SOME WEIGHTED ZETA FUNCTIONS OF DIGRAPHS

IWAO SATO

Oyama National College of Technology
Oyama, Tochigi 323-0806
Japan
e-mail: isato@oyama-ct.ac.jp

Abstract

We consider a weighted zeta function and a weighted L-function of a digraph D, and give determinant expressions of them. Furthermore, we show that a weighted zeta function and a weighted L-function of D are equal to that of the line digraph $\vec{L}(D)$ of D, respectively. As corollaries, we show that a zeta function and an L-function of D are equal to that of the line graph $\vec{L}(D)$ of D, respectively. Moreover, we express characteristic polynomials of a weighted matrix and the adjacency matrix of $\vec{L}(D)$ by those of D.

1. Introduction

Graphs and digraphs treated here are finite and simple. Let $G=$ $(V(G), E(G))$ be a connected graph with vertex $V(G)$ and edge set $E(G)$, and D be the symmetric digraph corresponding to G. Furthermore, set $D(G)=\{(u, v),(v, u) \mid u v \in E(G)\}$. Note that $D(G)=A(D)$. For $e=(u, v)$ $\in D(G)$, let $o(e)=u$ and $t(e)=v$. The inverse arc of e is denoted by e^{-1}. A path P of length n in G is a sequence $P=\left(e_{1}, \ldots, e_{n}\right)$ of n arcs such that 2000 Mathematics Subject Classification: 05C50, 15A15, 05C10, 05C25.

Keywords and phrases: characteristic polynomial, zeta function, line digraph, L-function, covering digraph.
$e_{i} \in D(G), t\left(e_{i}\right)=o\left(e_{i+1}\right)(1 \leq i \leq n-1)$. If $e_{i}=\left(v_{i-1}, v_{i}\right), 1 \leq i \leq n$, then we also denote $P=\left(v_{0}, v_{1}, \ldots, v_{n}\right)$. Set $|P|=n, o(P)=o\left(e_{1}\right)$ and $t(P)=$ $t\left(e_{n}\right)$. Also, P is called an $(o(P), t(P))$-path. We say that a path $P=$ $\left(e_{1}, \ldots, e_{n}\right)$ has a backtracking if $e_{i+1}^{-1}=e_{i}$ for some $i(1 \leq i \leq n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v=w$.

We introduce an equivalence relation between cycles. Two cycles $C_{1}=\left(e_{1}, \ldots, e_{m}\right)$ and $C_{2}=\left(f_{1}, \ldots, f_{m}\right)$ are called equivalent if $f_{j}=e_{j+k}$ for all j. The inverse cycle of C is not equivalent to C. Let $[C]$ be the equivalence class which contains a cycle C. Let B^{r} be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple of B. A cycle C is reduced if C has no backtracking. Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle.

The (Ihara) zeta function of a graph G is defined to be a formal power series of a variable u, by

$$
\mathbf{Z}(G, u)=\mathbf{Z}_{G}(u)=\prod_{[C]}\left(1-u^{|C|}\right)^{-1},
$$

where $[C]$ runs over all equivalence classes of prime, reduced cycles of G, and $|C|$ is the length of C.

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [7]. In [7], he showed that their reciprocals are explicit polynomials. A zeta function of a regular graph G associated to a unitary representation of the fundamental group of G was developed by Sunada [17, 18]. Hashimoto [6] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is a polynomial:

$$
\mathbf{Z}(G, u)^{-1}=\left(1-u^{2}\right)^{r-1} \operatorname{det}\left(\mathbf{I}-u \mathbf{A}(G)+u^{2}(\mathbf{D}-\mathbf{I})\right),
$$

where r and $\mathbf{A}(G)$ are the Betti number and the adjacency matrix of G, respectively, and $\mathbf{D}=\left(d_{i j}\right)$ is the diagonal matrix with $d_{i i}=\operatorname{deg} v_{i}(V(G)$ $=\left\{v_{1}, \ldots, v_{n}\right\}$).

Various proofs of Bass' Theorem were given by Stark and Terras [16], Foata and Zeilberger [4] and Kotani and Sunada [10].

Cycles, reduced cycles and prime cycles in a simple digraph which is not symmetric are defined similarly to the case of a symmetric digraph. Let D be a connected digraph. Then, the zeta function of D is defined to be a formal power series of a variable u, by

$$
\mathbf{Z}(D, u)=\mathbf{Z}_{D}(u)=\prod_{[C]}\left(1-u^{|C|}\right)^{-1}
$$

where $[C]$ runs over all equivalence classes of prime cycles of D.
Let D have n vertices v_{1}, \ldots, v_{n}. The adjacency matrix $\mathbf{A}=\mathbf{A}(D)$ $=\left(a_{i j}\right)$ of D is the square matrix of order n such that $a_{i j}=1$ if there exists an arc starting at the vertex v_{i} and terminating at the vertex v_{j}, and $a_{i j}=0$ otherwise.

Bowen and Lanford [3] gave a determinant expression of the zeta function of a connected digraph D (c.f., [10, 11]).

Theorem 1 (Bowen and Lanford). $\mathbf{Z}(D, u)^{-1}=\operatorname{det}(\mathbf{I}-\mathbf{A}(D) u)$.
Kotani and Sunada [10] stated a connection between zeta functions of graphs and that of oriented line graphs. Let G be a connected non-circuit graph. Then the oriented line graph $\vec{L}(G)=\left(V_{L}, A_{L}\right)$ of G is defined as follows:

$$
V_{L}=D(G) ; A_{L}=\left\{\left(e_{1}, e_{2}\right) \in D(G) \times D(G) \mid e_{1}^{-1} \neq e_{2}, t\left(e_{1}\right)=o\left(e_{2}\right)\right\}
$$

There exist no reduced cycles in the oriented line graph. Thus, there is a one-to-one correspondence between prime cycles in $\vec{L}(G)$ and prime, reduced cycles in G, and so

$$
\mathbf{Z}(G, u)=\mathbf{Z}(\vec{L}(G), u)
$$

Foata and Zeilberger [4] gave a new proof of Bass' Theorem by using the algebra of Lyndon words. Let X be a finite nonempty set, < be a total order in X, and X^{*} be the free monoid generated by X. Then the total
order < on X derive the lexicographic order < on X^{*}. A Lyndon word in X is defined to a nonempty word in X^{*} which is prime, i.e., not the power l^{r} of any other word l and any $r \geq 2$, and which is also minimal in the class of its cyclic rearrangements under < (see [9]). Let L denote the set of all Lyndon words in X.

Let \mathbf{B} be a square matrix whose entries $b\left(x, x^{\prime}\right)\left(x, x^{\prime} \in X\right)$ form a set of commuting variables. If $w=x_{1} x_{2} \cdots x_{m}$ is a word in X^{*}, then define

$$
\beta(w)=b\left(x_{1}, x_{2}\right) b\left(x_{2}, x_{3}\right) \cdots b\left(x_{m-1}, x_{m}\right) b\left(x_{m}, x_{1}\right) .
$$

Furthermore, let

$$
\beta(L)=\prod_{l \in L}(1-\beta(l)) .
$$

The following theorem played a central role in [4].
Theorem 2 (Foata and Zeilberger). $\beta(L)=\operatorname{det}(\mathbf{I}-\mathbf{B})$.
Foata and Zeilberger [4] gave a short proof of Amitsur's identity [1] by using Theorem 2.

Theorem 3 (Amitsur). For square matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$,

$$
\operatorname{det}\left(\mathbf{I}-\left(\mathbf{A}_{1}+\cdots+\mathbf{A}_{k}\right)\right)=\prod_{l \in L} \operatorname{det}\left(\mathbf{I}-\mathbf{A}_{l}\right),
$$

where the product runs over all Lyndon words in $\{1, \ldots, k\}$, and $\mathbf{A}_{l}=\mathbf{A}_{i_{1}}$ $\cdots \mathbf{A}_{i_{p}}$ for $l=i_{1} \cdots i_{p}$.

In Section 2, we consider a weighted zeta function of a digraph D, and give a determinant expression of it. In Section 3, we show that the weighted zeta function of the line digraph $\vec{L}(D)$ of D is equal to that of D. As corollaries, we express characteristic polynomials of a weighted matrix and the adjacency matrix of $\vec{L}(D)$ by those of D. In Section 4, we define a weighted L-function of D, and present its determinant expression. Furthermore, we show that the weighted L-function of $\vec{L}(D)$ of D is equal to that of D.

For a general theory of the representation of groups, the reader is referred to [15].

2. Weighted Zeta Functions of Digraphs

Let D be a connected digraph and $V(D)=\left\{v_{1}, \ldots, v_{n}\right\}$. Then we consider an $n \times n$ matrix $\mathbf{W}=\mathbf{W}(D)=\left(w_{i j}\right)_{1 \leq i, j \leq n}$ with $i j$ entry the nonzero variable $w_{i j}$ if $\left(v_{i}, v_{j}\right) \in A(D)$, and $w_{i j}=0$ otherwise. The matrix $\mathbf{W}(D)$ is called the weighted matrix of D. For each path $P=\left(v_{i_{1}}, \ldots, v_{i_{r}}\right)$ of D, the norm $w(P)$ of P is defined as follows: $w(P)=w_{i_{1} i_{2}} w_{i_{2} i_{3}} \cdots w_{i_{r-1} i_{r}}$. Furthermore, let $w\left(v_{i}, v_{j}\right)=w_{i j}, v_{i}, v_{j} \in V(D)$ and $w(e)=w_{i j}, e=\left(v_{i}, v_{j}\right)$ $\in A(D)$. The weighted zeta function of D is defined by

$$
\mathbf{Z}(D, w, u)=\prod_{[C]}\left(1-w(C) u^{|C|}\right)^{-1}
$$

where $[C]$ runs over all equivalence classes of prime cycles of D.
Theorem 4. Let D be a connected digraph. Then the reciprocal of the weighted zeta function of D is given by

$$
\mathbf{Z}(D, w, u)^{-1}=\operatorname{det}(\mathbf{I}-u \mathbf{W}(D))
$$

Proof. Let $V(D)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $v_{1}<v_{2}<\cdots<v_{n}$ be a total order of $V(D)$. We consider the free monoid $V(D)^{*}$ generated by $V(D)$, and the lexicographic order on $V(D)^{*}$ derived from $<$. If a cycle C is prime, then there exists a unique cycle in $[C]$ which is a Lyndon word in $V(D)$.

For $z \in V(D)^{*}$, let

$$
\beta(z)= \begin{cases}w(z) u & \text { if } z \text { is a prime cycle } \\ 0 & \text { otherwise }\end{cases}
$$

Then we have

$$
\beta(L)=\prod_{l \in L}(1-\beta(l))=\prod_{[C]}\left(1-w(C) u^{|C|}\right)
$$

where [C] runs over all equivalence classes of prime cycles of D. Furthermore, we define variables $b\left(x, x^{\prime}\right)\left(x, x^{\prime} \in V(D)\right)$ as follows:

$$
b\left(x, x^{\prime}\right)= \begin{cases}w\left(x, x^{\prime}\right) u & \text { if }\left(x, x^{\prime}\right) \in A(D) \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 2 implies that

$$
\prod_{[C]}\left(1-w(C) u^{|C|}\right)=\operatorname{det}(\mathbf{I}-\mathbf{B})=\operatorname{det}(\mathbf{I}-u \mathbf{W}(D))
$$

The formula $\mathbf{Z}(D, w, u)^{-1}=\operatorname{det}(\mathbf{I}-u \mathbf{W}(D))$ is also a specialization of Theorem 3. Furthermore, Theorem 4 is obtained from [12, Theorem 4].

3. Weighted Zeta Functions of Line Graphs of Digraphs

Let D be a connected digraph and $\mathbf{W}(D)$ be a weighted matrix of D. Then the line digraph $\vec{L}(D)=\left(V_{L}, A_{L}\right)$ of D is defined as follows:

$$
V_{L}=A(D) ; \quad A_{L}=\left\{\left(e_{1}, e_{2}\right) \in A(D) \times A(D) \mid t\left(e_{1}\right)=o\left(e_{2}\right)\right\}
$$

Furthermore, we define the weighted matrix $\overrightarrow{\mathbf{W}}=\mathbf{W}(\vec{L}(D))=\left(\vec{w}_{L}(e, f)\right)$ of $\vec{L}(D)$ derived from $\mathbf{W}(D)$ as follows:

$$
\vec{w}_{L}(e, f):= \begin{cases}w(e) & \text { if }(e, f) \in A(\vec{L}(D)) \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 5. Let D be a connected digraph and $\mathbf{W}(D)$ be a weighted matrix of D. Then

$$
\mathbf{Z}\left(\vec{L}(D), \vec{w}_{L}, u\right)=\mathbf{Z}(D, w, u)
$$

Proof. At first, there is a one-to-one correspondence between prime cycles in $\vec{L}(D)$ and prime cycles in D. Let \vec{C} be the prime cycle of $\vec{L}(D)$ corresponding to a prime cycle C in D. Then we have

$$
w(C)=\vec{w}_{L}(\vec{C})
$$

and so

$$
\mathbf{Z}\left(\vec{L}(D), \vec{w}_{L}, u\right)=\mathbf{Z}(D, w, u)
$$

Next, we give another proof of Theorem 5 by using Theorem 3.
Another proof of Theorem 5. Let $A(D)=\left\{e_{1}, \ldots, e_{m}\right\}$. For each arc $e_{r} \in A(D)$, let $\mathbf{X}_{e_{r}}$ be the $m \times m$ matrix whose r row is the r row of $\overrightarrow{\mathbf{W}}(\vec{L}(D))$, and whose other rows are $\mathbf{0}$. Set $\mathbf{M}=\mathbf{I}-u \sum_{e \in A(D)} \mathbf{X}_{e}$. Then, for any sequence of $\operatorname{arcs} \pi$,

$$
\operatorname{det}\left(\mathbf{I}_{m}-u \mathbf{X}_{\pi}\right)= \begin{cases}1-\vec{w}_{L}(\pi) u^{|\pi|} & \text { if } \pi \text { is a cycle } \\ 1 & \text { otherwise }\end{cases}
$$

where $\mathbf{X}_{\pi}=\mathbf{X}_{e_{1}} \cdots \mathbf{X}_{e_{r}}$ for $\pi=\left(e_{1} \cdots e_{r}\right)$. By Theorems 3 and 4 , we have

$$
\mathbf{Z}(D, w, u)^{-1}=\operatorname{det} \mathbf{M}=\mathbf{Z}\left(\vec{L}(D), \vec{w}_{L}, u\right)^{-1}
$$

Corollary 1. Let D be a connected digraph with n vertices and l unoriented edges, and let $\mathbf{W}(D)$ be a weighted matrix of D. Then we have

$$
\operatorname{det}\left(\mathbf{I}_{l}-u \mathbf{W}(\vec{L}(D))\right)=\operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{W}(D)\right)
$$

The characteristic polynomial of a square matrix \mathbf{B} is defined by $\Phi(\mathbf{B} ; \lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{B})$.

Corollary 2. Let D be a connected digraph with n vertices and l unoriented edges, and let $\mathbf{W}(D)$ be a weighted matrix of D. Then we have

$$
\Phi(\mathbf{W}(\vec{L}(D)) ; \lambda)=\lambda^{l-n} \Phi(\mathbf{W}(D) ; \lambda)
$$

Proof. By Corollary 1, we have

$$
\operatorname{det}\left(\mathbf{I}_{l}-u \mathbf{W}(\vec{L}(D))\right)=\operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{W}(D)\right)
$$

and so

$$
u^{l} \operatorname{det}\left(\frac{1}{u} \mathbf{I}_{l}-\mathbf{W}(\vec{L}(D))\right)=u^{n} \operatorname{det}\left(\frac{1}{u} \mathbf{I}_{n}-\mathbf{W}(D)\right)
$$

Therefore the result follows.
For a connected digraph D, let $\vec{L}^{n}(D)=\vec{L}\left(\vec{L}^{n-1}(D)\right), n \geq 1$. We define
the weighted matrix $\mathbf{W}\left(\vec{L}^{n}(D)\right)=\left(\vec{w}_{L^{n}}(e, f)\right)$ of $\vec{L}^{n}(D)$ derived from $\mathbf{W}\left(\vec{L}^{n-1}(D)\right)$ as follows:

$$
\vec{w}_{L^{n}}(e, f):= \begin{cases}\vec{w}_{L^{n-1}}(e) & \text { if }(e, f) \in A\left(\vec{L}^{n}(D)\right) \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 3. Let D be a connected digraph and $\mathbf{W}(D)$ be a weighted matrix of D. Then we have

$$
\mathbf{Z}\left(\vec{L}^{n}(D), \vec{w}_{L^{n}}, u\right)=\mathbf{Z}(D, w, u)
$$

i.e.,

$$
\operatorname{det}\left(\mathbf{I}-u \mathbf{W}\left(\vec{L}^{n}(D)\right)\right)=\operatorname{det}(\mathbf{I}-u \mathbf{W}(D))
$$

Corollary 4. Let D be a connected digraph with n vertices, and let $\mathbf{W}(D)$ be a weighted matrix of D. Then we have

$$
\Phi\left(\mathbf{W}\left(\vec{L}^{n}(D)\right) ; \lambda\right)=\lambda^{\left|A\left(\vec{L}^{n}(D)\right)\right|-n} \Phi(\mathbf{W}(D) ; \lambda)
$$

In the case that $w(e)=1$ for any arc e of a digraph D, the weighted matrix $\mathbf{W}(D)$ is the adjacency matrix $\mathbf{A}(D)$ of D.

By Theorem 5 and Corollary 1, we obtain the following result.
Corollary 5. Let D be a connected digraph with n vertices and l unoriented edges. Then we have

$$
\mathbf{Z}(\vec{L}(D), u)=\mathbf{Z}(D, u)
$$

i.e.,

$$
\operatorname{det}\left(\mathbf{I}_{l}-u \mathbf{A}(\vec{L}(D))\right)=\operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}(D)\right)
$$

Corollary 6. Let D be a connected digraph. Then, for any positive integer k, we have

$$
\mathbf{Z}\left(\vec{L}^{k}(D), u\right)=\mathbf{Z}(D, u)
$$

i.e.,

$$
\operatorname{det}\left(\mathbf{I}_{l}-u \mathbf{A}\left(\vec{L}^{k}(D)\right)\right)=\operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}(D)\right)
$$

Kotani and Sunada [10] showed that

$$
\mathbf{Z}(D, u)=\exp \left(\sum_{k \geq 1} \frac{N_{k}}{k} u^{k}\right)
$$

where N_{k} is the number of cycles with length k in D for each $k \geq 1$.
Corollary 7. Let D be a connected digraph and k be any positive integer. Furthermore, let $N_{k}^{(s)}$ be the number of cycles with length k in $\vec{L}^{s}(D)(s \geq 1)$, where $N_{k}=N_{k}^{(1)}$. Then we have

$$
N_{k}=N_{k}^{(s)} \text { for any } s, k \geq 1 .
$$

Let D be a digraph and $\mathbf{A}(D)$ be its adjacency matrix. Then the characteristic polynomial $\Phi(D ; \lambda)$ of D is defined by $\Phi(D ; \lambda)=$ $\operatorname{det}(\lambda \mathbf{I}-\mathbf{A}(D))$.

By Corollary 2, we obtain the following results (see [8, 13, 14]).
Corollary 8 (Lin, Ning and Zhang; Rosenfeld). Let D be a connected digraph with n vertices and l unoriented edges. Then we have

$$
\Phi(\vec{L}(D) ; \lambda)=\lambda^{l-n} \Phi(D ; \lambda) .
$$

Corollary 9 (Pakoński, Tanner and Życzkowski). Let G be a connected graph with n vertices and m unoriented edges, and let D_{G} be the symmetric digraph corresponding to G. Then we have

$$
\Phi\left(\vec{L}\left(D_{G}\right) ; \lambda\right)=\lambda^{2 m-n} \Phi(G ; \lambda) .
$$

4. Weighted L-functions of Digraphs

Let D be a connected digraph, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \rightarrow \Gamma$ be an ordinary voltage assignment. We
define the net voltage $\alpha(P)$ of each path $P=\left(v_{1}, \ldots, v_{l}\right)$ of D by $\alpha(P)=$ $\alpha\left(v_{1}, v_{2}\right) \cdots \alpha\left(v_{l-1}, v_{l}\right)$. Furthermore, let ρ be a representation of Γ and d be its degree. The weighted L-function of D associated to ρ and α is defined by

$$
\mathbf{Z}_{D}(w, u, \rho, \alpha)=\prod_{[C]} \operatorname{det}\left(\mathbf{I}_{d}-\rho(\alpha(C)) w(C) u^{|C|}\right)^{-1}
$$

where $[C]$ runs over all equivalence classes of prime cycles of D.
For $g \in \Gamma$, let the matrix $\mathbf{W}_{g}=\left(w_{u v}^{(g)}\right)$ be defined by

$$
w_{u v}^{(g)}:= \begin{cases}w(u, v) & \text { if } \alpha(u, v)=g \text { and }(u, v) \in A(D) \\ 0 & \text { otherwise } .\end{cases}
$$

Let $1 \leq i, j \leq n$. Then, the (i, j)-block $\mathbf{B}_{i, j}$ of a $d n \times d n$ matrix \mathbf{B} is the submatrix of \mathbf{B} consisting of $d(i-1)+1, \ldots, d i$ rows and $d(j-1)+1$, ..., dj columns.

Theorem 6. Let D be a connected digraph with l oriented edges, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \rightarrow \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ, and d be the degree of ρ.

For $m \geq 1$, let \mathcal{C}_{m} be the set of all cycles of length m in D. Set

$$
N_{m}(D, w)=N_{m}=\sum_{C \in \mathcal{C}_{m}} \operatorname{tr}(\rho(\alpha(C)) w(C))
$$

Then the reciprocal of the weighted L-function of D associated to ρ and α is

$$
\mathbf{Z}_{D}(w, u, \rho, \alpha)^{-1}=\operatorname{det}\left(\mathbf{I}-u \sum_{h \in \Gamma} \rho(h) \otimes \mathbf{W}_{h}\right)=\exp \left(\sum_{m \geq 1} \frac{N_{m}}{m} u^{m}\right)
$$

Proof. At first, by the Jacobi formula $\operatorname{det} \exp \mathbf{A}=\exp \operatorname{tr} \mathbf{A}$, we have

$$
\mathbf{Z}_{D}(w, u, \rho, \alpha)^{-1}=\prod_{[C]} \operatorname{det} \exp \left\{-\log \left(\mathbf{I}-\rho(\alpha(C)) w(C) u^{|C|}\right)\right\}
$$

$$
\left.\begin{array}{l}
=\prod_{[C]} \exp \operatorname{tr}\left(\left.\sum_{m \geq 1} \frac{1}{m} \rho\left(\alpha\left(C^{m}\right)\right) w(C)^{m} u^{m}\right|^{C \mid}\right) \\
=\exp \left(\sum_{[C]} \sum_{m \geq 1} \frac{1}{m} \operatorname{tr}\left(\rho\left(\alpha\left(C^{m}\right)\right)\right) w(C)^{m} u^{m}|C|\right.
\end{array}\right)
$$

Next, let $V(D)=\left\{v_{1}, \ldots, v_{n}\right\}$ and consider the lexicographic order on $V(D) \times V(D)$ derived from a total order of $V(D): v_{1}<v_{2}<\cdots<v_{n}$. If $\left(v_{i}, v_{j}\right)$ is the m-th pair under the above order, then we define the $n d \times n d$ matrix $\mathbf{A}_{m}=\left(\left(\mathbf{A}_{m}\right)_{p, q}\right)_{1 \leq p, q \leq n}$ as follows:

$$
\left(\mathbf{A}_{m}\right)_{p, q}= \begin{cases}\rho\left(\alpha\left(v_{p}, v_{q}\right)\right) w\left(v_{p}, v_{q}\right) u & \text { if } p=i, q=j \text { and }\left(v_{i}, v_{j}\right) \in A(D), \\ \mathbf{0} & \text { otherwise. }\end{cases}
$$

Furthermore, let $\mathbf{B}=\mathbf{A}_{1}+\cdots+\mathbf{A}_{k}, k=n^{2}$. Then we have

$$
\mathbf{B}=u \sum_{h} \mathbf{W}_{h} \otimes \rho(h) .
$$

Let L be the set of all Lyndon words in $V(D) \times V(D)$. Then we can also consider L as the set of all Lyndon words in $\{1, \ldots, k\}:\left(v_{i_{1}}, v_{j_{1}}\right) \ldots$ $\left(v_{i_{q}}, v_{j_{q}}\right)$ corresponds to $m_{1} m_{2} \cdots m_{q}$, where $\left(v_{i_{r}}, v_{j_{r}}\right)(1 \leq r \leq q)$ is the m_{r}-th pair. Theorem 3 implies that

$$
\operatorname{det}\left(\mathbf{I}_{n d}-\mathbf{B}\right)=\prod_{l \in L} \operatorname{det}\left(\mathbf{I}-\mathbf{A}_{l}\right),
$$

where $\mathbf{A}_{l}=\mathbf{A}_{i_{1}} \cdots \mathbf{A}_{i_{p}}$ for $l=i_{1} \cdots i_{p}$. Note that $\operatorname{det}\left(\mathbf{I}-\mathbf{A}_{l}\right)$ is the alternating sum of the diagonal minors of A_{l}. Thus, we have

$$
\operatorname{det}\left(\mathbf{I}-\mathbf{A}_{l}\right)= \begin{cases}\operatorname{det}\left(\mathbf{I}-\rho(\alpha(C)) w(C) u^{|C|}\right) & \text { if } l \text { is a prime cycle } C, \\ 1 & \text { otherwise. }\end{cases}
$$

Therefore, it follows that

$$
\begin{aligned}
\mathbf{Z}_{D}(w, u, \rho, \alpha)^{-1} & =\operatorname{det}\left(\mathbf{I}_{n d}-u \sum_{h \in \Gamma} \mathbf{W}_{h} \otimes \rho(h)\right) \\
& =\operatorname{det}\left(\mathbf{I}_{n d}-u \sum_{h \in \Gamma} \rho(h) \otimes \mathbf{W}_{h}\right)
\end{aligned}
$$

Hence the result is obtained.
Let D be a connected digraph and $\mathbf{W}(D)$ be a weighted matrix of D. Then we define the function $\alpha_{\vec{L}}: A(\vec{L}(D)) \rightarrow \Gamma$ as follows: $\alpha_{\vec{L}}(e, f)=\alpha(e)$, $(e, f) \in A(\vec{L}(D))$. For each path $P=\left(e_{1}, \ldots, e_{r}\right)$ of $\vec{L}(D)$, let $\alpha_{\vec{L}}(P)=$ $\alpha\left(e_{1}\right) \cdots \alpha\left(e_{r}\right)$.

Now, we consider the weighted L-function $\mathbf{Z}_{\vec{L}(D)}\left(\vec{w}_{L}, u, \rho, \alpha_{\vec{L}}\right)$ of the line digraph $\vec{L}(D)$ of D associated to ρ and $\alpha_{\vec{L}}$.

For $g \in \Gamma$, let the matrix $\overrightarrow{\mathbf{W}}_{g}=\left(\vec{w}_{e f}^{(g)}\right)$ be defined by

$$
\vec{w}_{e f}^{(g)}:= \begin{cases}w(e) & \text { if } \alpha(e)=g \text { and }(e, f) \in A(\vec{L}(D)), \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 7. Let D be a connected digraph with l oriented edges, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \rightarrow \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ, and d be the degree of ρ. Then the reciprocal of the weighted L-function of D associated to ρ and α is

$$
\mathbf{Z}_{D}(w, u, \rho, \alpha)^{-1}=\mathbf{Z}_{\vec{L}(D)}\left(\vec{w}, u, \rho, \alpha_{\vec{L}}\right)^{-1}=\operatorname{det}\left(\mathbf{I}-u \sum_{h \in \Gamma} \rho(h) \otimes \overrightarrow{\mathbf{W}}_{h}\right)
$$

Proof. Let \vec{C} be the prime cycle of $\vec{L}(D)$ corresponding to a prime cycle C in D. Then we have

$$
\alpha(C)=\alpha_{\vec{L}}(\vec{C}), \text { and } w(C)=\vec{w}_{L}(\vec{C})
$$

and so

$$
\mathbf{Z}_{D}(w, u, \rho, \alpha)^{-1}=\mathbf{Z}_{\vec{L}(D)}\left(\vec{w}, u, \rho, \alpha_{\vec{L}}\right)^{-1}
$$

Furthermore, by Theorem 6, we have

$$
\mathbf{Z}_{\vec{L}(D)}\left(\vec{w}, u, \rho, \alpha_{\vec{L}}\right)^{-1}=\operatorname{det}\left(\mathbf{I}-u \sum_{h \in \Gamma} \rho(h) \otimes \overrightarrow{\mathbf{W}}_{h}\right) .
$$

Note that Theorem 7 is also proved by using Theorem 3.
By Theorems 6 and 7, the following result holds.
Corollary 10. Let D be a connected digraph with n vertices and l oriented edges, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \rightarrow \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ, and d be the degree of ρ. Then

$$
\operatorname{det}\left(\mathbf{I}_{l d}-u \sum_{h \in \Gamma} \rho(h) \otimes \overrightarrow{\mathbf{W}}_{h}\right)=\operatorname{det}\left(\mathbf{I}_{n d}-u \sum_{h \in \Gamma} \rho(h) \otimes \mathbf{W}_{h}\right) .
$$

By Theorems 6 and 7, the following result holds.
Corollary 11. Let D be a connected digraph, $\mathrm{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \rightarrow \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ, and d be the degree of ρ. Then

$$
N_{k}\left(\vec{L}(D), \vec{w}_{L}\right)=N_{k}(D, w) \text { for any } k \geq 1 .
$$

By Corollary 10, we obtain a generalization of Corollary 2.
Corollary 12. Let D be a connected digraph with n vertices and l unoriented edges, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \rightarrow \Gamma$ be an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ, and d be the degree of ρ. Then we have

$$
\Phi\left(\sum_{h \in \Gamma} \rho(h) \otimes \overrightarrow{\mathbf{W}}_{h} ; \lambda\right)=\lambda^{(l-n) d} \Phi\left(\sum_{h \in \Gamma} \rho(h) \otimes \mathbf{W}_{h} ; \lambda\right) .
$$

5. Remark

We state a background for weighted L-functions of digraphs.
We can generalize the notion of a Γ-covering of a graph to a simple digraph. Let D be a connected digraph and Γ be a finite group. Then a mapping $\alpha: A(D) \rightarrow \Gamma$ is called an ordinary voltage assignment if $\alpha(v, u)=\alpha(u, v)^{-1}$ for each $(u, v) \in A(D)$ such that $(v, u) \in A(D)$. The pair (D, α) is called an ordinary voltage digraph. The derived digraph D^{α} of the ordinary voltage digraph (D, α) is defined as follows: $V\left(D^{\alpha}\right)$ $=V(D) \times \Gamma$ and $((u, h),(v, k)) \in A\left(D^{\alpha}\right)$ if and only if $(u, v) \in A(D)$ and $k=h \alpha(u, v)$. The digraph D^{α} is called a Γ-covering of D. Note that a Γ-covering of the symmetric digraph corresponding to a graph G is a Γ-covering of G.

Let D be a connected digraph, Γ be a finite group and $\alpha: A(D) \rightarrow \Gamma$ be an ordinary voltage assignment. In the Γ-covering D^{α}, set $v_{g}=(v, g)$ and $e_{g}=(e, g)$, where $v \in V(D), e \in A(D), g \in \Gamma$. For $e=(u, v) \in A(D)$, the arc e_{g} emanates from u_{g} and terminates at $v_{g \alpha(e)}$. Note that $e_{g}^{-1}=$ $\left(e^{-1}\right)_{g \alpha(e)}$.

Furthermore, we define the weighted matrix $\quad \tilde{\mathbf{W}}=\mathbf{W}\left(D^{\alpha}\right)=$ $\left(\widetilde{w}\left(u_{g}, v_{h}\right)\right)$ of D^{α} derived from $\mathbf{W}(D)$ as follows:

$$
\widetilde{w}\left(u_{g}, v_{h}\right):= \begin{cases}w(u, v) & \text { if }(u, v) \in A(D) \text { and } h=g \alpha(u, v) \\ 0 & \text { otherwise }\end{cases}
$$

Then the following result holds.
Corollary 13. Let D be a connected digraph, $\mathbf{W}(D)$ be a weighted matrix of D, Γ be a finite group and $\alpha: A(D) \rightarrow \Gamma$ be an ordinary voltage assignment. Then we have

$$
\mathbf{Z}\left(D^{\alpha}, \tilde{w}, u\right)=\prod_{\rho} \mathbf{Z}_{D}(w, u, \rho, \alpha)^{\operatorname{deg} \rho}=\mathbf{Z}\left(\vec{L}\left(D^{\alpha}\right), \overrightarrow{\widetilde{w}}, u\right)
$$

$$
=\prod_{\rho} \mathbf{Z}_{\vec{L}(D)}\left(\vec{w}_{L}, u, \rho, \alpha_{\vec{L}}\right)^{\operatorname{deg} \rho}
$$

where ρ runs over all irreducible representations of Γ.
Proof. By a similar proof to that of Theorem 5 in [11] and Theorem 7. Furthermore, the result is obtained from [12, Corollary 1].

References

[1] S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 9 (1980), 177-182.
[2] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), 717-797.
[3] R. Bowen and O. E. Lanford, Zeta functions of restrictions of the shift transformation, 1970 Global Analysis, Proc. Sympos. Pure Math. XIV, Berkeley, Calif., 1968, pp. 43-49, Amer. Math. Soc., Providence, R.I.
[4] D. Foata and D. Zeilberger, A combinatorial proof of Bass's evaluations of the IharaSelberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), 2257-2274.
[5] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
[6] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups, Adv. Stud. Pure Math., Vol. 15, pp. 211-280, Academic Press, New York, 1989.
[7] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
[8] G. N. Lin, Guo Ning and F. J. Zhang, Characteristic polynomials of directed line graphs, and a class of directed graphs with the same spectrum, Kexue Tongbao 28 (1983), 1348-1350 (in Chinese).
[9] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Mass., 1983.
[10] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000), 7-25.
[11] H. Mizuno and I. Sato, Zeta functions of digraphs, Linear Algebra Appl. 336 (2001), 181-190.
[12] H. Mizuno and I. Sato, Weighted zeta functions of digraphs, Linear Algebra Appl. 355 (2002), 35-48.
[13] P. Pakoński, G. Tanner and K. Życzkowski, Families of line-graphs and their quantization, J. Stat. Phys. 111 (2001), 41-48.
[14] V. R. Rosenfeld, Some spectral properties of the arc-graph, Match 43 (2001), 41-48.
[15] J. P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.
[16] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124-165.
[17] T. Sunada, L-functions in geometry and some applications, Lecture Notes in Math. 1201, pp. 266-284, Springer-Verlag, New York, 1986.
[18] T. Sunada, Fundamental Groups and Laplacians, Kinokuniya, Tokyo, 1988 (in Japanese).

