SOME WEIGHTED ZETA FUNCTIONS OF DIGRAPHS

IWAO SATO

Oyama National College of Technology Oyama, Tochigi 323-0806 Japan

e-mail: isato@oyama-ct.ac.jp

Abstract

We consider a weighted zeta function and a weighted L-function of a digraph D, and give determinant expressions of them. Furthermore, we show that a weighted zeta function and a weighted L-function of D are equal to that of the line digraph $\vec{L}(D)$ of D, respectively. As corollaries, we show that a zeta function and an L-function of D are equal to that of the line graph $\vec{L}(D)$ of D, respectively. Moreover, we express characteristic polynomials of a weighted matrix and the adjacency matrix of $\vec{L}(D)$ by those of D.

1. Introduction

Graphs and digraphs treated here are finite and simple. Let G = (V(G), E(G)) be a connected graph with vertex V(G) and edge set E(G), and D be the symmetric digraph corresponding to G. Furthermore, set $D(G) = \{(u, v), (v, u) | uv \in E(G)\}$. Note that D(G) = A(D). For $e = (u, v) \in D(G)$, let o(e) = u and t(e) = v. The inverse arc of e is denoted by e^{-1} . A path P of length n in G is a sequence $P = (e_1, ..., e_n)$ of n arcs such that

2000 Mathematics Subject Classification: 05C50, 15A15, 05C10, 05C25.

Keywords and phrases: characteristic polynomial, zeta function, line digraph, L-function, covering digraph.

Supported by Grant-in-Aid for Science Research (C).

Received June 26, 2008

 $e_i \in D(G)$, $t(e_i) = o(e_{i+1})$ $(1 \le i \le n-1)$. If $e_i = (v_{i-1}, v_i)$, $1 \le i \le n$, then we also denote $P = (v_0, v_1, ..., v_n)$. Set |P| = n, $o(P) = o(e_1)$ and $t(P) = t(e_n)$. Also, P is called an (o(P), t(P))-path. We say that a path $P = (e_1, ..., e_n)$ has a backtracking if $e_{i+1}^{-1} = e_i$ for some $i (1 \le i \le n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (e_1, ..., e_m)$ and $C_2 = (f_1, ..., f_m)$ are called *equivalent* if $f_j = e_{j+k}$ for all j. The inverse cycle of C is not equivalent to C. Let [C] be the equivalence class which contains a cycle C. Let C be the cycle obtained by going C times around a cycle C. Such a cycle is called a *multiple* of C and C cycle C is reduced if C has no backtracking. Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle.

The (*Ihara*) zeta function of a graph G is defined to be a formal power series of a variable u, by

$$\mathbf{Z}(G, u) = \mathbf{Z}_G(u) = \prod_{[C]} (1 - u^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G, and |C| is the length of C.

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [7]. In [7], he showed that their reciprocals are explicit polynomials. A zeta function of a regular graph G associated to a unitary representation of the fundamental group of G was developed by Sunada [17, 18]. Hashimoto [6] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is a polynomial:

$$\mathbf{Z}(G, u)^{-1} = (1 - u^2)^{r-1} \det(\mathbf{I} - u\mathbf{A}(G) + u^2(\mathbf{D} - \mathbf{I})),$$

where r and $\mathbf{A}(G)$ are the Betti number and the adjacency matrix of G, respectively, and $\mathbf{D} = (d_{ij})$ is the diagonal matrix with $d_{ii} = \deg v_i(V(G))$ = $\{v_1, ..., v_n\}$.

Various proofs of Bass' Theorem were given by Stark and Terras [16], Foata and Zeilberger [4] and Kotani and Sunada [10].

Cycles, reduced cycles and prime cycles in a simple digraph which is not symmetric are defined similarly to the case of a symmetric digraph. Let D be a connected digraph. Then, the zeta function of D is defined to be a formal power series of a variable u, by

$$\mathbf{Z}(D, u) = \mathbf{Z}_D(u) = \prod_{[C]} (1 - u^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of D.

Let D have n vertices $v_1, ..., v_n$. The adjacency matrix $\mathbf{A} = \mathbf{A}(D)$ = (a_{ij}) of D is the square matrix of order n such that $a_{ij} = 1$ if there exists an arc starting at the vertex v_i and terminating at the vertex v_j , and $a_{ij} = 0$ otherwise.

Bowen and Lanford [3] gave a determinant expression of the zeta function of a connected digraph D (c.f., [10, 11]).

Theorem 1 (Bowen and Lanford).
$$\mathbf{Z}(D, u)^{-1} = \det(\mathbf{I} - \mathbf{A}(D)u)$$
.

Kotani and Sunada [10] stated a connection between zeta functions of graphs and that of oriented line graphs. Let G be a connected non-circuit graph. Then the *oriented line graph* $\vec{L}(G) = (V_L, A_L)$ of G is defined as follows:

$$V_L = D(G); A_L = \{(e_1, e_2) \in D(G) \times D(G) | e_1^{-1} \neq e_2, t(e_1) = o(e_2) \}.$$

There exist no reduced cycles in the oriented line graph. Thus, there is a one-to-one correspondence between prime cycles in $\vec{L}(G)$ and prime, reduced cycles in G, and so

$$\mathbf{Z}(G, u) = \mathbf{Z}(\vec{L}(G), u).$$

Foata and Zeilberger [4] gave a new proof of Bass' Theorem by using the algebra of Lyndon words. Let X be a finite nonempty set, < be a total order in X, and X^* be the free monoid generated by X. Then the total

order < on X derive the lexicographic order < on X^* . A Lyndon word in X is defined to a nonempty word in X^* which is prime, i.e., not the power l^r of any other word l and any $r \ge 2$, and which is also minimal in the class of its cyclic rearrangements under < (see [9]). Let L denote the set of all Lyndon words in X.

Let **B** be a square matrix whose entries b(x, x') $(x, x' \in X)$ form a set of commuting variables. If $w = x_1x_2 \cdots x_m$ is a word in X^* , then define

$$\beta(w) = b(x_1, x_2)b(x_2, x_3)\cdots b(x_{m-1}, x_m)b(x_m, x_1).$$

Furthermore, let

$$\beta(L) = \prod_{l \in L} (1 - \beta(l)).$$

The following theorem played a central role in [4].

Theorem 2 (Foata and Zeilberger). $\beta(L) = \det(\mathbf{I} - \mathbf{B})$.

Foata and Zeilberger [4] gave a short proof of Amitsur's identity [1] by using Theorem 2.

Theorem 3 (Amitsur). For square matrices $A_1, ..., A_k$,

$$\det(\mathbf{I} - (\mathbf{A}_1 + \dots + \mathbf{A}_k)) = \prod_{l \in L} \det(\mathbf{I} - \mathbf{A}_l),$$

where the product runs over all Lyndon words in $\{1, ..., k\}$, and $\mathbf{A}_l = \mathbf{A}_{i_1} \cdots \mathbf{A}_{i_p}$ for $l = i_1 \cdots i_p$.

In Section 2, we consider a weighted zeta function of a digraph D, and give a determinant expression of it. In Section 3, we show that the weighted zeta function of the line digraph $\vec{L}(D)$ of D is equal to that of D. As corollaries, we express characteristic polynomials of a weighted matrix and the adjacency matrix of $\vec{L}(D)$ by those of D. In Section 4, we define a weighted L-function of D, and present its determinant expression. Furthermore, we show that the weighted L-function of $\vec{L}(D)$ of D is equal to that of D.

For a general theory of the representation of groups, the reader is referred to [15].

2. Weighted Zeta Functions of Digraphs

Let D be a connected digraph and $V(D) = \{v_1, ..., v_n\}$. Then we consider an $n \times n$ matrix $\mathbf{W} = \mathbf{W}(D) = (w_{ij})_{1 \le i, j \le n}$ with ij entry the nonzero variable w_{ij} if $(v_i, v_j) \in A(D)$, and $w_{ij} = 0$ otherwise. The matrix $\mathbf{W}(D)$ is called the *weighted matrix* of D. For each path $P = (v_{i_1}, ..., v_{i_r})$ of D, the *norm* w(P) of P is defined as follows: $w(P) = w_{i_1 i_2} w_{i_2 i_3} \cdots w_{i_{r-1} i_r}$. Furthermore, let $w(v_i, v_j) = w_{ij}, v_i, v_j \in V(D)$ and $w(e) = w_{ij}, e = (v_i, v_j) \in A(D)$. The *weighted zeta function* of D is defined by

$$\mathbf{Z}(D, w, u) = \prod_{[C]} (1 - w(C)u^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of D.

Theorem 4. Let D be a connected digraph. Then the reciprocal of the weighted zeta function of D is given by

$$\mathbf{Z}(D, w, u)^{-1} = \det(\mathbf{I} - u\mathbf{W}(D)).$$

Proof. Let $V(D) = \{v_1, ..., v_n\}$ and $v_1 < v_2 < \cdots < v_n$ be a total order of V(D). We consider the free monoid $V(D)^*$ generated by V(D), and the lexicographic order on $V(D)^*$ derived from <. If a cycle C is prime, then there exists a unique cycle in [C] which is a Lyndon word in V(D).

For
$$z \in V(D)^*$$
, let

$$\beta(z) = \begin{cases} w(z)u & \text{if } z \text{ is a prime cycle,} \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$\beta(L) = \prod_{l \in L} (1 - \beta(l)) = \prod_{[C]} (1 - w(C)u^{|C|}),$$

where [C] runs over all equivalence classes of prime cycles of D. Furthermore, we define variables $b(x, x')(x, x' \in V(D))$ as follows:

$$b(x, x') = \begin{cases} w(x, x')u & \text{if } (x, x') \in A(D), \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 2 implies that

$$\prod_{[C]} (1 - w(C)u^{|C|}) = \det(\mathbf{I} - \mathbf{B}) = \det(\mathbf{I} - u\mathbf{W}(D)).$$

The formula $\mathbf{Z}(D, w, u)^{-1} = \det(\mathbf{I} - u\mathbf{W}(D))$ is also a specialization of Theorem 3. Furthermore, Theorem 4 is obtained from [12, Theorem 4].

3. Weighted Zeta Functions of Line Graphs of Digraphs

Let D be a connected digraph and $\mathbf{W}(D)$ be a weighted matrix of D. Then the $line\ digraph\ \vec{L}(D)=(V_L,\ A_L)$ of D is defined as follows:

$$V_L = A(D);$$
 $A_L = \{(e_1, e_2) \in A(D) \times A(D) | t(e_1) = o(e_2)\}.$

Furthermore, we define the weighted matrix $\vec{\mathbf{W}} = \mathbf{W}(\vec{L}(D)) = (\vec{w}_L(e, f))$ of $\vec{L}(D)$ derived from $\mathbf{W}(D)$ as follows:

$$\vec{w}_L(e, f) \coloneqq \begin{cases} w(e) & \text{if } (e, f) \in A(\vec{L}(D)), \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 5. Let D be a connected digraph and $\mathbf{W}(D)$ be a weighted matrix of D. Then

$$\mathbf{Z}(\vec{L}(D), \, \vec{w}_L, \, u) = \mathbf{Z}(D, \, w, \, u).$$

Proof. At first, there is a one-to-one correspondence between prime cycles in $\vec{L}(D)$ and prime cycles in D. Let \vec{C} be the prime cycle of $\vec{L}(D)$ corresponding to a prime cycle C in D. Then we have

$$w(C) = \vec{w}_L(\vec{C}),$$

and so

$$\mathbf{Z}(\vec{L}(D), \, \vec{w}_L, \, u) = \mathbf{Z}(D, \, w, \, u).$$

Next, we give another proof of Theorem 5 by using Theorem 3.

Another proof of Theorem 5. Let $A(D) = \{e_1, ..., e_m\}$. For each arc $e_r \in A(D)$, let \mathbf{X}_{e_r} be the $m \times m$ matrix whose r row is the r row of $\vec{\mathbf{W}}(\vec{L}(D))$, and whose other rows are $\mathbf{0}$. Set $\mathbf{M} = \mathbf{I} - u \sum_{e \in A(D)} \mathbf{X}_e$. Then, for any sequence of arcs π ,

$$\det(\mathbf{I}_m - u\mathbf{X}_{\pi}) = \begin{cases} 1 - \vec{w}_L(\pi)u^{|\pi|} & \text{if π is a cycle,} \\ 1 & \text{otherwise,} \end{cases}$$

where $\mathbf{X}_{\pi}=\mathbf{X}_{e_1}\cdots\mathbf{X}_{e_r}$ for $\pi=(e_1\cdots e_r)$. By Theorems 3 and 4, we have

$$\mathbf{Z}(D, w, u)^{-1} = \det \mathbf{M} = \mathbf{Z}(\vec{L}(D), \vec{w}_L, u)^{-1}.$$

Corollary 1. Let D be a connected digraph with n vertices and l unoriented edges, and let $\mathbf{W}(D)$ be a weighted matrix of D. Then we have

$$\det(\mathbf{I}_l - u\mathbf{W}(\vec{L}(D))) = \det(\mathbf{I}_n - u\mathbf{W}(D)).$$

The *characteristic polynomial* of a square matrix **B** is defined by $\Phi(\mathbf{B}; \lambda) = \det(\lambda \mathbf{I} - \mathbf{B})$.

Corollary 2. Let D be a connected digraph with n vertices and l unoriented edges, and let $\mathbf{W}(D)$ be a weighted matrix of D. Then we have

$$\Phi(\mathbf{W}(\vec{L}(D)); \lambda) = \lambda^{l-n} \Phi(\mathbf{W}(D); \lambda).$$

Proof. By Corollary 1, we have

$$\det(\mathbf{I}_l - u\mathbf{W}(\vec{L}(D))) = \det(\mathbf{I}_n - u\mathbf{W}(D)),$$

and so

$$u^l \det\left(\frac{1}{u}\mathbf{I}_l - \mathbf{W}(\vec{L}(D))\right) = u^n \det\left(\frac{1}{u}\mathbf{I}_n - \mathbf{W}(D)\right).$$

Therefore the result follows.

For a connected digraph D, let $\vec{L}^n(D) = \vec{L}(\vec{L}^{n-1}(D))$, $n \ge 1$. We define

the weighted matrix $\mathbf{W}(\vec{L}^n(D)) = (\vec{w}_{\vec{L}^n}(e, f))$ of $\vec{L}^n(D)$ derived from $\mathbf{W}(\vec{L}^{n-1}(D))$ as follows:

$$\vec{w}_{L^n}(e, f) \coloneqq \begin{cases} \vec{w}_{L^{n-1}}(e) & \text{if } (e, f) \in A(\vec{L}^n(D)), \\ 0 & \text{otherwise.} \end{cases}$$

Corollary 3. Let D be a connected digraph and $\mathbf{W}(D)$ be a weighted matrix of D. Then we have

$$\mathbf{Z}(\vec{L}^{n}(D), \vec{w}_{L^{n}}, u) = \mathbf{Z}(D, w, u),$$

i.e.,

$$\det(\mathbf{I} - u\mathbf{W}(\vec{L}^n(D))) = \det(\mathbf{I} - u\mathbf{W}(D)).$$

Corollary 4. Let D be a connected digraph with n vertices, and let $\mathbf{W}(D)$ be a weighted matrix of D. Then we have

$$\Phi(\mathbf{W}(\vec{L}^n(D)); \lambda) = \lambda^{|A(\vec{L}^n(D))|-n} \Phi(\mathbf{W}(D); \lambda).$$

In the case that w(e) = 1 for any arc e of a digraph D, the weighted matrix $\mathbf{W}(D)$ is the adjacency matrix $\mathbf{A}(D)$ of D.

By Theorem 5 and Corollary 1, we obtain the following result.

Corollary 5. Let D be a connected digraph with n vertices and l unoriented edges. Then we have

$$\mathbf{Z}(\vec{L}(D), u) = \mathbf{Z}(D, u),$$

i.e.,

$$\det(\mathbf{I}_l - u\mathbf{A}(\vec{L}(D))) = \det(\mathbf{I}_n - u\mathbf{A}(D)).$$

Corollary 6. Let D be a connected digraph. Then, for any positive integer k, we have

$$\mathbf{Z}(\vec{L}^k(D), u) = \mathbf{Z}(D, u),$$

i.e.,

$$\det(\mathbf{I}_l - u\mathbf{A}(\vec{L}^k(D))) = \det(\mathbf{I}_n - u\mathbf{A}(D)).$$

Kotani and Sunada [10] showed that

$$\mathbf{Z}(D, u) = \exp\left(\sum_{k\geq 1} \frac{N_k}{k} u^k\right),\,$$

where N_k is the number of cycles with length k in D for each $k \ge 1$.

Corollary 7. Let D be a connected digraph and k be any positive integer. Furthermore, let $N_k^{(s)}$ be the number of cycles with length k in $\vec{L}^s(D)$ $(s \ge 1)$, where $N_k = N_k^{(1)}$. Then we have

$$N_k = N_k^{(s)}$$
 for any $s, k \ge 1$.

Let D be a digraph and $\mathbf{A}(D)$ be its adjacency matrix. Then the *characteristic polynomial* $\Phi(D;\lambda)$ of D is defined by $\Phi(D;\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}(D))$.

By Corollary 2, we obtain the following results (see [8, 13, 14]).

Corollary 8 (Lin, Ning and Zhang; Rosenfeld). Let D be a connected digraph with n vertices and l unoriented edges. Then we have

$$\Phi(\vec{L}(D);\,\lambda)=\lambda^{l-n}\Phi(D;\,\lambda).$$

Corollary 9 (Pakoński, Tanner and Życzkowski). Let G be a connected graph with n vertices and m unoriented edges, and let D_G be the symmetric digraph corresponding to G. Then we have

$$\Phi(\vec{L}(D_G); \lambda) = \lambda^{2m-n}\Phi(G; \lambda).$$

4. Weighted L-functions of Digraphs

Let D be a connected digraph, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \to \Gamma$ be an ordinary voltage assignment. We

define the *net voltage* $\alpha(P)$ of each path $P = (v_1, ..., v_l)$ of D by $\alpha(P) = \alpha(v_1, v_2) \cdots \alpha(v_{l-1}, v_l)$. Furthermore, let ρ be a representation of Γ and d be its degree. The *weighted L-function* of D associated to ρ and α is defined by

$$\mathbf{Z}_{D}(w, u, \rho, \alpha) = \prod_{[C]} \det(\mathbf{I}_{d} - \rho(\alpha(C))w(C)u^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of D.

For $g \in \Gamma$, let the matrix $\mathbf{W}_g = (w_{uv}^{(g)})$ be defined by

$$w_{uv}^{(g)} := \begin{cases} w(u, v) & \text{if } \alpha(u, v) = g \text{ and } (u, v) \in A(D), \\ 0 & \text{otherwise.} \end{cases}$$

Let $1 \le i$, $j \le n$. Then, the (i, j)-block $\mathbf{B}_{i, j}$ of a $dn \times dn$ matrix \mathbf{B} is the submatrix of \mathbf{B} consisting of d(i-1)+1, ..., di rows and d(j-1)+1, ..., dj columns.

Theorem 6. Let D be a connected digraph with l oriented edges, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \to \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ , and d be the degree of ρ .

For $m \geq 1$, let C_m be the set of all cycles of length m in D. Set

$$N_m(D, w) = N_m = \sum_{C \in \mathcal{C}_m} \operatorname{tr}(\rho(\alpha(C)) w(C)).$$

Then the reciprocal of the weighted L-function of D associated to ρ and α is

$$\mathbf{Z}_D(w, u, \rho, \alpha)^{-1} = \det \left(\mathbf{I} - u \sum_{h \in \Gamma} \rho(h) \otimes \mathbf{W}_h \right) = \exp \left(\sum_{m \ge 1} \frac{N_m}{m} u^m \right).$$

Proof. At first, by the Jacobi formula $\det \exp A = \exp \operatorname{tr} A$, we have

$$\mathbf{Z}_{D}(w, u, \rho, \alpha)^{-1} = \prod_{[C]} \det \exp\{-\log(\mathbf{I} - \rho(\alpha(C))w(C)u^{|C|})\}$$

$$= \prod_{[C]} \exp \operatorname{tr} \left(\sum_{m \ge 1} \frac{1}{m} \rho(\alpha(C^m)) w(C)^m u^{m|C|} \right)$$

$$= \exp \left(\sum_{[C]} \sum_{m \ge 1} \frac{1}{m} \operatorname{tr} (\rho(\alpha(C^m))) w(C)^m u^{m|C|} \right)$$

$$= \exp \left(\sum_{m \ge 1} \sum_{C} \frac{1}{m|C|} \operatorname{tr} (\rho(\alpha(C^m))) w(C)^m u^{m|C|} \right)$$

$$= \exp \left(\sum_{m \ge 1} \frac{1}{m} N_m u^m \right).$$

Next, let $V(D) = \{v_1, ..., v_n\}$ and consider the lexicographic order on $V(D) \times V(D)$ derived from a total order of V(D): $v_1 < v_2 < \cdots < v_n$. If (v_i, v_j) is the m-th pair under the above order, then we define the $nd \times nd$ matrix $\mathbf{A}_m = ((\mathbf{A}_m)_{p,q})_{1 \le p,q \le n}$ as follows:

$$(\mathbf{A}_m)_{p,\,q} = \begin{cases} \rho(\alpha(v_p,\,v_q))w(v_p,\,v_q)u & \text{ if } p=i,\,q=j \text{ and } (v_i,\,v_j) \in A(D), \\ \mathbf{0} & \text{ otherwise.} \end{cases}$$

Furthermore, let $\mathbf{B} = \mathbf{A}_1 + \dots + \mathbf{A}_k$, $k = n^2$. Then we have

$$\mathbf{B} = u \sum_{h} \mathbf{W}_{h} \otimes \rho(h).$$

Let L be the set of all Lyndon words in $V(D)\times V(D)$. Then we can also consider L as the set of all Lyndon words in $\{1,...,k\}$: $(v_{i_1},v_{j_1})\cdots (v_{i_q},v_{j_q})$ corresponds to $m_1m_2\cdots m_q$, where (v_{i_r},v_{j_r}) $(1\leq r\leq q)$ is the m_r -th pair. Theorem 3 implies that

$$\det(\mathbf{I}_{nd} - \mathbf{B}) = \prod_{l \in L} \det(\mathbf{I} - \mathbf{A}_l),$$

where $\mathbf{A}_l = \mathbf{A}_{i_1} \cdots \mathbf{A}_{i_p}$ for $l = i_1 \cdots i_p$. Note that $\det(\mathbf{I} - \mathbf{A}_l)$ is the alternating sum of the diagonal minors of A_l . Thus, we have

$$\det(\mathbf{I} - \mathbf{A}_l) = \begin{cases} \det(\mathbf{I} - \rho(\alpha(C))w(C)u^{|C|}) & \text{if } l \text{ is a prime cycle } C, \\ 1 & \text{otherwise.} \end{cases}$$

Therefore, it follows that

$$\mathbf{Z}_{D}(w, u, \rho, \alpha)^{-1} = \det \left(\mathbf{I}_{nd} - u \sum_{h \in \Gamma} \mathbf{W}_{h} \otimes \rho(h) \right)$$
$$= \det \left(\mathbf{I}_{nd} - u \sum_{h \in \Gamma} \rho(h) \otimes \mathbf{W}_{h} \right).$$

Hence the result is obtained.

Let D be a connected digraph and $\mathbf{W}(D)$ be a weighted matrix of D. Then we define the function $\alpha_{\vec{L}}:A(\vec{L}(D))\to \Gamma$ as follows: $\alpha_{\vec{L}}(e,f)=\alpha(e)$, $(e,f)\in A(\vec{L}(D))$. For each path $P=(e_1,...,e_r)$ of $\vec{L}(D)$, let $\alpha_{\vec{L}}(P)=\alpha(e_1)\cdots\alpha(e_r)$.

Now, we consider the weighted L-function $\mathbf{Z}_{\vec{L}(D)}(\vec{w}_L, u, \rho, \alpha_{\vec{L}})$ of the line digraph $\vec{L}(D)$ of D associated to ρ and $\alpha_{\vec{L}}$.

For $g \in \Gamma$, let the matrix $\vec{\mathbf{W}}_g = (\vec{w}_{ef}^{(g)})$ be defined by

$$\vec{w}_{ef}^{(g)} \coloneqq egin{cases} w(e) & ext{ if } \alpha(e) = g ext{ and } (e, f) \in A(\vec{L}(D)), \\ 0 & ext{ otherwise}. \end{cases}$$

Theorem 7. Let D be a connected digraph with l oriented edges, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \to \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ , and d be the degree of ρ . Then the reciprocal of the weighted L-function of D associated to ρ and α is

$$\mathbf{Z}_D(w, u, \rho, \alpha)^{-1} = \mathbf{Z}_{\vec{L}(D)}(\vec{w}, u, \rho, \alpha_{\vec{L}})^{-1} = \det \left(\mathbf{I} - u \sum_{h \in \Gamma} \rho(h) \otimes \vec{\mathbf{W}}_h\right).$$

Proof. Let \vec{C} be the prime cycle of $\vec{L}(D)$ corresponding to a prime cycle C in D. Then we have

$$\alpha(C) = \alpha_{\vec{L}}(\vec{C}), \text{ and } w(C) = \vec{w}_L(\vec{C}),$$

and so

$$\mathbf{Z}_{D}(w, u, \rho, \alpha)^{-1} = \mathbf{Z}_{\vec{L}(D)}(\vec{w}, u, \rho, \alpha_{\vec{L}})^{-1}.$$

Furthermore, by Theorem 6, we have

$$\mathbf{Z}_{\vec{L}(D)}(\vec{w}, u, \rho, \alpha_{\vec{L}})^{-1} = \det \left(\mathbf{I} - u \sum_{h \in \Gamma} \rho(h) \otimes \vec{\mathbf{W}}_h\right).$$

Note that Theorem 7 is also proved by using Theorem 3.

By Theorems 6 and 7, the following result holds.

Corollary 10. Let D be a connected digraph with n vertices and l oriented edges, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \to \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ , and d be the degree of ρ . Then

$$\det \left(\mathbf{I}_{ld} - u \sum_{h \in \Gamma} \rho(h) \otimes \vec{\mathbf{W}}_h \right) = \det \left(\mathbf{I}_{nd} - u \sum_{h \in \Gamma} \rho(h) \otimes \mathbf{W}_h \right).$$

By Theorems 6 and 7, the following result holds.

Corollary 11. Let D be a connected digraph, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \to \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ , and d be the degree of ρ . Then

$$N_k(\vec{L}(D), \vec{w}_L) = N_k(D, w) \ for \ any \ k \ge 1.$$

By Corollary 10, we obtain a generalization of Corollary 2.

Corollary 12. Let D be a connected digraph with n vertices and l unoriented edges, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \to \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ , and d be the degree of ρ . Then we have

$$\Phi\!\!\left(\sum_{h\in\Gamma}\rho(h)\otimes\vec{\mathbf{W}}_h;\,\boldsymbol{\lambda}\right) = \boldsymbol{\lambda}^{(l-n)d}\Phi\!\!\left(\sum_{h\in\Gamma}\rho(h)\otimes\mathbf{W}_h;\,\boldsymbol{\lambda}\right)\!\!.$$

5. Remark

We state a background for weighted *L*-functions of digraphs.

We can generalize the notion of a Γ -covering of a graph to a simple digraph. Let D be a connected digraph and Γ be a finite group. Then a mapping $\alpha:A(D)\to\Gamma$ is called an *ordinary voltage assignment* if $\alpha(v,u)=\alpha(u,v)^{-1}$ for each $(u,v)\in A(D)$ such that $(v,u)\in A(D)$. The pair (D,α) is called an *ordinary voltage digraph*. The *derived digraph* D^{α} of the ordinary voltage digraph (D,α) is defined as follows: $V(D^{\alpha})=V(D)\times\Gamma$ and $((u,h),(v,k))\in A(D^{\alpha})$ if and only if $(u,v)\in A(D)$ and $k=h\alpha(u,v)$. The digraph D^{α} is called a Γ -covering of D. Note that a Γ -covering of the symmetric digraph corresponding to a graph G is a Γ -covering of G.

Let D be a connected digraph, Γ be a finite group and $\alpha:A(D)\to \Gamma$ be an ordinary voltage assignment. In the Γ -covering D^{α} , set $v_g=(v,g)$ and $e_g=(e,g)$, where $v\in V(D)$, $e\in A(D)$, $g\in \Gamma$. For $e=(u,v)\in A(D)$, the arc e_g emanates from u_g and terminates at $v_{g\alpha(e)}$. Note that $e_g^{-1}=(e^{-1})_{g\alpha(e)}$.

Furthermore, we define the weighted matrix $\widetilde{\mathbf{W}} = \mathbf{W}(D^{\alpha}) = (\widetilde{w}(u_g, v_h))$ of D^{α} derived from $\mathbf{W}(D)$ as follows:

$$\widetilde{w}(u_g, v_h) \coloneqq \begin{cases} w(u, v) & \text{if } (u, v) \in A(D) \text{ and } h = g\alpha(u, v), \\ 0 & \text{otherwise.} \end{cases}$$

Then the following result holds.

Corollary 13. Let D be a connected digraph, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \to \Gamma$ be an ordinary voltage assignment. Then we have

$$\mathbf{Z}(D^{\alpha},\,\widetilde{w},\,u) = \prod_{\rho} \mathbf{Z}_D(w,\,u,\,\rho,\,\alpha)^{\mathrm{deg}\,\rho} \,=\, \mathbf{Z}(\vec{L}(D^{\alpha}),\,\widetilde{\tilde{w}},\,u)$$

$$= \prod_{\rho} \mathbf{Z}_{\vec{L}(D)}(\vec{w}_L, u, \rho, \alpha_{\vec{L}})^{\deg \rho},$$

where ρ runs over all irreducible representations of Γ .

Proof. By a similar proof to that of Theorem 5 in [11] and Theorem 7. Furthermore, the result is obtained from [12, Corollary 1].

References

- S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 9 (1980), 177-182.
- [2] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), 717-797.
- [3] R. Bowen and O. E. Lanford, Zeta functions of restrictions of the shift transformation, 1970 Global Analysis, Proc. Sympos. Pure Math. XIV, Berkeley, Calif., 1968, pp. 43-49, Amer. Math. Soc., Providence, R.I.
- [4] D. Foata and D. Zeilberger, A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), 2257-2274.
- [5] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
- [6] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups, Adv. Stud. Pure Math., Vol. 15, pp. 211-280, Academic Press, New York, 1989.
- [7] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
- [8] G. N. Lin, Guo Ning and F. J. Zhang, Characteristic polynomials of directed line graphs, and a class of directed graphs with the same spectrum, Kexue Tongbao 28 (1983), 1348-1350 (in Chinese).
- [9] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Mass., 1983.
- [10] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000), 7-25.
- [11] H. Mizuno and I. Sato, Zeta functions of digraphs, Linear Algebra Appl. 336 (2001), 181-190.
- [12] H. Mizuno and I. Sato, Weighted zeta functions of digraphs, Linear Algebra Appl. 355 (2002), 35-48.
- [13] P. Pakoński, G. Tanner and K. Życzkowski, Families of line-graphs and their quantization, J. Stat. Phys. 111 (2001), 41-48.
- [14] V. R. Rosenfeld, Some spectral properties of the arc-graph, Match 43 (2001), 41-48.
- [15] J. P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.

- [16] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124-165.
- [17] T. Sunada, L-functions in geometry and some applications, Lecture Notes in Math. 1201, pp. 266-284, Springer-Verlag, New York, 1986.
- $[18]\ \ \, T.$ Sunada, Fundamental Groups and Laplacians, Kinokuniya, Tokyo, 1988 (in Japanese).