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Abstract

We consider a weighted zeta function and a weighted L-function of a
digraph D, and give determinant expressions of them. Furthermore, we
show that a weighted zeta function and a weighted L-function of D are

equal to that of the line digraph Z(D) of D, respectively. As corollaries,
we show that a zeta function and an L-function of D are equal to that
of the line graph Z(D) of D, respectively. Moreover, we express
characteristic polynomials of a weighted matrix and the adjacency

matrix of L(D) by those of D.
1. Introduction

Graphs and digraphs treated here are finite and simple. Let G =
(V(G), E(G)) be a connected graph with vertex V(G) and edge set E(G),

and D be the symmetric digraph corresponding to G. Furthermore, set
D(G) = {(u, v), (v, u)|uv € E(G)}. Note that D(G) = A(D). For e = (u, v)
e D(G), let o(e) = u and #(e) = v. The inverse arc of e is denoted by e .
A path P of length n in G is a sequence P = (e, ..., e,) of n arcs such that
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e; € D(G), tle;) =o(e;;1) M <i<n-1). If ¢ = (v;_1,v;), 1 <i<n, then
we also denote P = (vg, vy, ..., U,). Set | P| =n, o(P) = o(e;) and ¢P) =
t(e,). Also, P is called an (o(P), {(P))-path. We say that a path P =

(e1, ..., e,) has a backtracking if e = e; for some i(1<i<n-1). A

(v, w) -path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles

Cy = (e1s - &p) and Cy = (fi, ..., fy) are called equivalent if f; = ej,,

for all j. The inverse cycle of C is not equivalent to C. Let [C] be the

equivalence class which contains a cycle C. Let B” be the cycle obtained
by going r times around a cycle B. Such a cycle is called a multiple of B. A
cycle C is reduced if C has no backtracking. Furthermore, a cycle C is
prime if it is not a multiple of a strictly smaller cycle.

The (Thara) zeta function of a graph G is defined to be a formal power

series of a variable u, by
ZG, u) = Zow) = [ J - ul €1
(C]

where [C] runs over all equivalence classes of prime, reduced cycles of G,
and | C| is the length of C.

Zeta functions of graphs started from zeta functions of regular graphs
by Ihara [7]. In [7], he showed that their reciprocals are explicit
polynomials. A zeta function of a regular graph G associated to a unitary
representation of the fundamental group of G was developed by Sunada
[17, 18]. Hashimoto [6] treated multivariable zeta functions of bipartite
graphs. Bass [2] generalized Thara’s result on the zeta function of a
regular graph to an irregular graph, and showed that its reciprocal is a
polynomial:

Z(G, u)™ = 1 -u?) 7 det(I - vA(G) + u?(D - 1)),

where r and A(G) are the Betti number and the adjacency matrix of G,

respectively, and D = (d;;) is the diagonal matrix with d;; = degv;(V(G)

={v1, ey Up})
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Various proofs of Bass’ Theorem were given by Stark and Terras [16],
Foata and Zeilberger [4] and Kotani and Sunada [10].

Cycles, reduced cycles and prime cycles in a simple digraph which is
not symmetric are defined similarly to the case of a symmetric digraph.
Let D be a connected digraph. Then, the zeta function of D is defined to be

a formal power series of a variable u, by

D, w) = Zp@) = [ [a-« N,
(€]

where [C] runs over all equivalence classes of prime cycles of D.

Let D have n vertices vy, ..., v,. The adjacency matrix A = A(D)
= (a;;) of D is the square matrix of order n such that a;; =1 if there
exists an arc starting at the vertex v; and terminating at the vertex v;,
and q;; = 0 otherwise.

Bowen and Lanford [3] gave a determinant expression of the zeta
function of a connected digraph D (c.f., [10, 11]).

Theorem 1 (Bowen and Lanford). Z(D, u)™! = det(I - A(D)w).

Kotani and Sunada [10] stated a connection between zeta functions of

graphs and that of oriented line graphs. Let G be a connected non-circuit
graph. Then the oriented line graph L(G) = (Vy,, A;) of G is defined as

follows:
Vi, = D(G); AL = {(e1, e3) € D(G)x D(G)|ef" # e, tler) = ofey)}

There exist no reduced cycles in the oriented line graph. Thus, there is a
one-to-one correspondence between prime cycles in E(G) and prime,

reduced cycles in G, and so
Z(G, u) = Z(L(G), w).

Foata and Zeilberger [4] gave a new proof of Bass’ Theorem by using
the algebra of Lyndon words. Let X be a finite nonempty set, < be a total

order in X, and X" be the free monoid generated by X. Then the total
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order < on X derive the lexicographic order < on X*. A Lyndon word in

X is defined to a nonempty word in X* which is prime, i.e., not the power
I" of any other word /[ and any r > 2, and which is also minimal in the
class of its cyclic rearrangements under < (see [9]). Let L denote the set

of all Lyndon words in X.
Let B be a square matrix whose entries b(x, x') (x, x' € X) form a set

of commuting variables. If w = x;xq -+ x,, is a word in X", then define

Bw) = blxy, x9)b(xg, x3) -+ b(%Xp_1, Xp, )0(X,,, %7).
Furthermore, let

B(L) = [ [ -B@).

leL
The following theorem played a central role in [4].

Theorem 2 (Foata and Zeilberger). B(L) = det(I — B).

Foata and Zeilberger [4] gave a short proof of Amitsur’s identity [1]
by using Theorem 2.

Theorem 3 (Amitsur). For square matrices Aq, ..., Ay,
det(I - (A] + -+ Ap)) = H det(I - A;),
leL

where the product runs over all Lyndon words in {1, ..., k}, and A; = Ay

oAy for 1=y i,

In Section 2, we consider a weighted zeta function of a digraph D, and

give a determinant expression of it. In Section 3, we show that the
weighted zeta function of the line digraph L(D) of D is equal to that of D.
As corollaries, we express characteristic polynomials of a weighted matrix
and the adjacency matrix of L(D) by those of D. In Section 4, we define a
weighted L-function of D, and present its determinant expression.
Furthermore, we show that the weighted L-function of L(D) of D is equal
to that of D.
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For a general theory of the representation of groups, the reader is
referred to [15].

2. Weighted Zeta Functions of Digraphs

Let D be a connected digraph and V(D) = {v;, ..., v,}. Then we
consider an nxn matrix W = W(D) = (w;j)<; j<, With ij entry the
nonzero variable w;; if (v;, v;) € A(D), and w;; = 0 otherwise. The matrix
W(D) is called the weighted matrix of D. For each path P = (v, ..., v; )
of D, the norm w(P) of P is defined as follows: w(P) = wy;, Wiy W;_ ;i -
Furthermore, let w(v;, vj) = w

ij» Vi, vj € V(D) and w(e) = wy;, e = (v;, vj)

e A(D). The weighted zeta function of D is defined by

Z(D, w, u) = H(l —w(C)ul €y,
[C]

where [C] runs over all equivalence classes of prime cycles of D.

Theorem 4. Let D be a connected digraph. Then the reciprocal of the
weighted zeta function of D is given by

Z(D, w, u)™" = det(I - uW(D)).
Proof. Let V(D) = {vy, ..., v,} and v; < vy < --- < v, be a total order
of V(D). We consider the free monoid V(D)" generated by V(D), and the
lexicographic order on V(D)* derived from <. If a cycle C is prime, then

there exists a unique cycle in [C] which is a Lyndon word in V(D).

For z € V(D)", let

w(z)u if z is a prime cycle,

e - |

0 otherwise.

Then we have

BL) = [ Ja-p@)=[]a-we)uh,

leL [C]
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where [C] runs over all equivalence classes of prime cycles of D.

Furthermore, we define variables b(x, x') (x, x' € V(D)) as follows:

b, ) w(x, xu if (x, x') € A(D),
x, x') = _
otherwise.

Theorem 2 implies that

[Ta- w(C)ul 1) = det(I - B) = det(I - uW(D)).
[C]

The formula Z(D, w, u)™! = det(I — uW(D)) is also a specialization of

Theorem 3. Furthermore, Theorem 4 is obtained from [12, Theorem 4].
3. Weighted Zeta Functions of Line Graphs of Digraphs
Let D be a connected digraph and W(D) be a weighted matrix of D.
Then the line digraph L(D) = (V, Ar) of D is defined as follows:
VL = A(D);, AL = {(e1, e2) € A(D)x A(D)|t(e1) = ofe)}.

Furthermore, we define the weighted matrix W = W(L(D)) = (i, (e, f))
of L(D) derived from W(D) as follows:

1o f) = {w(e) if (e, f) € AL(D)),

0 otherwise.

Theorem 5. Let D be a connected digraph and W(D) be a weighted
matrix of D. Then

Z(L(D), wr,, u) = ZD, w, w).
Proof. At first, there is a one-to-one correspondence between prime

cycles in L(D) and prime cycles in D. Let C be the prime cycle of L(D)

corresponding to a prime cycle Cin D. Then we have
w(C) = w,(C),
and so

Z(L(D), wy,, u) = Z(D, w, u).
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Next, we give another proof of Theorem 5 by using Theorem 3.

Another proof of Theorem 5. Let A(D) = {e, ..., e,,}. For each arc

e, € A(D), let X, be the mxm matrix whose r row is the r row of
W(L(D)), and whose other rows are 0. Set M =1 - uzeeA(D)Xe. Then,

for any sequence of arcs T,

— In| .o
det(I,, —uX,) = {1 wr(m)u if = is a cycle,
1 otherwise,

where X, = X, --X, for n = (e; ---e.). By Theorems 3 and 4, we have

Z(D, w, u) ' = det M = Z(L(D), Wy, u) .

Corollary 1. Let D be a connected digraph with n vertices and [
unoriented edges, and let W(D) be a weighted matrix of D. Then we have

det(I; — uW(L(D))) = det(I,, — uW(D)).

The characteristic polynomial of a square matrix B is defined by
®(B; 1) = det(AI — B).

Corollary 2. Let D be a connected digraph with n vertices and 1
unoriented edges, and let W(D) be a weighted matrix of D. Then we have

O(W(L(D)); 1) = X "0(W(D); ).
Proof. By Corollary 1, we have
det(I; — uW(L(D))) = det(I,, — uW(D)),
and so
u! det(%ll - W(E(D))) - det& I, - W(D)j.
Therefore the result follows.

For a connected digraph D, let L(D) = L(L"}(D)), n > 1. We define
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the weighted matrix W(L"(D)) = (@, (e, f)) of L"(D) derived from

W(L" (D)) as follows:

@ q (e, )= {wLn—l (e) if (e, f) € A(L"(D)),

0 otherwise.

Corollary 3. Let D be a connected digraph and W(D) be a weighted

matrix of D. Then we have
Z(L*(D), @y, u) = Z(D, w, u),
i.e.,
det(I - uW(L*(D))) = det(I — uW(D)).

Corollary 4. Let D be a connected digraph with n vertices, and let
W(D) be a weighted matrix of D. Then we have

(W (D)), 1) = A A" PD W (D), 1),

In the case that w(e) = 1 for any arc e of a digraph D, the weighted
matrix W(D) is the adjacency matrix A(D) of D.

By Theorem 5 and Corollary 1, we obtain the following result.

Corollary 5. Let D be a connected digraph with n vertices and 1

unoriented edges. Then we have
Z(L(D), u) = Z(D, u),
i.e.,
det(I; — uA(L(D))) = det(I,, — uA(D)).

Corollary 6. Let D be a connected digraph. Then, for any positive

integer k, we have

Z(L*(D), u) = Z(D, u),
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ie.,
det(I; — uA(L*(D))) = det(I,, — uA(D)).
Kotani and Sunada [10] showed that
_ Ni &
Z(D, u) = exp[kz;?u ],

where N, is the number of cycles with length % in D for each % > 1.

Corollary 7. Let D be a connected digraph and k be any positive
integer. Furthermore, let N}(es) be the number of cycles with length k in

L5(D) (s = 1), where N, = Ng). Then we have
N;, = N}(es) forany s, k > 1.

Let D be a digraph and A(D) be its adjacency matrix. Then
the characteristic polynomial ®(D; A) of D is defined by ®(D; A) =
det(\LI - A(D)).

By Corollary 2, we obtain the following results (see [8, 13, 14]).

Corollary 8 (Lin, Ning and Zhang; Rosenfeld). Let D be a connected

digraph with n vertices and [ unoriented edges. Then we have
O(L(D); 1) = X"a(D; 1).

Corollary 9 (Pakonski, Tanner and Zyczkowski). Let G be a

connected graph with n vertices and m unoriented edges, and let Dg be

the symmetric digraph corresponding to G. Then we have
O(L(Dg ); 1) = 22 a(G; 1),
4. Weighted L-functions of Digraphs

Let D be a connected digraph, W(D) be a weighted matrix of D, T be

a finite group and a : A(D) — ' be an ordinary voltage assignment. We
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define the net voltage o(P) of each path P = (vy, ..., v;) of D by a(P) =
a(vy, vy)---av;_1, v;). Furthermore, let p be a representation of I' and d

be its degree. The weighted L-function of D associated to p and a 1is
defined by

Zp(w, u, p, o) = | ] detlly - pla(C)w(C)ul
[€]

where [C] runs over all equivalence classes of prime cycles of D.

For g €T, let the matrix W, = (w&% ) be defined by

wi) = {w(u, v) if a(u, v) = g and (u, v) € A(D),

0 otherwise.

Let 1 < i, j < n. Then, the (i, j)-block B; ; of a dn xdn matrix B is
the submatrix of B consisting of d(i —1) +1, ..., di rows and d(j —1) +1,

..., dj columns.

Theorem 6. Let D be a connected digraph with | oriented edges,
W(D) be a weighted matrix of D, T be a finite group and o : A(D) - T
be an ordinary voltage assignment. Furthermore, let p be a representation
of T', and d be the degree of p.

For m > 1, let C,, be the set of all cycles of length m in D. Set

Nun(D, w) = Ny = 3 r(plo(C))(C).
CeC,y,

Then the reciprocal of the weighted L-function of D associated to p and o

s

Zpw, u, p, o) ! = det[I - uz p(h) ® Wh} = exp{ZN—n;”um}

hell m>1

Proof. At first, by the Jacobi formula det exp A = exp trA, we have

Zp(w, u, p, @) = [, det expi-Tog(I - pla(@)uw(C)ul )
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= ext| Y, X trlplalC (0
C
- ( erplaC™ Pu(C"u |
m>1 |
lE
= - )
Next, let V(D) = {v;, ..., v,} and consider the lexicographic order on

V(D) x V(D) derived from a total order of V(D): vy < vg < -+ <v,. If

(v;, v J) is the m-th pair under the above order, then we define the
nd x nd matrix A, = ((Ay,), ,)i<p q<n s follows:

(A ) _ p(OL(Up, vq))w(vp,vq)u ifp:i,q :jand (vi, vj)e A(D),
b.q 0 otherwise.

Furthermore, let B = A; +--- + Ay, k = n®. Then we have
B = uz W, ® p(h).
h

Let L be the set of all Lyndon words in V(D) x V(D). Then we can
also consider L as the set of all Lyndon words in {1, ..., k}: (v, v} )
(viq, vjq) corresponds to mymg ---my, where (v; ,v; ) (1 <r <gq) is the
m,. -th pair. Theorem 3 implies that

det(I,; - B) = H det(I - A;),
leL

where A; = A; --A; for [ =i -1, Note that det(I- A;) is the

b
alternating sum of the diagonal minors of A;. Thus, we have
B ICl e .

det(I- A;) = {det(l p(a(C))w(C)u'™") if [ is a prime cycle C,

1

otherwise.
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Therefore, it follows that

Zpw, u, p, o)t = det{lnd - uz W, ® p(h)}
hell

= det[Ind - uz p(h) ® WhJ

hel’

Hence the result is obtained.

Let D be a connected digraph and W(D) be a weighted matrix of D.
Then we define the function a; : A(L(D)) —» T as follows: o i(e, f)=ale),
(e, f) € A(L(D)). For each path P = (eq, ..., e,) of L(D), let aj(P)=

afer) - ofey).

Now, we consider the weighted L-function ZZ(D)(’I)L’ u, p, oci) of the

line digraph L(D) of D associated to p and « i

For g €T, let the matrix Wg = (zbgf)) be defined by

LT)S’Z) =

{w(e) if a(e) = g and (e, f) € A(L(D)),

0 otherwise.
Theorem 7. Let D be a connected digraph with [ oriented edges,
W(D) be a weighted matrix of D, T be a finite group and o : A(D) - T

be an ordinary voltage assignment. Furthermore, let p be a representation
of T, and d be the degree of p. Then the reciprocal of the weighted

L-function of D associated to p and o. is

I- uz p(h) ® Wh}

ZD(LU, u, p, OL)71 = Zi(D)(wv u, p, ai)71 = det(
hell

Proof. Let C be the prime cycle of Ii(D) corresponding to a prime

cycle Cin D. Then we have

a(C) = az(C), and w(C) = i (C),



SOME WEIGHTED ZETA FUNCTIONS OF DIGRAPHS 13

and so
-1 . -1
Zp(w, u, p,a) " = ZZ(D)(w’ u, p, oc]:) .

Furthermore, by Theorem 6, we have

ZE(D)(L_[), u, p, ai)_l = det{l - uz p(h) ® Wh}
hel’

Note that Theorem 7 is also proved by using Theorem 3.
By Theorems 6 and 7, the following result holds.

Corollary 10. Let D be a connected digraph with n vertices and 1
oriented edges, W(D) be a weighted matrix of D, T be a finite group and

a : A(D) - T be an ordinary voltage assignment. Furthermore, let p be a

representation of ', and d be the degree of p. Then

det(lld - uz p(h) ® Whj = de{lnd - uz p(h) ® Wh .

hel’ hel’
By Theorems 6 and 7, the following result holds.

Corollary 11. Let D be a connected digraph, W(D) be a weighted
matrix of D, T be a finite group and o : A(D) — T be an ordinary voltage

assignment. Furthermore, let p be a representation of T, and d be the
degree of p. Then

N,(L(D), ;) = Nip(D, w) for any k > 1.
By Corollary 10, we obtain a generalization of Corollary 2.

Corollary 12. Let D be a connected digraph with n vertices and 1
unoriented edges, W(D) be a weighted matrix of D, T be a finite group

and o : A(D) — T be an ordinary voltage assignment. Furthermore, let p

be a representation of T', and d be the degree of p. Then we have

q{z p(h) ® Wy, xj = x(l—”)dcp[z p(h) ® Wy, AJ.

hel’ hel’
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5. Remark

We state a background for weighted L-functions of digraphs.

We can generalize the notion of a I'-covering of a graph to a simple
digraph. Let D be a connected digraph and I' be a finite group. Then
a mapping o : A(D) — I' is called an ordinary voltage assignment if

a(v, u) = a(u, v)! for each (u, v) e A(D) such that (v, ) € A(D). The
pair (D, o) is called an ordinary voltage digraph. The derived digraph
D* of the ordinary voltage digraph (D, o) is defined as follows: V(D)
=V(D)xT and ((u, h), (v, k) € A(D*) if and only if (u, v) € A(D) and
k = ha(u, v). The digraph D% is called a I'-covering of D. Note that a

I'-covering of the symmetric digraph corresponding to a graph G is a

I'-covering of G.
Let D be a connected digraph, T be a finite group and a : A(D) > T
be an ordinary voltage assignment. In the I'-covering D%, set vy = (v, )

and e, = (e, g), where v € V(D), e € A(D), g € T. For e = (u, v) € A(D),

the arc e, emanates from u, and terminates at vg,(,). Note that eg,l =
-1
€ gafe):

Furthermore, we define the weighted matrix W = W(D%) =
(W(ug, vy)) of D* derived from W(D) as follows:

B, vy) w(u, v) if (u, v) € A(D)and h = ga(u, v),
Uy, = :
g "h 0 otherwise.

Then the following result holds.

Corollary 18. Let D be a connected digraph, W(D) be a weighted
matrix of D, T be a finite group and o : A(D) — T’ be an ordinary voltage
assignment. Then we have

Z(D%, w, u) = HZD(w, u, p, oc)degp = Z(L(D%), i, u)
p
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= [ 1 Zzm@n. v o ap)™”.
P

where p runs over all irreducible representations of T'.

Proof. By a similar proof to that of Theorem 5 in [11] and Theorem 7.

Furthermore, the result is obtained from [12, Corollary 1].
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