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Abstract 

We find a representation for the Maclaurin coefficients ( )anζ  of the 
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where ( )xBn  are the Bernoulli polynomials and 




n
k  are the (absolute) 

Stirling numbers of the first kind. When 1=a  this gives a 
representation for the coefficients of the Riemann zeta function. Our 
main instrument is a certain series transformation formula. 

A similar result is proved also for the Maclaurin coefficients of the Lerch 
zeta function. 
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1. Introduction. Exponential Polynomials and the Exponential 
Transformation Formula for Series 

The exponential polynomials (or single variable Bell polynomials) nφ  
can be defined by 

( ) ( ) ...,1,0, ==φ − nexDex xnx
n  (1.1) 

(where )).()()( xfxxfxD ′=  Equivalently 

( ) ( ) .!
0
∑
∞

=

==φ
k

k
n

xnx
n xk

kexDex  (1.2) 

One has 

( ) ( ) ( ) ( ) ,3,,,1 23
3

2
210 xxxxxxxxxx ++=φ+=φ=φ=φ  etc. (1.3) 

These polynomials were first studied by S. Ramanujan (see [3, Chapter 3] 
and [4] for further details). All polynomials nφ  have positive integer 

coefficients, which are the Stirling numbers of the second kind 
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The polynomials nφ  form a basis in the linear space of all polynomials. 

One can solve for kx  in (1.4) and write the standard basis in terms of the 
exponential polynomials: 
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If we set 

( ) ,1
0
∑
=

− φ



−=

n

k
k

knn
k
n

x  (1.6) 

then 0≥
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n  are the absolute Stirling numbers of first kind. In particular, 
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More information on the Stirling numbers can be found in [7]. 

Suppose now that ( ) ∑
∞

=
=

0n

n
nzazf  is an entire function. Multiplying 

(1.2) by na  and summing for ...,,1,0=n  one obtains the exponential 

transformation formula (ETF) 
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(for details see [4]). 

2. The Hurwitz Zeta Function 

The Hurwitz zeta function is defined for 0,1Re >> as  by 
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The function ( )as,ζ  extends to a holomorphic function of s on the whole 

complex plane with a simple pole at 1=s  (see [6]). 

Theorem 1. Let 
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where ( )aBn  are the Bernoulli polynomials and the series is semi-

convergent in the sense of [8, p. 328]. 
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When ,1=a  ( ) ( )ss ζ=ζ 1,  is the Riemann zeta function. Thus we 

have: 

Corollary. If 
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where ( )0nn BB =  are the Bernoulli numbers. 

Note that 

( )( ) ( ) ,!,0 naa n
n ζ=ζ  (2.6) 

where the derivatives are for the variable s. 

Proof of the theorem. We need two well-known facts ([6]): 
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Now let 0>a  be fixed. The residue of ( )as,ζ  at 1=s  is 1. Therefore, the 

function 
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1,
+

+−ζ= xaxxf  (2.9) 
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is entire. Set ( ) ∑
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and the ETF provides 
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The second equality, again in view of (2.7), turns into 
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Substituting here (1.4) and comparing the coefficients in front of kx  on 
both sides we arrive at the equation 
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This is an infinite system for na  with a triangular matrix. For every 

...,,1,0=n  we multiply the k-th row ( )nk ≥∀  by ( ) 
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([see [7, p. 264]) to find 
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From the definition of ( )xf  one has 
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which combined with (2.16) leads to the desired result. The proof is 
completed. 

In particular, when 0=n  one verifies that 
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At the same time (see [6]) 
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which leads to the well-known representation [8, p. 336] 
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Equation (2.23) comes, for instance, from the asymptotic representation 
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(see [6, 1.18 (12)]) by setting .1=z  

When ,2=n  we have ( ) ,!1
2 1−−=





kHk
k  where 

,1
1

2
111 −

+++=− kHk  (2.25) 

are the harmonic numbers. From the theorem 
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etc. 

Notes. A representation of the coefficients nζ  as certain limits is 

given in [3, p. 215] and [10]. For ( ) ( )aa 22,0 ζ=ζ ′′  see also the discussion 

on pp. 204-207 in [3]. Apostol [1] obtained a closed form of nζ  in terms of 

Taylor’s coefficients in the expansion of ( ) ( ) ( )11 −−ζΓ sss  about .1=s  

Other computations of nζ  can be found in [10]. The Taylor coefficients 

nζ  are related to the Stieltjes constants nγ  in the Laurent series of the 

Zeta function centered at 1=s  (see [9]). 

3. The Lerch Zeta Function 

The Lerch zeta function (or Lerch Transcendent) represents a 
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generalization of the Hurwitz zeta function, 
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Here 1≤λ  and .0>a  A detailed definition of Φ and its basic properties 

can be found in [6]. Assuming ,1≠λ  we show how Theorem 1 changes for 
this function. First we recall a class of functions ( )λβ ,an  introduced by 

Apostol [2] (see also [5]) and defined by the generating function 
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When ( )1,,1 anβ=λ  are the Bernoulli polynomials. When ( )λβ≠λ ,,1 an  

are rational functions of λ and polynomials in the variable a of order 
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The function ( )as,,λΦ  extends as a holomorphic function of s on the 

entire complex plane. Apostol proved that for ...,,1,0, =−= mms  
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Let 1≠λ  and consider the Taylor series representation ( )as,,λΦ  in s 
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Theorem 2. The coefficients ( )λ,acn  can be represented as semi-

convergent series 
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The proof follows the same steps as in Theorem 1. We apply the ETF 
(1.8) to the function ( ) ( )axxf ,, −λΦ=  in order to obtain, in view of (3.4), 

the representation 

( )
( ) ( ) ( )∑ ∑

∞

=

∞

=

+ φλ=
+

λβ
−

0 0

1 .,!1
,

n k
kk

xnn xacexn
a  (3.7) 

Then since 

( )
,

11

1

−λ
=

−λ

−
−

x

xa

x

ax
x

e
e

e
ee  (3.8) 

we find from (3.2) and (3.7), 

( )
( ) ( ) ( )∑ ∑

∞

=

∞

=

+ φλ=
+

λ−β
−

0 0

1 .,!1
,1

n k
kk

nn xacxn
a  (3.9) 

The rest of the proof follows by comparing coefficients for kx  on both 
sides in (3.9), 
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and solving this system for ( )λ,acn  by using (2.15). 
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