ON TAYLOR'S COEFFICIENTS OF THE HURWITZ ZETA FUNCTION

KHRISTO N. BOYADZHIEV

Department of Mathematics
Ohio Northern University
Ada, Ohio, 45810
U. S. A.
e-mail: k-boyadzhiev@onu.edu

Abstract

We find a representation for the Maclaurin coefficients $\zeta_{n}(a)$ of the Hurwitz zeta function $\zeta(s, a)=\sum_{n=0}^{\infty} \zeta_{n}(a) s^{n},|s|<1$, in terms of semiconvergent series $$
\zeta_{n}(a)=-1+\sum_{k=n}^{\infty}(-1)^{k+1}\left[\begin{array}{l} k \\ n \end{array}\right] \frac{B_{k+1}(a-1)}{(k+1)!}
$$ where $B_{n}(x)$ are the Bernoulli polynomials and $\left[\begin{array}{l}k \\ n\end{array}\right]$ are the (absolute) Stirling numbers of the first kind. When $a=1$ this gives a representation for the coefficients of the Riemann zeta function. Our main instrument is a certain series transformation formula.

A similar result is proved also for the Maclaurin coefficients of the Lerch zeta function.

[^0]Keywords and phrases: exponential polynomial, Stirling numbers, Bernoulli polynomials, Hurwitz zeta function, Lerch zeta function.

Received September 10, 2008

1. Introduction. Exponential Polynomials and the Exponential Transformation Formula for Series

The exponential polynomials (or single variable Bell polynomials) ϕ_{n} can be defined by

$$
\begin{equation*}
\phi_{n}(x)=e^{-x}(x D)^{n} e^{x}, \quad n=0,1, \ldots \tag{1.1}
\end{equation*}
$$

(where $(x D) f(x)=x f^{\prime}(x)$). Equivalently

$$
\begin{equation*}
\phi_{n}(x) e^{x}=(x D)^{n} e^{x}=\sum_{k=0}^{\infty} \frac{k^{n}}{k!} x^{k} . \tag{1.2}
\end{equation*}
$$

One has

$$
\begin{equation*}
\phi_{0}(x)=1, \quad \phi_{1}(x)=x, \quad \phi_{2}(x)=x^{2}+x, \quad \phi_{3}(x)=x^{3}+3 x^{2}+x, \text { etc. } \tag{1.3}
\end{equation*}
$$

These polynomials were first studied by S. Ramanujan (see [3, Chapter 3] and [4] for further details). All polynomials ϕ_{n} have positive integer coefficients, which are the Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ (or $S(n, k)), 0 \leq k \leq n$. Thus

$$
\phi_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{1.4}\\
k
\end{array}\right\} x^{k} .
$$

The polynomials ϕ_{n} form a basis in the linear space of all polynomials. One can solve for x^{k} in (1.4) and write the standard basis in terms of the exponential polynomials:

$$
\begin{equation*}
1=\phi_{0}, \quad x=\phi_{1}, \quad x^{2}=-\phi_{1}+\phi_{2}, \quad x^{3}=2 \phi_{1}-3 \phi_{2}+\phi_{3}, \text { etc. } \tag{1.5}
\end{equation*}
$$

If we set

$$
x^{n}=\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \tag{1.6}\\
k
\end{array}\right] \phi_{k},
$$

then $\left[\begin{array}{l}n \\ k\end{array}\right] \geq 0$ are the absolute Stirling numbers of first kind. In particular,

$$
\left[\begin{array}{l}
k \tag{1.7}\\
0
\end{array}\right]=0(k>0), \quad\left[\begin{array}{l}
k \\
1
\end{array}\right]=(k-1)!, \quad\left[\begin{array}{l}
k \\
k
\end{array}\right]=1 .
$$

More information on the Stirling numbers can be found in [7].
Suppose now that $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is an entire function. Multiplying (1.2) by a_{n} and summing for $n=0,1, \ldots$, one obtains the exponential transformation formula (ETF)

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{f(k)}{k!} x^{k}=e^{x} \sum_{n=0}^{\infty} a_{n} \phi_{n}(x) \tag{1.8}
\end{equation*}
$$

(for details see [4]).

2. The Hurwitz Zeta Function

The Hurwitz zeta function is defined for $\operatorname{Re} s>1, a>0$ by

$$
\begin{equation*}
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}} \tag{2.1}
\end{equation*}
$$

The function $\zeta(s, a)$ extends to a holomorphic function of s on the whole complex plane with a simple pole at $s=1$ (see [6]).

Theorem 1. Let

$$
\begin{equation*}
\zeta(s, a)=\sum_{n=0}^{\infty} \zeta_{n}(a) s^{n}, \quad|s|<1 \tag{2.2}
\end{equation*}
$$

Then

$$
\zeta_{n}(a)=-1+\sum_{k=n}^{\infty}(-1)^{k+1}\left[\begin{array}{l}
k \tag{2.3}\\
n
\end{array}\right] \frac{B_{k+1}(a-1)}{(k+1)!}
$$

where $B_{n}(a)$ are the Bernoulli polynomials and the series is semiconvergent in the sense of $[8, p .328]$.

When $a=1, \zeta(s, 1)=\zeta(s)$ is the Riemann zeta function. Thus we have:

Corollary. If

$$
\begin{equation*}
\zeta(s)=\sum_{n=0}^{\infty} \zeta_{n} s^{n}, \quad|s|<1 \tag{2.4}
\end{equation*}
$$

then

$$
\zeta_{n}=-1+\sum_{k=n}^{\infty}(-1)^{k+1}\left[\begin{array}{l}
k \tag{2.5}\\
n
\end{array}\right] \frac{B_{k+1}}{(k+1)!}
$$

where $B_{n}=B_{n}(0)$ are the Bernoulli numbers.

Note that

$$
\begin{equation*}
\zeta^{(n)}(0, a)=\zeta_{n}(a) n! \tag{2.6}
\end{equation*}
$$

where the derivatives are for the variable s.
Proof of the theorem. We need two well-known facts ([6]):

$$
\begin{equation*}
\frac{e^{a x}}{e^{x}-1}-\frac{1}{x}=\sum_{k=0}^{\infty} \frac{B_{k+1}(a)}{(k+1)!} x^{k} \quad(|x|<2 \pi) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta(-k, a)=\frac{-B_{k+1}(a)}{k+1}, \quad k=0,1, \ldots \tag{2.8}
\end{equation*}
$$

Now let $a>0$ be fixed. The residue of $\zeta(s, a)$ at $s=1$ is 1 . Therefore, the function

$$
\begin{equation*}
f(x)=\zeta(-x, a)+\frac{1}{x+1} \tag{2.9}
\end{equation*}
$$

is entire. Set $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then according to (2.8),

$$
\begin{equation*}
f(n)=\zeta(-n, a)+\frac{1}{n+1}=\frac{-B_{n+1}(a)}{n+1}+\frac{1}{n+1}, \tag{2.10}
\end{equation*}
$$

and the ETF provides

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{-B_{n+1}(a)}{(n+1)!} x^{n}+\sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)!}=e^{x} \sum_{k=0}^{\infty} a_{k} \phi_{k}(x) \tag{2.11}
\end{equation*}
$$

which, in view of (2.7) can be written as

$$
\begin{equation*}
\frac{1}{x}-\frac{e^{a x}}{e^{x}-1}+\frac{1}{x}\left(e^{x}-1\right)=-e^{x}\left(\frac{e^{x(a-1)}}{e^{x}-1}-\frac{1}{x}\right)=e^{x} \sum_{k=0}^{\infty} a_{k} \phi_{k}(x) . \tag{2.12}
\end{equation*}
$$

The second equality, again in view of (2.7), turns into

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{-B_{n+1}(a-1)}{(n+1)!} x^{n}=\sum_{k=0}^{\infty} a_{k} \phi_{k}(x) . \tag{2.13}
\end{equation*}
$$

Substituting here (1.4) and comparing the coefficients in front of x^{k} on both sides we arrive at the equation

$$
\sum_{n=k}^{\infty}\left\{\begin{array}{l}
n \tag{2.14}\\
k
\end{array}\right\} a_{n}=\frac{-B_{k+1}(a-1)}{(k+1)!}, \quad k=0,1, \ldots
$$

This is an infinite system for a_{n} with a triangular matrix. For every $n=0,1, \ldots$, we multiply the k-th row $(\forall k \geq n)$ by $(-1)^{k-n}\left[\begin{array}{l}k \\ n\end{array}\right]$ and use the identity:

$$
\sum(-1)^{k-n}\left[\begin{array}{l}
k \tag{2.15}\\
n
\end{array}\right]\left\{\begin{array}{l}
n \\
m
\end{array}\right\}=\delta_{k, m}
$$

([see [7, p. 264]) to find

$$
a_{n}=\sum_{k=n}^{\infty}(-1)^{k-n+1}\left[\begin{array}{l}
k \tag{2.16}\\
n
\end{array}\right] \frac{B_{k+1}(a-1)}{(k+1)!}
$$

From the definition of $f(x)$ one has

$$
\begin{equation*}
\zeta(x, a)=\frac{-1}{1-x}+\sum_{n=0}^{\infty}(-1)^{n} a_{n} x^{n} \tag{2.17}
\end{equation*}
$$

or, using the series expansion of $1 /(1-x),|x|<1$,

$$
\begin{equation*}
\zeta(x, a)=\sum_{n=0}^{\infty}\left((-1)^{n} a_{n}-1\right) x^{n} \tag{2.18}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\zeta_{n}(a)=-1+(-1)^{n} a_{n} \tag{2.19}
\end{equation*}
$$

which combined with (2.16) leads to the desired result. The proof is completed.

In particular, when $n=0$ one verifies that

$$
\begin{equation*}
\zeta(0, a)=\zeta_{0}(a)=-1+(-1) B_{1}(a-1)=1 / 2-a \tag{2.20}
\end{equation*}
$$

as $B_{1}(x)=x-1 / 2$.
When $n=1$ we have $\left[\begin{array}{l}k \\ 1\end{array}\right]=(k-1)$! and

$$
\begin{equation*}
\zeta_{1}(a)=-1+\sum_{k=1}^{\infty}(-1)^{k+1} \frac{B_{k+1}(a-1)}{k(k+1)} \tag{2.21}
\end{equation*}
$$

At the same time (see [6])

$$
\begin{equation*}
\zeta_{1}(a)=\zeta^{\prime}(0, a)=\log \Gamma(a)-\frac{1}{2} \log 2 \pi \tag{2.22}
\end{equation*}
$$

which leads to the well-known representation [8, p. 336]

$$
\begin{equation*}
\log \Gamma(1+a)=\frac{1}{2} \log 2 \pi-1+\sum_{k=1}^{\infty}(-1)^{k+1} \frac{B_{k+1}(a)}{k(k+1)} . \tag{2.23}
\end{equation*}
$$

Equation (2.23) comes, for instance, from the asymptotic representation

$$
\begin{equation*}
\log \Gamma(z+a)=\left(z+a-\frac{1}{2}\right) \log z-z+\frac{1}{2} \log (2 \pi)+\sum_{k=1}^{\infty}(-1)^{k+1} \frac{B_{k+1}(a)}{k(k+1)} z^{-k} \tag{2.24}
\end{equation*}
$$

(see [6, 1.18 (12)]) by setting $z=1$.
When $n=2$, we have $\left[\begin{array}{l}k \\ 2\end{array}\right]=(k-1)!H_{k-1}$, where

$$
\begin{equation*}
H_{k-1}=1+\frac{1}{2}+\cdots+\frac{1}{k-1}, \tag{2.25}
\end{equation*}
$$

are the harmonic numbers. From the theorem

$$
\begin{equation*}
\zeta_{2}(a)=-1+\sum_{k=2}^{\infty}(-1)^{k+1} H_{k-1} \frac{B_{k+1}(a-1)}{k(k+1)}, \tag{2.26}
\end{equation*}
$$

etc.
Notes. A representation of the coefficients ζ_{n} as certain limits is given in [3, p. 215] and [10]. For $\zeta^{\prime \prime}(0, a)=2 \zeta_{2}(a)$ see also the discussion on pp. 204-207 in [3]. Apostol [1] obtained a closed form of ζ_{n} in terms of Taylor's coefficients in the expansion of $\Gamma(s) \zeta(s)-1 /(s-1)$ about $s=1$. Other computations of ζ_{n} can be found in [10]. The Taylor coefficients ζ_{n} are related to the Stieltjes constants γ_{n} in the Laurent series of the Zeta function centered at $s=1$ (see [9]).

3. The Lerch Zeta Function

The Lerch zeta function (or Lerch Transcendent) represents a
generalization of the Hurwitz zeta function,

$$
\begin{equation*}
\Phi(\lambda, s, a)=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{(n+a)^{s}} \tag{3.1}
\end{equation*}
$$

Here $|\lambda| \leq 1$ and $a>0$. A detailed definition of Φ and its basic properties can be found in [6]. Assuming $\lambda \neq 1$, we show how Theorem 1 changes for this function. First we recall a class of functions $\beta_{n}(a, \lambda)$ introduced by Apostol [2] (see also [5]) and defined by the generating function

$$
\begin{equation*}
\frac{z e^{a z}}{\lambda e^{z}-1}=\sum_{n=0}^{\infty} \beta_{n}(a, \lambda) \frac{z^{n}}{n!} \tag{3.2}
\end{equation*}
$$

When $\lambda=1, \beta_{n}(a, 1)$ are the Bernoulli polynomials. When $\lambda \neq 1, \beta_{n}(a, \lambda)$ are rational functions of λ and polynomials in the variable a of order $n-1$. Thus

$$
\beta_{0}(a, \lambda)=0, \quad \beta_{1}(a, \lambda)=\frac{1}{\lambda-1}, \quad \beta_{2}(a, \lambda)=\frac{2 a(\lambda-1)-2 \lambda}{(\lambda-1)^{2}}, \ldots, \text { etc. }
$$

The function $\Phi(\lambda, s, a)$ extends as a holomorphic function of s on the entire complex plane. Apostol proved that for $s=-m, m=0,1, \ldots$,

$$
\begin{equation*}
\Phi(\lambda,-m, a)=\frac{-\beta_{m+1}(a, \lambda)}{m+1} \tag{3.4}
\end{equation*}
$$

which corresponds to (2.8).
Let $\lambda \neq 1$ and consider the Taylor series representation $\Phi(\lambda, s, a)$ in s

$$
\begin{equation*}
\Phi(\lambda, s, a)=\sum_{n=0}^{\infty} c_{n}(a, \lambda) s^{n} \tag{3.5}
\end{equation*}
$$

Theorem 2. The coefficients $c_{n}(a, \lambda)$ can be represented as semiconvergent series

$$
c_{n}(a, \lambda)=\sum_{k=n}^{\infty}(-1)^{k-n+1}\left[\begin{array}{l}
k \tag{3.6}\\
n
\end{array}\right] \frac{\beta_{k+1}(a-1, \lambda)}{(k+1)!} .
$$

The proof follows the same steps as in Theorem 1. We apply the ETF (1.8) to the function $f(x)=\Phi(\lambda,-x, a)$ in order to obtain, in view of (3.4), the representation

$$
\begin{equation*}
-\sum_{n=0}^{\infty} \frac{\beta_{n+1}(a, \lambda)}{(n+1)!} x^{n}=e^{x} \sum_{k=0}^{\infty} c_{k}(a, \lambda) \phi_{k}(x) . \tag{3.7}
\end{equation*}
$$

Then since

$$
\begin{equation*}
e^{-x} \frac{e^{a x}}{\lambda e^{x}-1}=\frac{e^{(a-1) x}}{\lambda e^{x}-1}, \tag{3.8}
\end{equation*}
$$

we find from (3.2) and (3.7),

$$
\begin{equation*}
-\sum_{n=0}^{\infty} \frac{\beta_{n+1}(a-1, \lambda)}{(n+1)!} x^{n}=\sum_{k=0}^{\infty} c_{k}(a, \lambda) \phi_{k}(x) . \tag{3.9}
\end{equation*}
$$

The rest of the proof follows by comparing coefficients for x^{k} on both sides in (3.9),

$$
\sum_{n=k}^{\infty}\left\{\begin{array}{l}
n \tag{3.10}\\
k
\end{array}\right\} c_{n}(a, \lambda)=\frac{-\beta_{k+1}(a-1, \lambda)}{(k+1)!}, \quad k=0,1, \ldots
$$

and solving this system for $c_{n}(a, \lambda)$ by using (2.15).

References

[1] Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Math. Comp. 44(169) (1985), 223-232.
[2] Tom M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167.
[3] Bruce C. Berndt, Ramanujan's Notebooks, Part I, Springer-Verlag, New York, 1985.
[4] Khristo N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Math. Math. Sci. 23 (2005), 3849-3866.
[5] Khristo N. Boyadzhiev, Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials, Adv. Appl. Discr. Math. 1(2) (2008), 109-122.
[6] A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.
[7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, AddisonWesley Publ. Co., New York, 1994.
[8] G. H. Hardy, Divergent Series, Chelsea Publi. Co., New York, 1991.
[9] J. B. Keiper, Power series expansions of Riemann's zeta function, Math. Comp. 58(198) (1992), 765-773.
[10] D. H. Lehmer, The sum of like powers of the zeros of the Riemann zeta function, Math. Comp. 50(181) (1988), 265-273.

[^0]: 2000 Mathematics Subject Classification: 11M35, 33A70.

