
with multiple machines is discussed. Considering the utilization of
processors in each machine, we developed the JF scheduling algorithm
for such a problem and showed that the performance bound is

,1111
1

∆









−+








κ
+ ∑

=

M

j
jp where { }Mjkj ...,,2,1min =|=κ and

{ }....,,2,1max nii =|∆=∆ Although the JF scheduling algorithm could

get a high utilization on processors in each machine, the performance of
the JF scheduling algorithm completely depends on the last finished
task. In addition, an example illustrated that the derived performance
bound is not tight.

References

 [1] J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to
minimize schedule length, IEEE Trans. Comput. 35(5) (1986), 389-393.

 [2] T. D. Braun et al., A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems, J. Parallel
Distributed Computing 61 (2001), 810-837.

 [3] J. Du and J. Y. Leung, Complexity of scheduling parallel task system, SIAM J.
Discrete Math. 2 (1989), 473-487.

 [4] H. El-Rewini and M. Abd-El-Barr, Scheduling and Task Allocation, Advanced
Computer Architecture and Parallel Processing, John Wiley and Sons, Inc., (2005)
pp. 235-265.

 [5] S. M. Figueira, Optimal partitioning of nodes to space-sharing parallel tasks,
Parallel Computing 32 (2006), 313-324.

 [6] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing
Infrastructure, Elsevier, Amsterdam, 2004.

 [7] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math.
17(2) (1969), 416-429.

 [8] J. F. Lin, Performance bounds of scheduling multiprocessor tasks in a multiple
machines environment, submitted to Information Science (under review after
revising).

PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 409

 [9] J. F. Lin and S. J. Chen, Performance bounds on scheduling parallel tasks with
setup time on hypercube systems, Informatica 19 (1995), 313-318.

 [10] J. F. Lin, W. B. See and S. J. Chen, Performance bounds on scheduling parallel tasks
with communication cost, IEICE Trans. Information Systems E78-D(3) (1995), 263-
268.

 [11] V. Di Martino and M. Mililotti, Sub optimal scheduling in a grid using genetic
algorithms, Parallel Computing 30 (2004), 553-565.

 [12] F. Pascual, K. Rzadca and D. Trystram, Cooperation in Multi-organization
Scheduling, Euro-Par 2007, Rennes, France, August (2007), pp. 224-233.

 [13] G. S. Sajjan, Array Processors, Advanced Computer Architectures, Taylor and
Franics Group, 2006, pp. 167-220.

 [14] J. P. Singh, J. L. Hennessy and A. Gupta, Scaling parallel programs for
multiprocessors: methodology and examples, computer, IEEE Computer (1993), 42-
50.

 [15] B. Tierney, W. Johnston, J. Lee and M. Thompson, A data intensive distributed
computing architecture for ‘Grid’ applications, Future Generation Computer Systems
16 (2000), 473-481.

 [16] Q. Wang and K. H. Cheng, List scheduling of parallel tasks, Information Processing
Letters 37(5) (1991), 291-297.

 [17] Q. Wang and K. H. Cheng, A heuristic of scheduling parallel tasks and its analysis,
SIAM J. Comput. 21(2) (1992), 281-294.

 [18] C. Weng and X. Lu, Heuristic scheduling for bag-of-tasks applications in combination
with QoS in the computational grid, Future Generation Computer Systems 21
(2005), 271-280.

g

