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Abstract 

We consider a weighted zeta function and a weighted L-function of a 
digraph D, and give determinant expressions of them. Furthermore, we 
show that a weighted zeta function and a weighted L-function of D are 

equal to that of the line digraph ( )DL  of D, respectively. As corollaries, 
we show that a zeta function and an L-function of D are equal to that            

of the line graph ( )DL  of D, respectively. Moreover, we express 
characteristic polynomials of a weighted matrix and the adjacency 

matrix of ( )DL  by those of D. 

1. Introduction 

Graphs and digraphs treated here are finite and simple. Let =G  
( ) ( )( )GEGV ,  be a connected graph with vertex ( )GV  and edge set ( ),GE  

and D be the symmetric digraph corresponding to G. Furthermore, set 
( ) ( ) ( ) ( ){ }.,,, GEuvuvvuGD ∈|=  Note that ( ) ( ).DAGD =  For ( )vue ,=  

( ),GD∈  let ( ) ueo =  and ( ) .vet =  The inverse arc of e is denoted by .1−e  

A path P of length n in G is a sequence ( )neeP ...,,1=  of n arcs such that 



IWAO SATO 2 

( ) ( ) ( ) ( ).11, 1 −≤≤=∈ + nieoetGDe iii  If ( ),,1 iii vve −=  ,1 ni ≤≤  then 
we also denote ( )....,,, 10 nvvvP =  Set ,nP =  ( ) ( )1eoPo =  and ( ) =Pt  
( ).net  Also, P is called an ( ) ( )( )PtPo , -path. We say that a path =P  

( )nee ...,,1  has a backtracking if ii ee =−
+
1
1  for some ( ).11 −≤≤ nii  A 

( )wv, -path is called a v-cycle (or v-closed path) if .wv =  

We introduce an equivalence relation between cycles. Two cycles 
( )meeC ...,,11 =  and ( )mffC ...,,12 =  are called equivalent if kjj ef +=  

for all j. The inverse cycle of C is not equivalent to C. Let [ ]C  be the 

equivalence class which contains a cycle C. Let rB  be the cycle obtained 
by going r times around a cycle B. Such a cycle is called a multiple of B. A 
cycle C is reduced if C has no backtracking. Furthermore, a cycle C is 
prime if it is not a multiple of a strictly smaller cycle. 

The (Ihara) zeta function of a graph G is defined to be a formal power 
series of a variable u, by 

( ) ( ) ( )
[ ]
∏ −−==

C

C
G uuuG ,1, 1ZZ  

where [ ]C  runs over all equivalence classes of prime, reduced cycles of G, 
and C  is the length of C. 

Zeta functions of graphs started from zeta functions of regular graphs 
by Ihara [7]. In [7], he showed that their reciprocals are explicit 
polynomials. A zeta function of a regular graph G associated to a unitary 
representation of the fundamental group of G was developed by Sunada 
[17, 18]. Hashimoto [6] treated multivariable zeta functions of bipartite 
graphs. Bass [2] generalized Ihara’s result on the zeta function of a 
regular graph to an irregular graph, and showed that its reciprocal is a 
polynomial: 

( ) ( ) ( ( ) ( )),det1, 2121 IDAIZ −+−−= −− uGuuuG r  

where r and ( )GA  are the Betti number and the adjacency matrix of G, 

respectively, and ( )ijd=D  is the diagonal matrix with ( ( )GVvd iii deg=  

{ })....,,1 nvv=  
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Various proofs of Bass’ Theorem were given by Stark and Terras [16], 
Foata and Zeilberger [4] and Kotani and Sunada [10]. 

Cycles, reduced cycles and prime cycles in a simple digraph which is 
not symmetric are defined similarly to the case of a symmetric digraph. 
Let D be a connected digraph. Then, the zeta function of D is defined to be 
a formal power series of a variable u, by 

( ) ( ) ( )
[ ]
∏ −−==

C

C
D uuuD ,1, 1ZZ  

where [ ]C  runs over all equivalence classes of prime cycles of D. 

Let D have n vertices ....,,1 nvv  The adjacency matrix ( )DAA =  
( )ija=  of D is the square matrix of order n such that 1=ija  if there 

exists an arc starting at the vertex iv  and terminating at the vertex ,jv  

and 0=ija  otherwise. 

Bowen and Lanford [3] gave a determinant expression of the zeta 
function of a connected digraph D (c.f., [10, 11]). 

Theorem 1 (Bowen and Lanford). ( ) ( )( ).det, 1 uDuD AIZ −=−  

Kotani and Sunada [10] stated a connection between zeta functions of 
graphs and that of oriented line graphs. Let G be a connected non-circuit 
graph. Then the oriented line graph ( ) ( )LL AVGL ,=  of G is defined as 
follows: 

( ) {( ) ( ) ( ) ( ) ( )}.,,; 212
1

121 eoeteeGDGDeeAGDV LL =≠|×∈== −  

There exist no reduced cycles in the oriented line graph. Thus, there is a 
one-to-one correspondence between prime cycles in ( )GL  and prime, 
reduced cycles in G, and so 

( ) ( ( ) ).,, uGLuG ZZ =  

Foata and Zeilberger [4] gave a new proof of Bass’ Theorem by using 
the algebra of Lyndon words. Let X be a finite nonempty set, < be a total 

order in X, and ∗X  be the free monoid generated by X. Then the total 
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order < on X derive the lexicographic order < on .∗X  A Lyndon word in 

X is defined to a nonempty word in ∗X  which is prime, i.e., not the power 
rl  of any other word l and any ,2≥r  and which is also minimal in the 

class of its cyclic rearrangements under < (see [9]). Let L denote the set 
of all Lyndon words in X. 

Let B be a square matrix whose entries ( ) ( )Xxxxxb ∈′′ ,,  form a set 

of commuting variables. If mxxxw 21=  is a word in ,∗X then define 

( ) ( ) ( ) ( ) ( ).,,,, 113221 xxbxxbxxbxxbw mmm−=β  

Furthermore, let 

( ) ( )( )∏
∈

β−=β
Ll

lL .1  

The following theorem played a central role in [4]. 

Theorem 2 (Foata and Zeilberger). ( ) ( ).BI −=β detL  

Foata and Zeilberger [4] gave a short proof of Amitsur’s identity [1] 
by using Theorem 2. 

Theorem 3 (Amitsur). For square matrices ,...,,1 kAA  

( )( ) ( ),detdet 1 ∏
∈

−=++−
Ll

lk AIAAI  

where the product runs over all Lyndon words in { },...,,1 k  and 1il AA =  

piA  for .1 piil =  

In Section 2, we consider a weighted zeta function of a digraph D, and 
give a determinant expression of it. In Section 3, we show that the 
weighted zeta function of the line digraph ( )DL  of D is equal to that of D. 
As corollaries, we express characteristic polynomials of a weighted matrix 
and the adjacency matrix of ( )DL  by those of D. In Section 4, we define a 
weighted L-function of D, and present its determinant expression. 
Furthermore, we show that the weighted L-function of ( )DL  of D is equal 
to that of D. 
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For a general theory of the representation of groups, the reader is 
referred to [15]. 

2. Weighted Zeta Functions of Digraphs 

Let D be a connected digraph and ( ) { }....,,1 nvvDV =  Then we 
consider an nn ×  matrix ( ) ( ) njiijwD ≤≤== ,1WW  with ij entry the 

nonzero variable ijw  if ( ) ( ),, DAvv ji ∈  and 0=ijw  otherwise. The matrix 

( )DW  is called the weighted matrix of D. For each path ( )rii vvP ...,,1=  

of D, the norm ( )Pw  of P is defined as follows: ( ) .13221 rr iiiiii wwwPw
−

=  

Furthermore, let ( ) ( )DVvvwvvw jiijji ∈= ,,,  and ( ) ( )jiij vvewew ,, ==  

( ).DA∈  The weighted zeta function of D is defined by 

( ) ( ( ) )
[ ]
∏ −−=

C

CuCwuwD ,1,, 1Z  

where [ ]C  runs over all equivalence classes of prime cycles of D. 

Theorem 4. Let D be a connected digraph. Then the reciprocal of the 
weighted zeta function of D is given by 

( ) ( )( ).det,, 1 DuuwD WIZ −=−  

Proof. Let ( ) { }nvvDV ...,,1=  and nvvv <<< 21  be a total order 

of ( ).DV  We consider the free monoid ( )∗DV  generated by ( ),DV  and the 

lexicographic order on ( )∗DV  derived from .<  If a cycle C is prime, then 

there exists a unique cycle in [ ]C  which is a Lyndon word in ( ).DV  

For ( ) ,∗∈ DVz  let 

( )
( )



=β

otherwise.0
cycle,primeaisif zuzw

z  

Then we have 

( ) ( )( ) ( ( ) )
[ ]

∏ ∏
∈

−=β−=β
Ll C

CuCwlL ,11  
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where [ ]C  runs over all equivalence classes of prime cycles of D. 
Furthermore, we define variables ( ) ( )( )DVxxxxb ∈′′ ,,  as follows: 

( ) ( ) ( ) ( )


 ∈′′

=′
otherwise.0

,,if,
,

DAxxuxxw
xxb  

Theorem 2 implies that 

( ( ) ) ( ) ( )( )
[ ]
∏ −=−=−

C

C DuuCw .detdet1 WIBI  

The formula ( ) ( )( )DuuwD WIZ −=− det,, 1  is also a specialization of 
Theorem 3. Furthermore, Theorem 4 is obtained from [12, Theorem 4]. 

3. Weighted Zeta Functions of Line Graphs of Digraphs 

Let D be a connected digraph and ( )DW  be a weighted matrix of D. 

Then the line digraph ( ) ( )LL AVDL ,=  of D is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ){ }.,; 2121 eoetDADAeeADAV LL =|×∈==  

Furthermore, we define the weighted matrix ( ( )) ( ( ))fewDL L ,== WW  

of ( )DL  derived from ( )DW  as follows: 

( ) ( ) ( ) ( ( ))


 ∈

=
otherwise.0

,,if:, DLAfeewfewL  

Theorem 5. Let D be a connected digraph and ( )DW  be a weighted 

matrix of D. Then 

( ( ) ) ( ).,,,, uwDuwDL L ZZ =  

Proof. At first, there is a one-to-one correspondence between prime 

cycles in ( )DL  and prime cycles in D. Let C  be the prime cycle of ( )DL  
corresponding to a prime cycle C in D. Then we have 

( ) ( ),CwCw L=  

and so 

( ( ) ) ( ).,,,, uwDuwDL L ZZ =  
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Next, we give another proof of Theorem 5 by using Theorem 3. 

Another proof of Theorem 5. Let ( ) { }....,,1 meeDA =  For each arc 

( ),DAer ∈  let reX  be the mm ×  matrix whose r row is the r row of 

( ( )),DLW  and whose other rows are 0. Set ( )∑ ∈
−= DAe eu .XIM  Then, 

for any sequence of arcs π, 

( ) ( )


 ππ−=−

π

π otherwise,1
cycle,aisif1det uwu Lm XI  

where ree XXX 1=π  for ( ).1 ree=π  By Theorems 3 and 4, we have 

( ) ( ( ) ) .,,det,, 11 −− == uwDLuwD LZMZ  

Corollary 1. Let D be a connected digraph with n vertices and l 
unoriented edges, and let ( )DW  be a weighted matrix of D. Then we have 

( ( ( ))) ( ( )).detdet DuDLu nl WIWI −=−  

The characteristic polynomial of a square matrix B is defined by 
( ) ( ).det; BIB −λ=λΦ  

Corollary 2. Let D be a connected digraph with n vertices and l 
unoriented edges, and let ( )DW  be a weighted matrix of D. Then we have 

( ( ( )) ) ( )( ).;; λΦλ=λΦ − DDL nl WW  

Proof. By Corollary 1, we have 

( ( ( ))) ( ( )),detdet DuDLu nl WIWI −=−  

and so 

( ( )) ( ) .1det1det 




 −=





 − DuuDLuu n

n
l

l WIWI  

Therefore the result follows. 

For a connected digraph D, let ( ) ( ( )) .1,1 ≥= − nDLLDL nn  We define 
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the weighted matrix ( ( )) ( ( ))fewDL nL
n ,=W  of ( )DLn  derived from 

( ( ))DLn 1−W  as follows: 

( ) ( ) ( ) ( ( ))


 ∈

= −

otherwise.0
,,if:, 1 DLAfeewfew

n
L

L
n

n  

Corollary 3. Let D be a connected digraph and ( )DW  be a weighted 

matrix of D. Then we have 

( ( ) ) ( ),,,,, uwDuwDL nL
n ZZ =  

i.e., 

( ( ( ))) ( )( ).detdet DuDLu n WIWI −=−  

Corollary 4. Let D be a connected digraph with n vertices, and let 
( )DW  be a weighted matrix of D. Then we have 

( ( ( )) ) ( ( )) ( )( ).;; λΦλ=λΦ − DDL nDLAn n
WW  

In the case that ( ) 1=ew  for any arc e of a digraph D, the weighted 

matrix ( )DW  is the adjacency matrix ( )DA  of D. 

By Theorem 5 and Corollary 1, we obtain the following result. 

Corollary 5. Let D be a connected digraph with n vertices and l 
unoriented edges. Then we have 

( ( ) ) ( ),,, uDuDL ZZ =  

i.e., 

( ( ( ))) ( )( ).detdet DuDLu nl AIAI −=−  

Corollary 6. Let D be a connected digraph. Then, for any positive 
integer k, we have 

( ( ) ) ( ),,, uDuDLk ZZ =  
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i.e., 

( ( ( ))) ( )( ).detdet DuDLu n
k

l AIAI −=−  

Kotani and Sunada [10] showed that 

( ) ,exp,
1











= ∑

≥k

kk uk
NuDZ  

where kN  is the number of cycles with length k in D for each .1≥k  

Corollary 7. Let D be a connected digraph and k be any positive 

integer. Furthermore, let ( )s
kN  be the number of cycles with length k in 

( ) ( ),1≥sDLs  where ( ).1
kk NN =  Then we have 

( )s
kk NN =   for any .1, ≥ks  

Let D be a digraph and ( )DA  be its adjacency matrix. Then                   

the characteristic polynomial ( )λΦ ;D  of D is defined by ( ) =λΦ ;D  

( )( ).det DAI −λ  

By Corollary 2, we obtain the following results (see [8, 13, 14]). 

Corollary 8 (Lin, Ning and Zhang; Rosenfeld). Let D be a connected 
digraph with n vertices and l unoriented edges. Then we have 

( ( ) ) ( ).;; λΦλ=λΦ − DDL nl  

Corollary 9 (Pakoński, Tanner and Życzkowski). Let G be a 
connected graph with n vertices and m unoriented edges, and let GD  be 

the symmetric digraph corresponding to G. Then we have 

( ( ) ) ( ).;; 2 λΦλ=λΦ − GDL nm
G  

4. Weighted L-functions of Digraphs 

Let D be a connected digraph, ( )DW  be a weighted matrix of D, Γ be 

a finite group and ( ) Γ→α DA:  be an ordinary voltage assignment. We 
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define the net voltage ( )Pα  of each path ( )lvvP ...,,1=  of D by ( ) =α P  

( ) ( ).,, 121 ll vvvv −αα  Furthermore, let ρ be a representation of Γ and d 

be its degree. The weighted L-function of D associated to ρ and α is 
defined by 

( ) ( ( )( ) ( ) )
[ ]
∏ −αρ−=αρ

C

C
dD uCwCuw ,det,,, 1IZ  

where [ ]C  runs over all equivalence classes of prime cycles of D. 

For ,Γ∈g  let the matrix ( ( ) )g
uvg w=W  be defined by 

( ) ( ) ( ) ( ) ( )


 ∈=α

=
otherwise.0

,,and,if,
:

DAvugvuvuw
w g

uv  

Let .,1 nji ≤≤  Then, the ( )ji, -block ji,B  of a dndn ×  matrix B is 

the submatrix of B consisting of ( ) diid ...,,11 +−  rows and ( ) ,11 +−jd  

dj...,  columns. 

Theorem 6. Let D be a connected digraph with l oriented edges, 
( )DW  be a weighted matrix of D, Γ be a finite group and ( ) Γ→α DA:  

be an ordinary voltage assignment. Furthermore, let ρ be a representation 
of Γ, and d be the degree of ρ. 

For ,1≥m  let mC  be the set of all cycles of length m in D. Set 

( ) ( )( ) ( )( )∑
∈

αρ==
mC

mm CwCNwDN
C

.tr,  

Then the reciprocal of the weighted L-function of D associated to ρ and α 
is 

( ) ( ) .expdet,,,
1

1










=










⊗ρ−=αρ ∑∑

≥Γ∈

−

m

mm

h
hD um

Nhuuw WIZ  

Proof. At first, by the Jacobi formula ,trexpexp det AA =  we have 

( ) { ( ( )( ) ( ) )}
[ ]∏ αρ−−=αρ −
C

C
D uCwCuw IZ logexpdet,,, 1  
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( ( )) ( )
[ ]∏ ∑ 






 αρ=

≥C m

Cmmm uCwCm1
1trexp  

( ( ( ))) ( )
[ ] 






 αρ= ∑ ∑ ≥C m

Cmmm uCwCm1
tr1exp  

( ( ( ))) ( ) 





 αρ= ∑ ∑≥1

tr1exp
m C

Cmmm uCwCCm  

.1exp
1 





= ∑ ≥m

m
muNm  

Next, let ( ) { }nvvDV ...,,1=  and consider the lexicographic order on 
( ) ( )DVDV ×  derived from a total order of ( ) .: 21 nvvvDV <<<  If 

( )ji vv ,  is the m-th pair under the above order, then we define the 

ndnd ×  matrix (( ) ) nqpqpmm ≤≤= ,1,AA  as follows: 

( )
( ( )) ( ) ( ) ( )



 ∈==αρ

=
otherwise.

,,and,if,,
, 0

A
DAvvjqipuvvwvv jiqpqp

qpm  

Furthermore, let ., 2
1 nkk =++= AAB  Then we have 

( )∑ ρ⊗=
h

h hu .WB  

Let L be the set of all Lyndon words in ( ) ( ).DVDV ×  Then we can 

also consider L as the set of all Lyndon words in { } ( )11 ,:...,,1 ji vvk  

( )qq ji vv ,  corresponds to ,21 qmmm  where ( ) ( )qrvv rr ji ≤≤1,  is the 

rm -th pair. Theorem 3 implies that 

( ) ( )∏
∈

−=−
Ll

lnd ,detdet AIBI  

where piil AAA 1=  for .1 piil =  Note that ( )lAI −det  is the 

alternating sum of the diagonal minors of .lA  Thus, we have 

( ) ( ( )( ) ( ) )




 αρ−=−

otherwise.1
,cycleprimeaisifdetdet CluCwC C

l
IAI  
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Therefore, it follows that 

( ) ( )









ρ⊗−=αρ ∑

Γ∈

−

h
hndD huuw WIZ det,,, 1  

( ) .det 









⊗ρ−= ∑

Γ∈h
hnd hu WI  

Hence the result is obtained. 

Let D be a connected digraph and ( )DW  be a weighted matrix of D. 

Then we define the function ( ( )) Γ→α DLAL :  as follows: ( ) ( ),, efeL α=α  

( ) ( ( ))., DLAfe ∈  For each path ( )reeP ...,,1=  of ( ),DL  let ( ) =α PL  

( ) ( ).1 ree αα  

Now, we consider the weighted L-function ( )( )LLDL uw αρ,,,Z  of the 

line digraph ( )DL  of D associated to ρ and .Lα  

For ,Γ∈g  let the matrix ( ( ) )g
efg w=W  be defined by 

( ) ( ) ( ) ( ) ( ( ))


 ∈=α=

otherwise.0
,,andif: DLAfegeeww g

ef  

Theorem 7. Let D be a connected digraph with l oriented edges, 
( )DW  be a weighted matrix of D, Γ be a finite group and ( ) Γ→α DA:  

be an ordinary voltage assignment. Furthermore, let ρ be a representation 
of Γ, and d be the degree of ρ. Then the reciprocal of the weighted               
L-function of D associated to ρ and α is 

( ) ( )( ) ( ) .det,,,,,, 11










⊗ρ−=αρ=αρ ∑

Γ∈

−−

h
hLDLD huuwuw WIZZ  

Proof. Let C  be the prime cycle of ( )DL  corresponding to a prime 

cycle C in D. Then we have 

( ) ( ),CC Lα=α   and  ( ) ( ),CwCw L=  
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and so 

( ) ( )( ) .,,,,,, 11 −− αρ=αρ LDLD uwuw ZZ  

Furthermore, by Theorem 6, we have 

( )( ) ( ) .det,,, 1










⊗ρ−=αρ ∑

Γ∈

−

h
hLDL huuw WIZ  

Note that Theorem 7 is also proved by using Theorem 3. 

By Theorems 6 and 7, the following result holds. 

Corollary 10. Let D be a connected digraph with n vertices and l 
oriented edges, ( )DW  be a weighted matrix of D, Γ be a finite group and 

( ) Γ→α DA:  be an ordinary voltage assignment. Furthermore, let ρ be a 

representation of Γ, and d be the degree of ρ. Then 

( ) ( ) .detdet 









⊗ρ−=










⊗ρ− ∑∑

Γ∈Γ∈ h
hnd

h
hld huhu WIWI  

By Theorems 6 and 7, the following result holds. 

Corollary 11. Let D be a connected digraph, ( )DW  be a weighted 

matrix of D, Γ be a finite group and ( ) Γ→α DA:  be an ordinary voltage 

assignment. Furthermore, let ρ be a representation of Γ, and d be the 
degree of ρ. Then 

( ( ) ) ( )wDNwDLN kLk ,, =  for any .1≥k  

By Corollary 10, we obtain a generalization of Corollary 2. 

Corollary 12. Let D be a connected digraph with n vertices and l 
unoriented edges, ( )DW  be a weighted matrix of D, Γ be a finite group 

and ( ) Γ→α DA:  be an ordinary voltage assignment. Furthermore, let ρ 

be a representation of Γ, and d be the degree of ρ. Then we have 

( ) ( ) ( ) .;; 









λ⊗ρΦλ=










λ⊗ρΦ ∑∑

Γ∈

−

Γ∈ h
h

dnl

h
h hh WW  
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5. Remark 

We state a background for weighted L-functions of digraphs. 

We can generalize the notion of a Γ-covering of a graph to a simple 
digraph. Let D be a connected digraph and Γ be a finite group. Then             
a mapping ( ) Γ→α DA:  is called an ordinary voltage assignment if 

( ) ( ) 1,, −α=α vuuv  for each ( ) ( )DAvu ∈,  such that ( ) ( )., DAuv ∈  The 
pair ( )α,D  is called an ordinary voltage digraph. The derived digraph 

αD  of the ordinary voltage digraph ( )α,D  is defined as follows: ( )αDV  

( ) Γ×= DV  and ( ) ( )( ) ( )α∈ DAkvhu ,,,  if and only if ( ) ( )DAvu ∈,  and 

( )., vuhk α=  The digraph αD  is called a Γ-covering of D. Note that a             

Γ-covering of the symmetric digraph corresponding to a graph G is a             
Γ-covering of G. 

Let D be a connected digraph, Γ be a finite group and ( ) Γ→α DA:  

be an ordinary voltage assignment. In the Γ-covering ,αD  set ( )gvvg ,=  

and ( ),, geeg =  where ( ) ( ) .,, Γ∈∈∈ gDAeDVv  For ( ) ( ),, DAvue ∈=  

the arc ge  emanates from gu  and terminates at ( ).egv α  Note that =−1
ge  

( ) ( ).
1

ege α
−  

Furthermore, we define the weighted matrix ( ) == αDWW~  

( ( ))hg vuw ,~  of αD  derived from ( )DW  as follows: 

( )
( ) ( ) ( ) ( )



 α=∈

=
otherwise.0

,,and,if,
:,~ vughDAvuvuw

vuw hg  

Then the following result holds. 

Corollary 13. Let D be a connected digraph, ( )DW  be a weighted 

matrix of D, Γ be a finite group and ( ) Γ→α DA:  be an ordinary voltage 

assignment. Then we have 

( ) ( ) ( ( ) )∏
ρ

αρα =αρ= uwDLuwuwD D ,~,,,,,~, deg ZZZ  
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( )( )∏
ρ

ραρ= ,,,, deg
LLDL uwZ  

where ρ runs over all irreducible representations of Γ. 

Proof. By a similar proof to that of Theorem 5 in [11] and Theorem 7. 
Furthermore, the result is obtained from [12, Corollary 1]. 
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