
 

Far East Journal of Applied Mathematics 
Volume 33, Number 3, December 2008, Pages 395-409
Published online: November 19, 2008 
This paper is available online at http://www.pphmj.com
© 2008 Pushpa Publishing House 

 

:tionClassifica jectSub sMathematic 2000 68Wxx, 41-XX. 

Keywords and phrases: Grid environments, parallel task scheduling, communication 
overhead, performance bound. 

Received August 7, 2008 

PARALLEL TASKS SCHEDULING IN GRID 
ENVIRONMENTS 

JIANN-FU LIN 

Department of Management Information System 
Takming University of Science and Technology 
No. 56, Sec. 1, HuanShan Rd., NeiHu 
Taipei, 11451, Taiwan 
e-mail: alfu@takming.edu.tw 

Abstract 

With new technological advances in parallel processing and distributed 
systems, more and more problems in Grid environments are being 
discussed and are gradually setting a new trend of scientific 
applications. In this paper, we will investigate the problem of non-
preemptively scheduling independent parallel tasks in a Grid 
environment, in which the Grid environment consists of several 
machines with each machine containing a number of identical processors 
and each parallel task could only be processed in a single machine with 
its required number of processors simultaneously. Message 
communicating among processors is unavoidable whenever a task is 
processed in parallel. Hence, communication overhead among processors 
is taken into consideration in this problem. Such a problem of finding an 
optimal schedule is NP-hard. Hence, we propose a heuristic scheduling 
algorithm to this problem and analyze its performance bound. 

1. Introduction 

The problems of scheduling tasks in a single machine with multiple 
processors have been extensively studied for decades. In the conventional 
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scheduling approach, each task is assumed that it can be processed on 
only one processor at a time. However, with new technological advances 
in parallel processing, the conventional task scheduling problem has 
evolved to become parallel task scheduling problem [3, 9, 10, 16, 17]. In 
the parallel tasks scheduling problem, each task can be assigned on more 
than one processor at a time. This problem assumes that there are n 
parallel tasks, ,...,,, 21 nTTT  to be scheduled in a single machine with 

multiple identical processors, and each task iT  has its maximum degree 

of parallelism i∆  and computation requirement .it  The maximum degree 

of parallelism i∆  means that a task iT  may be scheduled to process on 

up to i∆  processors and this degree of parallelism, once decided for ,iT  

will not be altered during its processing. The computation requirement it  

denotes that the processing time of the task iT  if it is processed on only 
one processor, that is, the processing time required by a task is equal to 
the computation requirement if it is processed on only one processor. 
Thus, under linear speedup assumption, the processing time required by 

iT  will be ( )iit δ  if the task iT  is scheduled to be processed on iδ  

processors, where iδ  is called the scheduled parallelism of iT  and 

.1 ii ∆≤δ≤  For this problem type, a schedule is feasible if the scheduled 
parallelism of each task is not greater than its maximum degree of 
parallelisms. A feasible schedule is called an optimal schedule if it has 
the earliest finish time. Besides, if tasks are scheduled from time 0, the 
finish time of a schedule is also the length of that schedule. Thus, an 
optimal schedule also means that it has the shortest schedule length. 
Finding an optimal schedule for this problem type in a single machine 
with p identical processors is NP-hard [3], where .2≥p  Hence, 
polynomial time heuristic scheduling algorithms are usually used to get 
approximate solutions. The performance evaluation of a heuristic 
algorithm is the ratio of a heuristic schedule length to the optimal 
schedule length. A heuristic scheduling algorithm H is said to have a 
performance bound of γ if ( ) γ≤OPTH SS  for all problem instances, 

where HS  and OPTS  denote the schedule lengths of heuristic algorithm 

H and an optimal schedule, respectively. 
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If message communicating among processors is negligible, any 
parallel task can be assigned to the requisite number of processors 
simultaneously so that the total processing time is reduced. This 
situation may occur in shared memory systems [4] and this is the basis of 
many heuristic algorithms that do not consider communication overhead 
in scheduling parallel tasks. Under the above assumption, Wang and 
Cheng [16] showed that the performance bound of scheduling parallel 
tasks in a single machine with p identical processors by applying the 
concept of Graham’s List Scheduling (LS) algorithm [7] is ( )( ),pp ∆−+∆  

where { }....,,2,1max nii =|∆=∆  Later, Wang and Cheng [17] proposed 

the Earliest Completion Time (ECT) algorithm for the same problem and 
derived the performance bound as ( ).23 p−  On the other hand, if 

message communicating among processors cannot be neglected [4] such 
as message passing systems, scheduling algorithms need to consider the 
communication overhead among processors. The problem of scheduling 
parallel tasks with the consideration of communication overhead in a 
single machine with p identical processors is also an NP-hard problem. 
Lin et al. [10] gave a communication overhead assumption and proposed 
the Largest Scheduled Parallelism First (LSPF) algorithm for the 
problem of scheduling independent parallel tasks with communication 
overhead. They showed that the performance bound of the LSPF is 
( ),224 pk −+  where p is the number of processors in the machine and k 

is a given positive constant. 

The above studies only discussed the problems of scheduling parallel 
tasks on a single machine with multiple identical processors. With the 
great improvements in the performance of wide area network and the 
technologies of computers, the Grid environment has emerged as a 
promising computing platform that can support the execution of next 
generation scientific applications and will open up avenues in many 
research fields [6, 15]. Grid environment is a large virtual organization 
that integrates a large amount of distributed resources and high 
performance computing capabilities into a super service, which can 
provide huge computing services, storage capability and so on. Grid 
environment allows the use of geographically distributed computing 
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systems belonging to multiple organizations as a single system. Thus, for 
simplicity, a Grid environment can be seen as a multi-machine 
environment in which each machine contains multiple processors. In 
such a multi-machine environment, users submit their tasks from any 
one of machine and the scheduler checks whether the tasks can be 
processed on the available resources and meet their requirements before 
really assigning them. Thus, instead of processing locally, the scheduler 
dispatches tasks to the remote machines. To achieve the potentials of a 
multi-machine environment, an effective and efficient scheduling 
framework within a multi-machine environment is fundamentally 
important. 

With the importance of scheduling tasks in a Grid environment, 
several studies have discussed the problem of scheduling multiprocessor 
tasks [1] in such an environment. In 2001, Braun et al. [2] made a 
performance comparison among eleven heuristic algorithms for 
scheduling a set of independent tasks onto heterogeneous distributed 
computing systems by simulation. In 2004, Martino and Mililotti [11] 
developed a simulation Grid environment to study the usefulness of 
genetic algorithms for scheduling tasks in a distributed group of parallel 
machines. They found that the genetic algorithm for scheduling 32 tasks 
does not converge to the optimal schedule within a limited number of trial 
performed, only a sub-optimal schedule could be got. In 2005, Weng and 
Lu [18] proposed a heuristic to schedule independent tasks in the Grid 
environment. According to the experimental results, they showed that 
their heuristic algorithm could obtain a better performance compared to 
the other four existing heuristic algorithms. In 2007, Pascual et al. [12] 
discussed the problem of scheduling multiprocessor tasks (rigid parallel 
tasks) in a Grid environment, in which each machine with the same 
number of identical processors. They proposed the Multi-Organization 
Load Balancing Algorithm (MOLBA) and derived the performance bound 
as 3 if the last completed task requires at most half of the available 
processors and 4 in the general case. Recently, Lin [8] discussed a similar 
problem and proposed the More Processor Required first (MPR) 
scheduling algorithm. He showed that the performance of the MPR is 
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bounded by ,13
1 



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
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− ∑
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M

j
jp  where jp  is the number of processors in 

machine jm  and M is the number of machines in the Grid environment. 

The above studies discussed the problems of scheduling 
multiprocessor tasks in a Grid environment. In this paper, we consider n 
independent parallel tasks to be non-preemptively scheduled with the 
consideration of communication overhead in a Grid environment with 
multiple machines, in which each machine contains a number of 
processors and all processors in every machine are identical. The problem 
of scheduling parallel tasks is quite similar to the problem of scheduling 
multiprocessor tasks. The difference is that the parallelism of the 
multiprocessor task is rigid but the parallelism of the parallel task is 
malleable. The problem of scheduling independent parallel tasks with 
communication overhead in a Grid environment is also NP-hard because 
scheduling independent non-preemptive parallel tasks without 
considering communication overhead in a single machine with multiple 
identical processors, which is a special case of this problem, has been 
known as an NP-hard problem [3]. Therefore, we are interested in 
developing a polynomial time heuristic algorithm and in deriving its 
performance bound. The rest of this paper is organized as follows. Under 
the consideration of communication overhead, a policy is employed in 
calculating the maximum degree of advantageous parallelism of each 
parallel task in each machine in Section 2. In Section 3, we propose the 
Just Fit scheduling algorithm and discuss its performance bound. 
Finally, some concluding remarks are given in Section 4. 

2. The Maximum Degree of Advantageous Parallelism 

In this paper, we assume that a set of n independent non-
preemptable parallel tasks { }nTTT ...,,, 21=T  are to be scheduled in an 

M-machine environment, where each machine ,...,,2,1, Mjmj =  

consists of jp  identical processors and each parallel task iT  can only be 

processed in a single machine with its requisite number of processors 
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simultaneously. Each parallel task is assumed processable in any 
machine with its maximum degree of parallelism, namely, 

{ } { }....,,2,1min...,,2,1max Mjpni ji =|≤=|∆  For simplicity, the 

term “parallel task” is sometimes denoted by “task”. Whenever a task is 
processed in parallel in a machine, message communicating among 
processors is unavoidable. Generally, communication overhead depends 
on the characteristics of a machine and a task, and the degree of 
parallelism adopted by a task [4, 5, 13, 14]. As a consequence, an 
assumption of the average communication overhead among processors of 

a task in machine jm  is given as ( ) jk
jxcjx =,Comm  [10], where x is the 

degree of parallelism adopted by a task, and jc  and jk  are two given 

positive constants which depend on the characteristics of a machine. 
Thus, the total time required for processing the task iT  with a degree of 

parallelism x in machine jm  is defined as below: 

( )




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>+

=
=
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xxcx
t

xt
jixf jk

j
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where it  is the computation requirement of task .iT  

It may be quite intuitive that it is more advantageous to execute a 
task with more processors. However, the more processors involved for 
processing a task, the more message communicating also incurred. 
Hence, the more processors involved for processing a task is not 
necessarily shortening the total processing time. In fact, the total 
processing time of a task for different numbers of processors is typically 
decreasing if it does not exceed a certain smallest number of processors 
[5]. Therefore, we are going to find out the number of processors for 
which the total processing time of a task is the smallest in a particular 
machine. By simple calculus, we can get that 
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and 
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( )jixf ,,  reaches its minimum value at 
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reason that the degree of parallelism adapted by the task iT  must be an 

integer, either 
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smallest total processing time if it is processed in machine .jm  Here, we 

will always choose 
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processing time. The reasons are: we try to remain more processors in a 
machine for the allocation of the other unassigned tasks and the less 
processors used, the less communication overhead required. In addition, 
the degree of parallelism adapted by the task iT  must obey the 

restriction that it cannot be greater than its maximum degree of 

parallelism .i∆  Thus, 
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11
 is chosen as the 

maximum degree of advantageous parallelism of the task iT  for 

processing in the machine .jm  The procedure of calculating maximum 

degree of advantageous parallelism of task iT  for processing in the 

machine jm  is described below. 
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Procedure maximum-advantageous-parallelism 

{ Let 
( )
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11
 be the maximum degree of 

advantageous parallelism of task iT  for processing in the machine 

,jm  where ni ≤≤1  and .1 Mj ≤≤  

} 

3. The Just Fit Scheduling Algorithm 

In order to get a higher utilization of processors in each machine in 
the Grid environment, an intuitive way is trying to let processors busy all 
the time, that is, do not let any processor idle until tasks are all assigned. 
Hence, we propose the Just Fit (JF) scheduling algorithm for the problem 
of non-preemptively scheduling independent parallel tasks with 
communication overhead in a Grid environment with M-machine, which 
let processors in each machine busy all the time until tasks are all 
assigned. The major policy of the JF scheduling algorithm is that it 
always chooses the first task from the tasks list and assigns the chosen 
task to the machine which owns the maximum number of free processors 
at this moment. However, the number of free processors in the selected 
machine is not always greater than or equal to the degree of maximum 
advantageous parallelism of the chosen task. In order to get a higher 
utilization of processors in each machine, processors allocation process 
needs to be flexible, that is, the number of processors really allocates to a 
task is adjusted depending on the state of that machine. Hence, the 
processors allocation process of the JF scheduling algorithm is that if the 
number of free processors jf  in the machine jm  is not less than the 

maximum degree of advantageous parallelism ji|φ  of the task ,iT  the 

machine jm  allocates ji|φ  processors to task ;iT  otherwise, the machine 

jm  only allocates jf  processors to task .iT  After processor allocation 

process, the task iT  starts to be executed and then to be removed from 

the tasks list. This process continues until no more tasks unassigned in 
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the tasks list. The JF scheduling algorithm is described as follows: 

Algorithm JF 
{ 

Input the computation requirements it  and maximum degree of 
parallelisms i∆  of parallel tasks ,iT  where ;...,,2,1 ni =  

While (task list is not empty) do 
{ 
Choose the first task iT  from the task list; 

Wait until there exists at least one machine with free processors; 
Choose the machine ,im  which has the maximum number of free 

processors jf  at this moment; 

Call the maximum-advantageous-parallelism procedure to calculate 
the maximum degree of advantageous parallelism ji|φ  of the parallel task 

iT  for processing in the machine ;jm  

If ( )jijf |φ≥  then the machine jm  allocates ji|φ  processors to ;iT  

                      else the machine jm  allocates jf  processors to ;iT  

Execute ,iT  and remove iT  from the task list; 

} 
} 

Before showing the performance bound of the JF scheduling 
algorithm, an assumption and symbol definitions are given as follows: 
Tasks are assumed to be assigned from time 0, and JFS  and OPTS  
denote the finish times of the JF schedule and an optimal schedule of the 
task set T, respectively. Since tasks are scheduled from time 0, JFS  and 

OPTS  can also be seen as the schedule lengths of the JF schedule and an 
optimal schedule of the task set T, respectively. Let ji|δ  be the number of 

processors that the machine jm  really allocates to the task ,iT  that is, 

ji|δ  is the scheduled parallelism of the task iT  in the machine .jm  In 

addition, from the processor allocation process of the JF scheduling 
algorithm, it is obvious that { }.,min jijji f || φ=δ  
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By Lemma 1, ( ) .11,, i
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+≤δ×δ ||  

Lemma 3. If the task iT  starts to be processed at time iτ  in the 

machine ,bm  then none of the processors are free in any machine jm  

before the time ,iτ  where .,1,1 Mjbni ≤≤≤≤  

Proof. According to the processors allocation process of the JF 
scheduling algorithm, none of the processors are free in any machine 
before the time ;iτ  otherwise; the task iT  should have been started 
earlier than the time .iτ  



PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 405 

Lemma 4. If the task zT  is finished at time JFS  in the machine ,bm  
then none of the processors are free before the time ( ( ))bzfS bzJF ,,|δ−  in 

any machine ,jm  where nz ≤≤1  and .,1 Mjb ≤≤  

Proof. ( ( ))bzfS bzJF ,,|δ−  is the starting time of zT  in the machine 

.bm  By Lemma 3, none of the processors are free in any machine jm  

before the time ( ( )).,, bzfS bzJF |δ−  

Lemma 5. ( ) ,,, OPTibi Sbif ⋅∆≤δ |  where OPTS  is the length of an 

optimal schedule, { } ninaa ≤≤=|∆=∆ 1,...,,2,1max  and .1 Mb ≤≤  

Proof. Since the scheduled parallelism of task iT  in the machine bm  
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Lemma 6. The performance bound of JF scheduling algorithm on the 
problem of non-preemptively scheduling independent parallel tasks with 
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Theorem 1. The derived performance bound of JF scheduling 
algorithm on the problem of non-preemptively scheduling independent 
parallel tasks with communication overhead falls between 
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Proof. Since ,1 ∆≤∆≤ i  the results are obvious. 

Example 1. Consider a simple case that there are 3 independent 
parallel tasks scheduling in an environment with 2 machines 1m  and 

.2m  Let ( )( )tpptptccckkppp 1;;; 1
3

212121 −====κ==== +κ  

( ) 11 +κ−− pc  and pttp =−=∆ 21 ;1  and 1
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.3 p=∆  A possible JF schedule and an optimal schedule are illustrated 
in Figure 1 (a) and (b), respectively. 
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This example shows that the performance bound derived in Theorem 
1 is not tight. 

 

Figure 1. (a) A possible JF schedule of Example 1 and (b) an optimal 
schedule of Example 1. 
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4. Conclusion 

In this paper, the problem of scheduling independent parallel tasks 
with the consideration of communication overhead in a Grid environment 
with multiple machines is discussed. Considering the utilization of 
processors in each machine, we developed the JF scheduling algorithm 
for such a problem and showed that the performance bound is 

,1111
1

∆









−+








κ
+ ∑

=

M

j
jp  where { }Mjkj ...,,2,1min =|=κ  and 

{ }....,,2,1max nii =|∆=∆  Although the JF scheduling algorithm could 

get a high utilization on processors in each machine, the performance of 
the JF scheduling algorithm completely depends on the last finished 
task. In addition, an example illustrated that the derived performance 
bound is not tight. 

References 

 [1] J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to 
minimize schedule length, IEEE Trans. Comput. 35(5) (1986), 389-393. 

 [2] T. D. Braun et al., A comparison of eleven static heuristics for mapping a class of 
independent tasks onto heterogeneous distributed computing systems, J. Parallel 
Distributed Computing 61 (2001), 810-837. 

 [3] J. Du and J. Y. Leung, Complexity of scheduling parallel task system, SIAM J. 
Discrete Math. 2 (1989), 473-487. 

 [4] H. El-Rewini and M. Abd-El-Barr, Scheduling and Task Allocation, Advanced 
Computer Architecture and Parallel Processing, John Wiley and Sons, Inc., (2005) 
pp. 235-265. 

 [5] S. M. Figueira, Optimal partitioning of nodes to space-sharing parallel tasks, 
Parallel Computing 32 (2006), 313-324. 

 [6] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing 
Infrastructure, Elsevier, Amsterdam, 2004. 

 [7] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 
17(2) (1969), 416-429. 

 [8] J. F. Lin, Performance bounds of scheduling multiprocessor tasks in a multiple 
machines environment, submitted to Information Science (under review after 
revising). 



PARALLEL TASKS SCHEDULING IN GRID ENVIRONMENTS 409 

 [9] J. F. Lin and S. J. Chen, Performance bounds on scheduling parallel tasks with 
setup time on hypercube systems, Informatica 19 (1995), 313-318. 

 [10] J. F. Lin, W. B. See and S. J. Chen, Performance bounds on scheduling parallel tasks 
with communication cost, IEICE Trans. Information Systems E78-D(3) (1995), 263-
268. 

 [11] V. Di Martino and M. Mililotti, Sub optimal scheduling in a grid using genetic 
algorithms, Parallel Computing 30 (2004), 553-565. 

 [12] F. Pascual, K. Rzadca and D. Trystram, Cooperation in Multi-organization 
Scheduling, Euro-Par 2007, Rennes, France, August (2007), pp. 224-233. 

 [13] G. S. Sajjan, Array Processors, Advanced Computer Architectures, Taylor and 
Franics Group, 2006, pp. 167-220. 

 [14] J. P. Singh, J. L. Hennessy and A. Gupta, Scaling parallel programs for 
multiprocessors: methodology and examples, computer, IEEE Computer (1993), 42-
50. 

 [15] B. Tierney, W. Johnston, J. Lee and M. Thompson, A data intensive distributed 
computing architecture for ‘Grid’ applications, Future Generation Computer Systems 
16 (2000), 473-481. 

 [16] Q. Wang and K. H. Cheng, List scheduling of parallel tasks, Information Processing 
Letters 37(5) (1991), 291-297. 

 [17] Q. Wang and K. H. Cheng, A heuristic of scheduling parallel tasks and its analysis, 
SIAM J. Comput. 21(2) (1992), 281-294. 

 [18] C. Weng and X. Lu, Heuristic scheduling for bag-of-tasks applications in combination 
with QoS in the computational grid, Future Generation Computer Systems 21 
(2005), 271-280. 

g 


