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Abstract 

Fourier analysis and cross-correlation function are successfully applied 

to improving the conventional gravity model of interaction between 

cities by introducing a time variable to the attraction measures (e.g., city 

sizes). The traditional model assumes spatial interaction as 

instantaneous, while the new model considers the interaction as a 

temporal process and measures it as an aggregation over a period of 

time. By doing so, the new model not only is more theoretically sound, 

but also enables us to integrate the analysis of temporal process into 

spatial interaction modeling. Based on cross-correlation function, the 

developed model is calibrated by Fourier analysis techniques, and the 

computation process is demonstrated in four steps. The paper uses a 

simple case study to illustrate the approach to modeling the interurban 

interaction, and highlight the relationship between the new model and 

the conventional gravity model. 
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1. Introduction 

The gravity model is an equation of the interaction between two 
population centers based on Newton’s Law of Universal Gravitation. Two 
centers in a geographical region attract one another in proportion to the 
product of their “masses” and inversely as the square distance between 
them. The original equation has been changed to accommodate the 
special needs of geographical systems. So the impedance function is not 
confined to the reciprocal of the distance squared, and the application of 
the model is not limited to urban geography. In fact, the gravity model 
may be applied to fields of influence of settlements, migration of 
population, trade, traffic flows, and telephone calls, etc. (Erlander [17], 
Fotheringham and O’Kelly [21], Haynes and Fotheringham [23], Lierop 
[27], Roy [33], Sen and Smith [34]). However, our attention will focus only 
on influence of cities or towns. 

The gravity model was first proposed because of its ability to replicate 
observed urban flow patterns, and thus was purely empirical (Carrothers 
[9]). Theoretical justifications for the gravity model were later proposed 
by (1) Wilson [37, 38] using the entropy-maximizing principle (also see 
Tomlin and Tomlin [32], Curry [14]), and (2) Niedercorn and Bechdolt 
[30] based on individual utility-maximizing behavior (also see Golob and 
Beckmann [22], Allen [41], Colwell [13]). In fact, one of the major 
achievements in the era of “quantitative revolution” in geography was the 
proof that the micro models of spatial allocation of individual resources 
based on utility-maximizing principle were consistent with the macro 
models of spatial interaction based on the entropy-maximizing principle 
(Batty [2]). As applications of the gravity models grow, there have been 
persistent inquiries for theoretical foundations of the gravity models. 
Among recent examples, Bavaud [3] used the quasi-symmetric property 
in Markov chains theory, Bradley-Teryy-Luce decision theory and others 
to unify various traditions in gravity modeling; and Evenett and Keller 
[18] found the explanations from two important trade theories, namely 
the Heckscher-Ohlin theory and the increasing returns theory, and 
defined the conditions for the empirical success of the gravity equations. 
Clearly, the gravity model has solid foundations on well-known theories, 
and its wide applicability in predicting socioeconomic interactions is no 
surprise to geographers and other social scientists. 
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However, despite varied theoretical discussions and its application to 

various fields, the conventional gravity model has a fatal weakness owing 

to lack of temporal dimension. This weakness presents an obstacle to the 

development of spatial interaction theory. In fact, the interaction of 

human phenomena (e.g. cities) is different from that of physical 

phenomena (e.g. celestial bodies). For human systems, there exists a 

delay not to be ignored between action and reaction which has been 

ignored for a long time past. In this paper, we will make the conventional 

model into a new expression by introducing the time lag of spatial 

interaction to gravity modeling. Thus the product of attraction measures 

become a cross-correlation function, and then Fourier analysis is an 

indispensable tool. The expanded gravity model measures the aggregated 

interaction over time instead of interaction at a certain time point, and 

attraction measures become a function of time lag. The new model is not 

only more theoretically sound, but also enables us to examine the 

temporal process of spatial interaction. 

Fourier analysis is of significance for solving the difficult problems of 

geographical research (Chen and Liu [11], Chen and Zhou [12]). Once we 

apply the method to modeling the spatio-temporal interaction of cities, we 

will find a surprising but interesting and satisfying result. The remaining 

part of this paper is structured as follows. Section 2 introduces the 

expanded gravity model based on the cross-correlation function, and 

discusses the model’s solution based on Fourier analysis. A new concept 

based on power spectrum, gravity spectrum, is proposed to characterize 

spatial interaction of cities. Section 3 explains the model’s calibration by 

discrete Fourier analysis and implementation in common software such 

as the Microsoft Excel. Section 4 uses a simple case study to illustrate the 

modeling, analyze the temporal process of spatial interaction, and 

highlight the relationship between the new model and the conventional 

gravity model. Finally, the paper is concluded with a brief summary. 

2. The Expanded Gravity Model Based on Cross-Correlation 

The general gravity model of interaction between city i and city j can 

be written as 
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 ( ),rfQKQI jiij =  (1) 

where the interaction ijI  between two cities is positively related to their 

sizes ,, ji QQ  and inversely related to the distance r between them, and K 

is a scalar constant. The distance impedance ( )rf  is commonly measured 

in three forms such as (Kwan [26]): (1) an inverse power function 

( ) ,brrf −=  (2) a negative exponential function ( ) ,brerf −=  or (3) a 

Gaussian function ( ) ,
2brerf −=  where b is a constant. Choice of 

impedance/resistance function has potential ramifications on model 

estimation (see Fotheringham and O’Kelly [21]). Without losing 

generality, this paper uses the most common form ( ) ,brrf −=  for the 

distance impedance function. 

In the conventional gravity model, equation (1), interaction between 

cities (e.g., in terms of traffic, trade, communication or migration) is 

assumed instantaneous, and attraction measures of the cities (e.g., in 

terms of sizes of population or economy) are static. In this research, we 

argue that the development of spatial interaction in socioeconomic 

context takes time, and there is a time lag in the attraction measures of 

cities. The lag may be short in some cases but long in others. Now 

considering each of the city sizes iQ  and jQ  as a variable of time t: 

( )tfQ ii =  and ( ),tfQ jj =  and introducing a time-lag parameter τ to 

capture the time gap between them for the interaction to take place, the 

gravity model based on the inverse power function in equation (1) is 

rewritten as 

 ( ) ( ) ( ) .b
jiij rtftKftI −τ+=  (2) 

For theoretical considerations, it is assumed that both ( )tfQ ii =  and 

( )tfQ jj =  are bounded. This is a reasonable assumption as city sizes 

have limits, particularly in finite time. 

In contrast to the conventional gravity model in equation (1), the new 

model in equation (2) has two new elements: First, the interaction ijI  

(e.g., commodity or passenger flow volume) becomes directional, and ijI  
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is not necessarily equal to jiI  as is commonly observed in the real world. 

For instance, Colwell [13] argues that residents in a lower-level (smaller) 

need to make more trips to a higher-level (larger) city than the other way 

around as suggested by the central place theory. However, sometimes the 

opposite is true in the real world, especially for commodity flows. Second, 

as shown in Figure 1, there is a time lag for spatial interaction to reach 

the destination city j (at time )τ+t  from the origin city i (at time t). The 

interaction ijI  is from city i at time t to city j at time ,τ+t  and similarly, 

the interaction jiI  would be from city j at time t to city i at time .τ+t  

r
0 T

x

y
lag

time  axis

t1 t2 t3 t4 tT  

Figure 1. Spatial interactions between two cities with a time lag. 

By introducing a time variable to the conventional gravity model, the 

spatial interaction between cities becomes a continuous temporal process, 

and the expanded gravity model captures a complex spatio-temporal 

system. Equation (2) measures the instantaneous interaction between 

cities i and j at a particular time. City sizes change over time, and 

interactions between them in terms of traffic, information or financial 

transaction flows are usually measured for a period of time. Aggregating 

the instantaneous interaction over time generates the interaction 

between the two cities during a period of time. Suppose that the life-span 

of all cities are finite, i.e., if ,∞→t  then .0, →ji QQ  In formula, we 

have a new interaction model as follows: 

 ( ) ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

−− τ=τ+==τ ,b
ijji

b
ijij rKRdttftfKrdttIG  (3) 

where 

 ( ) ( ) ( )∫
∞

∞−
τ+=τ dttftfR jiij  (4) 
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defines a cross-correlation function between cities i and j with a time lag τ 
given that the data are standardized (Bracewell [8], Boggess and 

Narcowich [6]). 

Using the power theorem (see, e.g., Bracewell [8]) 

 ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
ωωω

π
= dFFdttftf jiji 2

1
 (5) 

and the Fourier transform of a translation (See e.g. Boggess and 

Narcowich [6]) 

 ( )[ ] ( ) ,ωτω=τ+ ieFtfF  (6) 

we obtain the relation between the correlation function ( )τR  and energy 

spectra density ( )ωS  such as 

( ) ( ) ( )∫
∞

∞−
τ+=τ dttftfR jiij  

( ) ( )∫
∞

∞−

ωτ ωωω
π

= deFF i
ji2

1
 

[ ( )],1 ω= ijSF  (7) 

where F  is the operator of Fourier transform (FT) while 1F  the 

operator of inverse Fourier transform (IFT), and 

 ( ) ( ) ( )ωω=ω jiij FFS  (8) 

is the cross energy spectrum of a pair of series ( )tfi  and ( )tf j  (Bracewell 

[8], Boggess and Narcowich [6]), ( ) ( )[ ]tfF F=ω  denotes the Fourier 

transform of ( ),tf  and fπ=ω 2  is angular frequency ( ,∞<ω<∞−  

where f is linear frequency). In other words, the cross-correlation function 

( )τR  can be computed through the IFT of cross energy spectrum ( ).ωijS  

This is one of the keys for us to improve the gravity model of cities using 

the idea from Fourier analysis and correlation function. 

Therefore, equation (3) can be rewritten as 

 ( ) ( ) ( )[ ] .1 bb
ijij rSKrKRG −− ω=τ=τ F  (9) 
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Equation (9) defines the spatial interaction (or gravity) spectrum that 

varies with the time lag τ. In other words, it captures how the interaction 

between cities varies with different lengths of time lag. The correlation 
function, as specified in equation (4), is the basic component in the 

expanded gravity model. The new model in the current form focuses on 

the distance-based correlation between city sizes over time whereas the 

conventional gravity model emphasizes the effect of distance decay over 

space. As it is known in physics, gravitational force multiplied by action 
distance is work, and the work per unit time is power. Naturally, the 

power spectral analysis techniques in physics can be applied to analysis 
of the expanded gravity model in socioeconomic context, as demonstrated 

in the next section. 

3. Model’s Calibration 

3.1. Discrete Fourier Analysis 

The expanded gravity model in equation (3) is a continuous function 

with infinite time span. It is only possible to solve the equation through 
the Fourier transform in equation (9) if the function is relatively 
uncomplicated (Weaver [36]). In the real world, the function is 

represented by a sequence of numbers. If the observations are made over 
time, it is a time series, and discrete Fourier analysis is used for analysis 

of time series (Bloomfield [5]). The following illustrates the discrete 
Fourier Transform (DFT) and its relationship to the commonly-used 

correlation analysis. 

The correlation coefficient between data series x and y can be written 
as 

 ( )
( )

,
yx

xy
xy

kC
k

σσ
=ρ  (10) 

where xσ  and yσ  are the standard deviations of tx  and ty  respectively, 

( )kCxy  is the correlation function or in fact covariance defined as 

 ( ) ( ) ( )∑
−

=
+ µ−µ−

−
=

kN

t
yktxtxy yx

kN
kC

1

,
1

 (11) 
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where xµ  and yµ  are the means of tx  and ty  respectively. Note that 

( )kxyρ  is equivalent to ( )kCxy  with a constant multiplier. The following 

analysis focuses on ( ).kCxy  Equation (10) is the discrete version of 

equation (7). When the variables are standardized with ,0=µ=µ yx  

and ,1=σ=σ yx  clearly ( )kxyρ  in a discrete form corresponds to a 

continuous function ( ).τijR  The parameter k ( )...,2,1,0 ±±=  in 

equation (10) is time lag in the discrete series. 

One may attempt to calibrate the expanded gravity model directly 

based on the correlation function such as 

 ( ) ( ).kCKrkG xy
b

xy
−=  (12) 

However, the direct computation of correlation quantity at various time 
lags is cumbersome, and determining the maximum time lag is 
problematic, the results depending often on researchers’ experiences. As 

illustrated previously in continuous functions, the analysis of ( )τijR  in 

the time domain can be converted to the analysis of ( )ωijS  in the 

frequency domain using Fourier transforms. The same strategy is 
adopted here in discrete forms. 

The discrete Fourier transform (DFT) of ( )kCxy  is written as 

 ( ) ( ) ( )∑ ∑
−

=

π−π−
==

1

0

22
,

N

k k

fki
xy

k
N
m

i
xyxy ekCekCfP  (13) 

where ( )fP  is the power spectral density of ( ),kCxy  and the linear 

frequency is measured as ,Nmf =  where ,1...,,2,1,0 −= Nm  and N 

is the length of sample path. Similar to the continuous function ( )τR  in 

equation (7), the calibration of ( )fP  is obtained through discrete power 

spectrum analysis such as 

 ( ) ( ) ( ),
2

1
ωω

π
=ω yxxy FF

N
P  (14) 

In practice, the angular frequency ω is replaced by the linear frequency f 



FOURIER ANALYSIS OF AN EXPANDED GRAVITY MODEL … 333

for convenience, namely .22 Nnf π=π=ω  Therefore, ( )fP  is rewritten 

in the following form 

 ( ) ( ) ( ),1
fFfF

N
fP yx=  (15) 

As ( )fP  is the DFT of ( ),kCxy  ( )kCxy  is the inverse discrete Fourier 

transform (IDFT) of ( ),fP  that is 

( ) ( )∑
−

=

π
=

1

0

21
N

n

k
N
m

i
xyxy efP

N
kC  

( )∑ π=
f

fki
xy efP

N
21

 

[ ( )].IDFT fPxy=  (16) 

That implies ( ) ( ) .NRkC xyxy τ∝  Applying a multiplier bKr−  to 

completing the calibration of the expanded gravity model, we have 

 ( ) [ ( )].IDFT fPKrkG xy
b

xy
−=  (17) 

This equation will give a pair of discrete gravity spectra of urban 
interaction. 

3.2. Implementation in Excel  

In applications, the fast Fourier transform (FFT) algorithm is 

employed to perform the Fourier analysis. Various mathematical 
software packages may be used to implement the FFT. The following uses 

the Fourier Analysis Toolpak available in MS Excel (Bloch [4]) to explain 
the model’s implementation step by step. In fact, if a computation can be 

conducted in MS Excel to find the solution to a problem, it will be able to 
be completed more easily in some mathematical software such as 

Mathcad, Matlab, etc. by designing programs. In Excel, one can access 
the toolpak by choosing “Tools”, then “Data Analysis”, and then “Fourier 

Analysis”. Note that “inverse Fourier transform” is also available by 
choosing “inverse” in the same dialogue box. The application of the new 
method to interaction of cities can be summarized in four steps: 
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(1) Performing the FFT on ( )tfx  and ( )tfy  yields two complex data 

series ( )fFx  and ( ).fFy  Note that we use the linear frequency measure f 

instead of the angular frequency measure ω here. The outputs (complex 

data series) are shown as non-numerical texts in Excel. 

(2) Compute the complex conjugate of ( ),fFx  i.e., ( ),fFx  and then 

calculate the product of two complex data series, i.e., ( ) ( ).fFfF yx  

Dividing the result by the number of data points, N, yields the cross 

power spectrum, ( ),fP  as in equation (15). 

(3) Performing the inverse fast Fourier transform (IFFT) on ( )fP  

yields ( ).kCxy  This implements the calibration of equation (16). 

(4) Applying a multiplier bKr−  to the cross-correlation function yields 

the interaction from city x to city y, ( ),kGxy  as indicated by equation (17). 

Similarly, one may follow steps (2)-(4) by reversing the orders of x and 

y to obtain the interaction from city y to city x such as 

( ) ( ).kCKrkG yx
b

yx
−=  The above computation process yields two spectra 

characterizing the spatio-temporal interaction process between two cities. 

4. An Empirical Example 

This section uses an empirical example to illustrate how to calibrate 

the expanded gravity model by the discrete Fourier analysis based on 
FFT, and discuss the implications of the model. The case study is selected 

both for the convenience of data availability and for clarity of 
demonstrating the computation process. Therefore, only two Chinese 

cities, Beijing and Tianjin, are taken into consideration. In this case, we 
set the distance variable in the gravity model as a constant, and focus on 

the new element of time variable. This is a valid approach in many 
applications in time-series analysis. For instance, in studying the stock 
market correlations over time, Flavin et al. [20] used the gravity model 

with a fixed distance and focused on the interaction over time. 
Apparently, it is not difficult for us to employ the model in the case that 

the distance is a variable. 
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4.1. Spatial Interaction Spectra between Beijing and Tianjin 1949-

2004 

Beijing and Tianjin are two large cities in northern China that are 
only 137 kilometers apart from each other. They can be regarded as a 

“double star” in the constellation of Chinese cities despite the fact that 
Tianjin was originally a satellite town of Beijing hundred years ago (Chen 
and Zhou [10]). The strong social and economic interactions between 

them have been well documented in the history. The Beijing-Tianjin 
Railway, designed by the legendary Chinese railroad engineer Zhan 

Tianyou, was the first railroad constructed in China as early as in 1902. 
The commercial flight between Beijing and Tianjin was also the first in 

China in 1920 (Jin et al. [25]). Today traffics on the highways and railway 
connecting the two cities are among the busiest in China. This research 

uses “non-agricultural population”, the most reliable measure for urban 
population sizes (particularly for historical data) in China (Zhou [39]), to 

represent their sizes BQ  and .TQ  Data of non-agricultural population in 

Beijing and Tianjin from 1949 to 2004 are extracted from statistical 

reports compiled by the National Bureau of Statistics of China (See the 
Appendix 1 for the data). 

The process for calibrating the expanded gravity model has been 

illustrated in Section 3.2. The following follows the same process for 
further clarification. 

Step 1 performs the FFT on the population series of Beijing and 

Tianjin respectively. The symmetrical rule in the FFT’s recursive 
algorithm requires the length of time series to be an integer power of 2, 

i.e., ( )....,3,2,12 == nN n  However, there are 56 data points in each 

series. A process called “zero-padding” is used to bring the number up to 
the next power of 2 (Bloch [4]). In this case, adding 8 zeros at the end of 

the 56-year series brings the number to 64 (i.e., ).26=N  Adding more 

zeros to bring the number to 128 would artificially decrease the variance 
without adding any more information; and truncating the data series to 

32 implies that not all data points would be utilized after the zero-
padding process, the FFT is performed on the data series of Beijing 
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(denoted by ( ))tfB  and that of Tianjin (denoted by ( )),T tf  i.e., 

( ) ( )[ ] ( ) ( )[ ].FFT,FFT TTBB tffFtffF ==  

The resulting complex data series are written as ( ) BBB ibafF +=  and 

( ) .TTT ibafF +=  

Step 2 computes the cross spectral density such as 

( ) ( ) ( ) ( ) ( )[ ],
64
11

TBTBTBTBTBBT iabbabbaafFfF
T

fP −++==  

( ) ( ) ( ) ( ) ( )[ ].
64
11

TBTBTBTBBTTB iabbabbaafFfF
T

fP −−+==  

Evidently, ( )fPTB  is the conjugate complex of ( ),BT fP  i.e., 

( ) ( ).TBBT fPfP =  

In other words, one may obtain ( )fPTB  once ( )fPBT  is calculated. 

As illustrated in step (2) in Section 3.2, ( )fPBT  is obtained by (i) 

using the function IMCONJUGATE to calibrate ( ),B fF  (ii) using the 

function IMPRODUCT to compute ( ) ( )fFfF TB ×  and, (iii) using the 

function IMPRODUCT again to compute ( ) ( ) ( ).641TB ×fFfF  Finally, 

( )fPTB  can be gotten by using the function IMCONJUGATE over again. 

Step 3 calculates the cross-correlation functions by performing the 
IFFT on the cross spectral density, i.e., 

( ) ( )[ ],IFFT BTBT fPkC =  

( ) ( )[ ] [ ( )].IFFTIFFT BTTBTB fPfPkC ==  

Theoretically, the result from IFFT should be a data series of real 

numbers expressed with complex numbers. In other words, the output is 
a special series of complex numbers, the imaginary parts of which are 

expected to be 0. However, due to computation errors, the imaginary 
parts may not be, but very close to, 0. Thus, it is necessarily to use the 

function IMREAL to obtain the real parts of the result. 
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In the final step, setting the scalar at 1=K  for simplicity, taking the 
average distance by railway and highways between Beijing and Tianjin 

as 137=r km, and assuming the distance friction coefficient 2=b  as 

usual, the multiplier is obtained such as .1371 2=−bKr  Therefore, the 

gravity spectra of spatial interaction between Beijing and Tianjin for 
1949-2004 can be given by 

( ) ( ) ,137 2
BTBT

−×= kCkG  

( ) ( ) .137 2
TBTB

−×= kCkG  

As ( ) ( )kFkF TBBT ≠  in general, Figure 2 shows two spectra for spatial 

interactions between Beijing and Tianjin given various time lags. Based 
on the symmetric property of the spectra along the horizontal axis 

(discrete time lag k), Figure 2 shows only the left half of the spectra 

( ).32...,,2,1=k  
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Figure 2. Spatial interaction spectra between Beijing and Tianjin: 1949-
2004. 

(Note: BT indicates the force from Beijing to Tianjin, and TB from Tianjin to Beijing.) 

The aforementioned procedure of calculation can be carried out easily 
with other mathematical software, e.g., Matlab, Mathcad, by designing 

programs. 

Two important observations can be made from Figure 2. First, there 

are time lags in spatial interactions between the two cities. Figure 2 shows 
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that the spectra decline gradually and level off after 15-16 years. In other 

words, the interactions get weaker with a longer time lag and last up to 

15-16 years and tail off afterwards. Second, the interactions are 

asymmetric in directions. Figure 2 shows that the spectrum for the 

Beijing-Tianjin interaction is below the Tianjin-Beijing spectrum. Take 
the commodity flow as an indication of interaction. Given the larger city 

size of Beijing than Tianjin, this indicates that the flow volume is likely 
to be higher in the direction from a larger city to a smaller city (indicating 

the drawing force of a smaller on a larger city) than the reverse direction. 
This is consistent with the actual freight flows between Beijing and 

Tianjin 1985-2000 (see Table 1). 

Table 1. Freight flows between Beijing and Tianjin: 1985-2000 (in 10,000 
tons) 

Year Beijing →  Tianjin Tianjin →  Beijing 

1985 384 221 

1990 347 205 

1995 385 203 

2000 518 318 

Data sources: China Transportation Annual Reports in 1986, 1991, 1996, and 2001 

published by China Transportation Annual Reports Press. 

4.2. Relationship to the Conventional Model and Comparison 

First of all, the expanded gravity model is regressed to the traditional 

model when the time lag .0=k  If ,0=k  then ( ) ( )00 TBBT CC =  

,826.186247=  and ( ) ( ) ( ) ,923.9137000 2
TBBT =×== −CFF  which is the 

intercept as shown in Figure 2. The conventional gravity model in 

equation (1) only defines the interaction at a given time. For instance, 

given the same parameters, the interaction between Beijing and Tianjin 

in 2004 is .327.2513717.55670.8541 2
TBBT =×××== −−brPKPI   

Repeat calibration of the traditional model for each year, and calculate 

the average value of spatial interactions BTI  between the two cities for 

1949-2004. The result is 9.923, exactly equal to the spectrum density by 

the expanded model at .0=k  
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This property can be proven as follows. From equation (7), we have 

 ( ) ( ) ( ) ( ) [ ( )]∫ ω=τ+=τ=τ
T

ijjiijij Pdttftf
T

R
T

C
0

1 .
11

F  (18) 

For the discrete series, given time lag ,0=τ  equation (12) becomes 

 ( ) ( ) ( ) ( )∑ ∑
= =

− ==
N

t

N

t
xyyx

b
xy tI

N
tftf

N
KrG

1 1

.
11

0  (19) 

That is to say, when the time lag is 0, the gravity calibrated from the 

expanded model is the average of gravity values obtained from the 

traditional model over a study period. Owing to the Fourier transform is 

based on FFT, the divisor of averaging the set of interaction values ( )tIxy  

will be 64 instead of 56 in our example. 

To further enhance the understanding of the new model, we use the 

traditional model to calculate xyI  but match the origin city size x with the 

destination city size y with a time lag k, and then compute the average 

value of xyI  across the time span. The results with different time lags k, 

presented in Table 2, are indeed equal to the spectrum density obtained 

by the new model. For example, for ,3=k  we use the conventional 

gravity model to calculate ( )1BTI  based on Beijing’s population in 1949 

and Tianjin’s population in 1952, ( )2BTI  using Beijing’s population in 

1950 and Tianjin’s population in 1953, …; and then compute the average 

( ) ( ) ( )[ ] ,167.953...21 BTBTBTBT =+++= TIIII  which is equal to the 

spectrum density ( ) 167.93BT =G  based on the new model. On the other 

side, the gravity value from Tianjin to Beijing is ( ) .400.93TBTB == GI  

By the way, these averages are different from those in the common sense. 

There is an analogy between the way we determine the means here and 

the way cross-correlation coefficients are calculated in time series 

analysis. That is, we divide the sums by T, even though only ( )τ−T  

terms appear in the sum (For further information, see Box et al. [7], 

Diebold [16]). 
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Table 2. Spatial interaction by the conventional and the expanded 

gravity models  
 
 

Time lag 

Gravity spectrum density 
by the expanded model 

Average spatial interaction by 
the conventional model 

(k) Beijing-Tianjin Tianjin-Beijing Beijing in t-th Year- Tianjin in t-th Year- 
   Tianjin in ( )kt + -th Year Beijing in ( )kt + -th Year 

0=k  9.923 9.923 9.923 9.923 

1=k  9.666 9.750 9.666 9.750 

2=k  9.414 9.576 9.414 9.576 

3=k  9.167 9.400 9.167 9.400 

4=k  8.927 9.222 8.927 9.222 

5=k  8.689 9.037 8.689 9.037 

… … … … … 

This demonstrates the linkage between the conventional and the 

expanded gravity model: the traditional one yields the instantaneous 

bilateral interaction between two cities at a particular time, and the 

expanded one captures a whole spectrum of varying unilateral 

interactions from one city to another over a span of time across different 

time lags. From the expanded model, any spectrum density reflects the 

average interaction from this city to the other at a particular time lag. 

Table 3 summarizes the differences between them. 

Table 3. Comparison between the conventional and the expanded gravity 

models 
Aspect  Conventional gravity model Expanded gravity model 
Origin Conceptual analogue to the Reasoning from geographic analysis 

 gravitational model in physics  

Usage Description of spatial interaction Analysis of spatio-temporal process 

  of interaction 

Objective Instantaneous interaction Interaction with a time lag and 

  aggregation over time 

Computation result  Gravity value Gravity spectra 

Data requirement  Cross-section data Time-series data 

Strengths Simple computation Revealing temporal process, 

  containing the information captured 

  by the conventional model 

Weakness Less informative Requiring more data and complex 

  computation 

4.3. Temporal Process of Spatial Interaction between Beijing and 

Tianjin 

The Fourier analysis process of the expanded gravity model also 

provides interesting insights into the temporal process of spatial 

interaction or interdependency between Beijing and Tianjin.  
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In the second step of the gravity-model-based Fourier analysis, a 

cross power spectrum, ( ),fP  is obtained with equation (9). The estimated 

( )fP  is a complex data series, represented as 

( ) ( ) ( ) .,ˆ,ˆ,ˆ iyxqyxpyxP +=  

The real part ( )yxp ,ˆ  is referred to as residual spectrum, and the 

imaginary part ( )yxq ,ˆ  is quadrature spectrum. The former reflects the 

energy distribution of spatial interaction between cities, and the latter 

can be used for analyzing periodicity in the spatio-temporal process. 

In the case study, the relationship between the frequency f and the 

residual spectrum density, as shown in Figure 3(a), can be captured by a 

power function such as  

( ) ,11.373 7704.1
1

−β− == ffpfp  

where the spectral exponent ,7704.1=β  which relates to what is called 

Hurst exponent (Feder [19], Hurst et al. [24], Mandelbrot [29]). According 

to the relationship between the spectral exponent and the Hurst 

exponent such as (see e.g. Feder [19], Voss [35]) 

 ,12 +=β H  (20) 

we have Hurst exponent 3852.0=H  indicative of fractional Brownian 

motion (fBm, see Mandelbrot and Van Ness [28], Mandelbrot [29]). 

Furthermore, the correlation coefficient between increments of 

interaction quantity is in the form (Peitgen and Saupe [31]) 

.01471.012 12 <−=−= −HC  

This indicates a negative correlation of increments. If the interaction is 

increasing for some time ,1t  then it tends to decrease for time .12 tt >  

Obviously, the correlation coefficient value implies the anti-persistence 

fBm for interurban interactions, i.e., a growth at a time leads to a loss in 

the next stage, and vice versa. Anti-persistence may lead to erratical 

oscillation or even periodicity in interurban interactions, which will be 

examined by analysis of the quadrature spectrum. 
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Figure 3(b) shows the relationship between the frequency f and the 

quadrature spectrum density with an evident peak at .03125.0=f  This 

implies the presence of a definite periodicity. The corresponding period is 

around 321 == fT  years. The periodicity underlies the population 

growth trends of the two cities, but is less evident and is revealed by the 

above spectral analysis. In fact, the selfsame periodicity has been 

revealed from the process of urbanization of China (Chen and Zhou [12]). 

Maybe the spatio-temporal interaction of cities is dominated by the rules 

in dynamics of urbanization. Theoretical explanations for the periodicity 

in urban development can be also found in the Volterra-Lotka model of 

predator-prey ecological interaction (Dendrinos and Mullally [15]), which 

will be expounded and illuminated in our future work. 

p (f )= 373.11f -1.7704
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100

1000

10000

100000

1000000

0.01 0.1 1

f

p
(f

)

 
(a) Residual spectrum 

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.1 0.2 0.3 0.4 0.5

f

p
(f

)

f =0.03125

 
(b) Quadrature spectrum 

Figure 3. Cross spectrum analysis of spatial interaction between Beijing 

and Tianjin 1949-2000. 
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5. Conclusions 

This paper develops an expanded gravity model for analyzing the 

complex spatio-temporal process in inter-urban attraction. By recognizing 

that spatial interaction takes time to develop, a time lag variable is 

introduced into the conventional gravity model. The new model measures 

the spatial interaction over a time span, and thus transforms the classic 

gravity model into time-series analysis. The core of the new model is a 

correlation function that is calibrated by Fourier analysis. The analysis 

yields a cross power spectrum, which can be decomposed to a residual 

spectrum and a quadrature spectrum. In our case study, the analysis of 

residual spectrum reveals anti-persistence for interurban interactions, 

i.e., a growth at a time leads to a loss in the next stage, and vice versa; 

and the analysis of quadrature spectrum reveals periodicity in the 

interactions. 

The new model contains the information from the conventional 

model. In particular, when time lag is 0, the gravity value by the new 

model is simply the average of gravity values by the traditional model 

over the study period. With the time lag increases, the model reveals a 

declining spatial interaction that eventually becomes negligible after a 

period of time. The main benefits of the developed models are as follows. 

Firstly, it captures the essentials of spatial interaction in urban systems, 

and makes the notion of urban gravity to connect with the concept of 

generalized energy. Secondly, it presents a concept of urban gravity 

spectrum based on Fourier analysis, leading the pure spatial analysis 

based on interaction to spatio-temporal process analysis. Thirdly, it 

reveals asymmetry of spatial interactions between cities, which gives us a 

new insight into the spatial interaction of cities. The action from one city 

to another is not necessarily equal to the reaction in the reverse direction! 

Despite all the advantages, there are still some pending questions. One of 

the problems remaining to be solved next time, in a companion volume, is 

how to apply the new model to self-organized network of cities. After all, 

in the modern world of multi-centered society, spatial interaction can be 

observed among practically all pairs of major cities. 
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Appendix: Original data 

Table A. Population in Beijing and Tianjin 1949-2004 (in 10,000) 

Year Beijing Tianjin Year Beijing Tianjin 
1949 164.94 195.84 1977 452.84 347.19 
1950 161.60 199.70 1978 467.00 358.45 
1951 182.10 215.51 1979 495.21 380.57 
1952 194.30 225.41 1980 510.40 392.62 
1953 224.50 243.01 1981 522.60 400.75 
1954 257.50 260.63 1982 534.00 410.70 
1955 267.10 258.79 1983 547.10 419.57 
1956 299.30 273.73 1984 558.10 437.09 
1957 320.55 294.27 1985 572.50 445.69 
1958 350.17 310.62 1986 586.80 447.05 
1959 407.41 328.95 1987 601.00 454.68 
1960 455.60 341.34 1988 614.20 467.38 
1961 433.85 337.01 1989 630.60 476.62 
1962 420.66 333.12 1990 640.10 485.44 
1963 433.14 342.73 1991 648.40 490.32 
1964 442.56 349.64 1992 656.30 494.80 
1965 447.80 350.19 1993 668.70 499.98 
1966 433.68 344.36 1994 683.80 504.03 
1967 439.30 347.35 1995 696.90 507.94 
1968 430.69 344.94 1996 709.70 513.15 
1969 405.87 329.53 1997 722.70 515.36 
1970 403.15 313.28 1998 733.70 521.37 
1971 410.89 319.90 1999 747.20 528.68 
1972 421.55 328.99 2000 760.70 532.51 
1973 426.38 332.76 2001 780.10 535.22 
1974 432.96 335.59 2002 806.90 541.14 
1975 442.66 343.98 2003 830.80 549.74 
1976 447.04 345.54 2004 854.70 556.17 

Sources: (1) National Bureau of Statistics of China. 1999. Comprehensive Statistical Data 

and Materials on 50 Years of New China. Beijing: China Statistics Press. (2) Beijing 

Municipal Statistics Bureau. 2000-2005. Beijing Statistical Yearbook. Beijing: China 

Statistics Press. (3) Tianjin Municipal Statistics Bureau. 2000-2005. Tianjin Statistical 

Yearbook. Beijing: China Statistics Press. [in Chinese] 


