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Abstract 

Motivated by solving the incompressible Navier-Stokes equations, the 
authors develop new Rosenbrock methods for index 2 PDAEs. Based on a 
well-known set of order conditions, solvers of order 3 with 4 internal 
stages are constructed. In particular, the methods allow the use of 
inexact Jacobians and approximations of .tf ∂∂  This leads to an 
important advantage in the robustness of the solvers with respect to the 
practical computation of these terms. At the end of the paper, five test 
problems of different severity and complexity are presented. They show 
the performance of the new methods in comparison with other 
Rosenbrock-solvers. 

1. Introduction 

In computational fluid dynamics, the Navier-Stokes system for 
incompressible fluids represents one of the central mathematical models. 
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For its numerical solution, very often the vertical methods of lines (MOL) 
is applied, i.e., the system is first discretized in space. Then a major 
computational task consists in the numerical integration of the resulting 
huge MOL-DAE system. Within this framework, two aspects are 
important. On the one hand, it is well-known that standard integrators 
may exhibit order reduction if they are applied to huge ODE or DAE 
systems resulting, e.g., from the semidiscretization in space of parabolic 
equations or PDAEs. Rosenbrock methods enable to decrease this order 
reduction provided some additional conditions are fulfilled [8]. On the 
other hand, it is also well-known [1, 19] that the MOL-DAE Navier-
Stokes system has the index 2. 

These two aspects, but also the fundamental need in the development 
of solvers which lead additionally to a good balance between high 
accuracy, stability, computational robustness and moderate costs, 
motivated the construction of new Rosenbrock methods for index 2 
PDAEs. 

Concerning the literature, the following sources are in a close 
relationship to the present paper. The method ROWDA2IND [9] is a 
method for DAEs of index 2 and most of the other methods, for example 
ROS3P [7], ROS3Pw, ROS34PW2 [12] or RODASP [15] are schemes for 
solving PDAEs of index 1. 

This work can be regarded as a continuation of the papers [12] and 
[5], where Rosenbrock methods were considered which meet only one of 
the two requirements. Here, we propose some new Rosenbrock methods 
for PDAEs of index 2. The new methods are of order 3 and have 4 
internal stages. 

In addition, they principally allow the use of inexact Jacobians and 
approximations of .tf ∂∂  In our numerical applications, this feature is 
not used explicitly because W-methods using an approximation of the 
Jacobian exhibit some disadvantages [6]. However, if such methods are 
applied as usual Rosenbrock methods, i.e., the Jacobian is evaluated 
exactly, they yield very good results [18]. The benefit of this approach lies 
in the computational robustness of the solvers. This observation is also 
supported by the numerical examples from the above-mentioned papers 
[5, 12]. 
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The contents of the paper are as follows: In Section 2, we outline the 
collection of order conditions to be satisfied. Section 3 deals with the 
explicit construction of four new methods. In Section 4, five test problems 
of different severity and complexity are presented. They show the 
impressive performance of the new methods in comparison with other 
Rosenbrock-solvers. 

2. Rosenbrock Methods 

Definition 1. An s-stage Rosenbrock method for the implicit ODE 

( ) ( ) ,,, 00 utuutfuM ==  (2.1) 

with a matrix nnM ,R∈  is given by 
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where s is the number of internal stages, τ is the time-step, iijij b,, γα  

are the parameters of the method, ( ) ( ),,:,,: oldoldoldold utfTutfW =′=  

∑ −
=
α=α 1

1: i
j iji  and ∑ −

=
γ=γ 1

1 .: i
j iji  By “.” and “′” we denote differentiation 

with respect to the time t and the phase space variable, respectively. 

The parameters ,, ijij γα  and ib  should be chosen in such a way that 

certain order conditions are fulfilled to obtain a sufficient consistency 
order. A derivation of these conditions by the use of Butcher series can be 
found in [2, Sect. IV.7]. Here, we only summarize the conditions up to the 
order 3: 
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where we have used the abbreviations ijijij γ+α=β :  and ∑ −
=
β=β 1

1 .: i
j iji  

If we choose ( ) ( ),,: oldold hutfW O+′=  we get an additional consistency 
condition [17]: 

( ) ∑ =α .2
12B iib  (2.4) 

For arbitrary matrices ,, nnW R∈  we get the following order 

conditions [17]: 
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If a Rosenbrock method is applied to semidiscretized PDEs or PDAEs, 
the following condition should be satisfied to avoid order reduction [8]: 

( ) ,11,02 22 −≤≤=α− sjeBBb j  (2.6) 

where 

( ) ( ) ( ) 22
1

2
1,1 ...,,:,:,...,,: s

s
jiijs Bbbb αα=αβ== =  

and ( ) .1...,,1: se R∈=   

To obtain convergence, the Rosenbrock method should fulfill certain 
order conditions for both the ODE and the algebraic part. These 
consistency properties can be derived again via the Butcher series 
technique [2, 13]. 

For a third-order method, we get the condition 

( ) ∑ =αω ,13E 2
jijib  (2.7) 

where ijω  are the entries of the inverse .1−B  
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From [9], we know that a Rosenbrock method should satisfy certain 
order conditions if the method is applied to an index-2 DAE, i.e., 
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If 2u  appears non-linearly in the semi-explicit DAE, 
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then the condition 

( ) ∑ =αωωααωωα 3
43G 22

rnrmnlmlkljkijib  (2.9) 

has to be satisfied [9]. 

The stability function of (22) is given by 

( ) ( ) .1 1
0 ezBIzbzR −−+=   

3. Construction of Methods 

We start with the following result: 

Lemma 1. There exists no Rosenbrock method of order 3 with 3 
internal stages which satisfies (23), (26), (F3b) and (F3c). 

Proof. In the case ,3=s  the condition (26) simplifies to 
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The inverse of B is given by 
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First, we consider the conditions (F3b) and (F3c). We get 
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γ
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It follows 32 23
2 γ=γ  and 3

1=γ  but this is a contradiction to (D3b). 

Let us now consider Rosenbrock methods with 4 internal stages. The 
order conditions in this case read as [2] 
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The following result is taken from [12]. 

Lemma 2. The conditions for PDEs (26) can be simplified by the help 
of (A1), (A2), (A3a) and (A3b) to 
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Remark. The expressions ( )2
343

2
2424

2
2323 αβ+αβ+αβ bb  and 

2132434 βββb  are known as part of the order-conditions for 4th-order 
Rosenbrock methods [2]. 

The algebraic order condition reads as [2] 
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The inverse of the matrix B is given by 
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Lemma 3. A Rosenbrock method which satisfies (A1)-(A3b) and 
(D3a)-(D3c) fulfils (E3) too. 

Proof. See [12]. 

Lemma 4. A Rosenbrock method which satisfies (A1)-(A3b) and 
(D3a)-(D3c) fulfils (F3a) too. 

Proof. The condition (F3a) can be written as follows: 
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Using the conditions (A3a), (D3a) and (D3b), we obtain 
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We also observe that the conditions (F3b) and (F3c) can be written as 
follows: 
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Summarizing our results, we have 
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The embedded methods should be L-stable, too. Therefore, we need 
the following result from [12]. 

Lemma 5. Let a Rosenbrock method which satisfies (A1)-(A3b) and 
(D3a)-(D3c) be given. The embedded method satisfying (A1) and (A2) is 
L-stable, too, if 

.2
121ˆ 23
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ββ
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Proof. See [12]. 
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3.1. An L-stable Rosenbrock W-method 

Our first method is L-stable and satisfies the conditions (A1)-(A3b), 
(B2), (C3a)-(C3c), (D3a)-(D3c), (F3b) and (F3c). We call the method 
ROSI2P1, where ROS stands for Rosenbrock, I2 for index 2 problems, P 
for semidiscretized PDE problems and 1 is an internal number. To find a 
solution of the equations given above, we have used the computer algebra 
system MAPLE. We choose the free variables as follows: ,212 =α  

,433 =α  and .14 =α  The coefficients of ROSI2P1 are given in Table 1. 
The embedded method satisfies the conditions (A1), (A2) and (3.11). 
Moreover, we set .0ˆ3 =b  The resulting system of equations can be solved 
easily. 

Table 1. Set of coefficients for ROSI2P1 

018459003586652150.4 −=γ e   

010000000000000000.521 −=α e  010000000000000000.521 −−=γ e  

014998225729261836.531 −=α e  013213234492162993.631 −−=γ e  

015001769270738163.132 −=α e  025977343491801247.632 −=γ e  

014358600084516445.341 −−=α e  037198423606009252.941 −=γ e  

000267878995581939.142 +=α e  010135195462058718.242 −−=γ e  

018320069871302944.543 −−=α e  019443522645441930.343 −−=γ e  

021038342900072579.51 −= eb  012890984974465479.11̂ −= eb  

009204383492662311.12 += eb  014218100051069041.7ˆ2 −= eb  

010502651013275270.93 −−= eb  000000000000000000.03̂ += eb  

019355160796644892.54 −= eb  012890984974465479.1ˆ4 −= eb  

3.2. A stiffly accurate Rosenbrock method 

Definition 2. A Rosenbrock method satisfying 

,...,,1, sibisi ==β  and 1=αs  (3.12) 

is called stiffly accurate. 
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Methods which satisfy (3.12) yield asymptotically exact results for 
the problem ( )( ) ( ).ttuu ϕ+ϕ−λ=  A stiffly accurate Rosenbrock method 
is L-stable, i.e., 4358665.0≈γ  [2] or [12]. 

Our conditions simplify by the help of (3.12) to [9] and [12] 
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The new method should satisfy the conditions (A1’)-(A3b’), (D3a’), 
(D3c’), (F3b’) and (F3c’). Moreover, we set 324231412 ,,21 α=αα=α=α  
and ,043 =α  i.e., the method needs only three function evaluations. 
First, we note that .02 =β  This follows from (D3a’) and (D3c’). With 

(F3b’), we get .8 2
42 γ=α  Inserting this result into (F3c’) yields 

.313 γ−=b  Using (D3a’), we obtain 

.31
31224

23
32 γ−

γ+γ−γ
=β  

The remaining coefficients can be computed by the help of (A1’), (A2’) 
and (A3a’). The new method is called ROSI2P2 and its coefficients are 
given in Table 2. The embedded method satisfies the conditions (A1), (A2) 
and (3.11). Moreover, we set .21ˆ3 =b  This system of equations can be 
solved easily. 
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Table 2. Set of coefficients for ROSI2P2 

018459003586652150.4 −=γ e   

010000000000000000.521 −=α e  010000000000000000.521 −−=γ e  

01575071655.1983699631 −−=α e  01030113924.0164172531 −−=γ e  

00657507151.5198369932 +=α e  00269766501.1742718532 +=γ e  

01575071655.1983699641 −−=α e  00324173831.1865036641 +=γ e  

00657507151.5198369942 +=α e  00657507151.5198369942 +−=γ e  

00000000000.0000000043 +=α e  01175125681.0253318843 −−=γ e  

01666666636.666666661 −= eb  01591114739.574238481̂ −−= eb  

00000000000.000000002 −= eb  00718222972.91484769ˆ2 += eb  

01175125681.025331883 −−= eb  01000000005.00000000ˆ3 −= eb  

01508459004.358665214 −= eb  00859111461.45742384ˆ4 +−= eb  

3.3. A stiffly accurate Rosenbrock method with ( )hfJ u O+=  and 

0=T  

The new method should satisfy the conditions (A1’)-(A3b’), (B2’), 
(C3c’), (D3a’), (D3c’), (F3b’), (F3c’) and (G3). The condition (G3) can be 
simplified to 

.3
4 42

232
2
3434 γ=ααααb  

In the case of stiffly accurate Rosenbrock method, we obtain 

.3
4 32

232
2
343 γ=αααα  

As the free variable, we choose .433 =α  As in the previous section, 

we have .02 =β  The variable γ=α 22  can be determined by (D3a’) and 

(C3c’). The equations (A3a) and (B2) form a linear system of equations in 
the variables 2b  and .3b  Then the remaining coefficients can be 

determined easily. The method is called ROSI2Pw and the coefficients are 
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given in Table 3. The embedded method satisfies the conditions (A1), (A2) 

and (3.11). Moreover, we set .0ˆ3 =b  This system of equations can be 

solved easily. 

Table 3. Set of coefficients for ROSI2Pw 

018459003586652150.4 −=γ e   

01016918018.7173304321 −=α e  01016918018.7173304321 −−=γ e  

01693450137.8938917131 −=α e  01029209928.4175599631 −−=γ e  

02934501803.9389171632 −−=α e  02423095801.2977652632 −−=γ e  

01642630466.2787416841 −=α e  01480895263.7964867141 −−=γ e  

00809947636.9295440442 +=α e  00480175378.3490231242 +−=γ e  

00674210716.5574182143 +−=α e  00477419058.2928052743 +=γ e  

01161735172.482254971 −= eb  01916887784.431575311̂ −= eb  

00670227741.419479072 +−= eb  01916887784.43157531ˆ2 −= eb  

00803208321.735387053 += eb  00000000000.00000000 ˆ3 += eb  

01508459004.358665214 −= eb  01166224471.13684936ˆ4 −= eb  

3.4. A stiffly accurate Rosenbrock W-method 

In the following, a Rosenbrock method is constructed which satisfies 
the conditions (A1’)-(A3b’), (B2’), (C3a’)-(C3c’), (D3a’), (D3c’), (F3b’) and 
(F3c’). We have 12 equations and 12 unknowns. Note that 5 unknowns 
are determined by (3.12). There are no free variables. The coefficients 

γ=α 22  and 02 =β  can be computed as in the previous section. Let us 
assume that we know the coefficient .3α  Then (A3a’) and (B2’) form a 
linear system of equations in the unknowns 2b  and .3b  The solution 
depends on 3α  and is given by 

( ) ( ) .2
166

3
1,2

3626
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1

33

2
3

3
33

2 α−γα
+γ−γ−=

α−γγ
α−γ−+γα
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It follows 

( ) ( ) ( ) ,
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3A2 2

33
2

3
+γ−γ

α−γαγ+γ−
−=β⇒’  

( ) ( ) ( )
( ) ( )

,
2241

16631
9
1b3C

33
2

2
43

α−γαγ+γ−γ

+γ−γγ+−
=α⇒’  

( ) ( ) ,2
4
1c3C 33

32 γ
α−γα

−=β⇒’  

( ) ( ) ( )
166
312

2
1c3F 2

3
32

+γ−γ

γ+−α−γ
=α⇒’  

( )
( ) ( )

( 54
2

3
342 14436

241236
1b3F γ−γ−

γ+γ−α−γγ
=α⇒’  

3
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),493624 33
22
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( ) ( γα+αγ−αγ+γα−
γ

−=α⇒ 2
33
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3

32
33 12132162482
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3

22
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) ( ) ( ).166134 22
33 +γ−γ−γα−γα+  

The solution of the last equation can be computed by the help of 
MAPLE. One solution is ,23 γ=α  but this is a contradiction to 2b  and 

.3b  A second solution is given by 

( ) .55.1
1367263612

716146 5432

322
3 −≈

+γ+γ−γ−γ+γ−

γ+−γ+γ−γ=α  
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Unfortunately, .03 <α  The method is called ROSI2PW and the 

coefficients are given by Table 4. The embedded method satisfies the 

conditions (A1), (A2) and (3.11). Moreover, we set .0ˆ3 =b  This system of 

equations can be solved easily. 

Table 4. Set of coefficients for ROSI2PW 

018459003586652150.4 −=γ e   

01016918018.7173304321 −=α e  01016918018.7173304321 −−=γ e  

01398527087.9937335831 −−=α e  00186224793.0647867431 +=γ e  

01398527087.9937335832 −−=α e  00186224793.0647867432 +=γ e  

01176010077.0849664941 −=α e  01588005041.0424832441 −−=γ e  

01553124813.1746327942 −=α e  01553124813.1746327942 −−=γ e  

02291348922.5959928743 −−=α e  02673291441.4154917343 −−=γ e  

01588005046.042483241 −= eb  01916887784.431575311̂ −= eb  

00000000000.000000002 −= eb  01916887784.43157531ˆ2 −= eb  

02964640344.011484603 −−= eb  00000000000.00000000 ˆ3 += eb  

01508459004.358665214 −= eb  01166224471.13684936ˆ4 −= eb  

4. Comparison of Rosenbrock Methods and Numerical Results 

All examples were solved numerically by the help of the FEM-
package MooNMD3.0 [4]. We have compared the new methods with other 
well-known Rosenbrock methods such as ROS3P, ROS3Pw and 
ROS34PW2. An overview of the selected Rosenbrock methods is given in 
Table 5. 

We applied these schemes to a PDAE of index 2 and to the Navier-
Stokes equations with different right-hand sides. For the definition of the 
index of linear PDAEs, we refer to the paper [11]. 
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The global error ε  is measured in the discrete 2L -norm 

( ) ( ) ,:
21

0

2
,2 













−τ= ∑

=

N

n
VnnNVJl tuuε  

where J denotes the time-interval, ( )Ω= 2LV  or ( ),1 ΩH  and Nτ  is a 

time-step depending on .N∈N  Some examples were computed with 
variable time-step lengths by the help of the PI-controller [2]. 

Table 5. Properties of the selected Rosenbrock methods 

Name s p Index 1 Index 2 PDEs ( )∞R  Stiffly acc. Reference 

ROS3P 3 3 yes no yes 0.73 no [LV01] 

ROWDAIND2 4 3 yes yes no 0 yes [LR90] 

ROS3Pw 3 3 yes no yes 0.73 no [RA05b] 

ROS34PW2 4 3 yes no yes 0 yes [RA05b] 

ROSI2P1 4 3 yes yes yes 0 no see Section 3.1 

ROSI2P2 4 3 yes yes yes 0 yes see Section 3.2 

ROSI2Pw 4 3 yes yes yes 0 yes see Section 3.3 

ROSI2PW 4 3 yes yes yes 0 yes see Section 3.4 

Example 1. Let ( )1,0:,2: == Jd  and ( ) .1,0: 2=Ω  We consider the 
following nonlinear PDAE 

( ) ,in22
,in0
,in0
,in2

2
144

3

2

232311

Ω×−+−=∆−∆−
Ω×=∆
Ω×=∆
Ω×−=+−∆−

α−

α

Jtxeuuu
Ju
Ju
Jtuuuuuu

t

 (4.13) 

where 1≥α  is a parameter. The initial conditions and the non-
homogeneous Dirichlet boundary conditions are chosen such that 

( ) ,,, 2
1

α= txyxtu  

( ) ,sin,,2
α= txyxtu  

( ) ,cos,,3
α= txyxtu  
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( ) 2
4 1,, xeyxtu t−+=  

is the solution of (4.14). In the numerical experiments, we set .50=α  
For the semidiscretization in space, we used central finite differences on 
a square grid with step length .1001=h  The computations were carried 

out with time-steps NN 101=τ  with .128,64,32,16,8,4,2,1=N  The 

Jacobian is computed exactly. Note that all occurring discretization 
errors result from the temporal discretization. Figure 1 illustrates the 
results of the calculation, where the error is measured in the 

( )( )Ω22 , LJl -norm. In the lower part of the figure, the graphs of the 

following methods show a close overlay (from bottom to top): RODASP (a 
fourth-order method!), ROSI2P2, ROSI2PW, ROSI2P1, ROSI2Pw. For 
these methods, the experimental order of convergence is about 3.4 (see 
Table 6). 

 
Figure 1. Example 1, results. 

The most inaccurate results were obtained by the use of the methods 
for PDAEs of index 1, namely ROS3P, ROS3Pw and ROS34PW2. This is 
due to the fact that these methods do not satisfy the conditions (F3b) and 
(F3c). The method ROWDAIND2 satisfies these conditions but it has an 
order reduction because a semidiscretized PDAE is solved. The best 
results were obtained by means of the solvers ROSI2P2, ROSI2PW, 
ROSI2P1 and ROSI2Pw. 
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Table 6. Example 1, experimental order of convergence 

Scheme p 32...,,1=N  64...,,1=N  128...,,1=N  

ROS3P 3 2.51 2.50 2.50 

ROWDAIND2 3 2.75 2.75 2.76 

ROS3Pw 3 2.51 2.51 2.50 

RODASP 4 3.48 3.49 3.49 

ROSI2P1 3 3.43 3.45 3.46 

ROSI2P2 3 3.43 3.44 3.45 

ROSI2Pw 3 3.49 3.49 3.50 

ROSI2PW 3 3.43 3.45 3.46 

In the next examples, we consider the Navier-Stokes equations 

 ( ) ,in1 Ω×=∇+∇⋅+∆− − JfpuuuReu  

0=⋅∇ u                                      ,in Ω×J  

gu =                                           ,on Ω∂×J  

( ) 0,0 uxu =                                 ,Ω∈x  (4.14) 

where Re denotes the positive Reynolds number, J is a real (time-) 

interval, dR⊂Ω  is a spatial domain. 

Example 2. Let ( )1,0:,2: == Jd  and ( ) .1,0: 2=Ω  In (4.14), the 

right-hand side f, the initial condition 0u  and the non-homogeneous 
Dirichlet boundary conditions are chosen such that 

( ) ,,, 23
1 ytyxtu =  

( ) ,,, 2
2 xtyxtu =  

( ) ( ) ,21,, +−+= tytxyxtp  
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is the solution of (4.14). Moreover, we set .1=Re  We used the disc
12 PQ  

discretization on a square mesh with an edge length 641=h  and solved 
the problem with variable time-step sizes. The Jacobian was computed 
exactly. Note that for any t the solution can be represented exactly by the 
discrete functions. Hence, all occurring discretization errors result from 
the temporal discretization. During the calculations, we have to deal with 
33 282 d.o.f. for the velocity and 11 288 d.o.f. for the pressure. Figure 2 
shows the results of the calculation. 

 

 
Figure 2. Example 2, results. 
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Considering the velocity error the scheme, ROWDAIND2 gave the 
most inaccurate results. The method ROSI2PW showed bad results for 
pressure error. The best results were obtained by the help of ROSI2Pw. 
Nevertheless, the remaining schemes gave acceptable results, too. 

Example 3. As in the previous example, we consider the Navier-
Stokes equations (4.14) but with Dirichlet boundary conditions on the 
whole boundary and with the solution 

( ) ,,, 23
1 ytyxtu =  

( ) ( ) ,50exp,,2 xtyxtu −=  

( ) ( ) ( ) ( ).1exp10,, −+−+= yxttyxtp  

The computations were carried out with ,1000=Re  a spatial grid 
consisting of squares of edge length ,321=h  and variable time-step 
sizes. This setting gives 8 450 velocity d.o.f. and 3 072 pressure d.o.f. for 
the disc

12 PQ  finite element discretization. 

The method ROSI2PW gave bad results for both errors. The best 
results were obtained by the use of ROSI2P2 for both components. 
Considering the pressure error, the method ROWDAIND2 gave very good 
results, too. Nevertheless, the remaining schemes gave acceptable 
results, too. 

Example 4. Here, we consider the flow around a cylinder. This 
example was defined as a benchmark problem in [14] and studied 
numerically in detail in [3]. Figure 4 presents the flow domain Ω. The 
right hand side of the Navier-Stokes equations (4.14) is ,0:=f  the time 
interval is ( )8,0:=J  and the inflow and outflow boundary conditions 
are given by 

( ) ( ) ( ) ( )( ) .41.00,ms0,41.068sin41.0,2.2,,0, 12 ≤≤−π== −− yyytytuytu  

On all remaining boundary parts, the no-slip condition 0=u  is 
prescribed. The Reynolds number of the flow based on the mean inflow, 
the diameter of the cylinder and the prescribed viscosity 123 sm10 −−=ν  
is ( ) .1000 ≤≤ tRe  
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Figure 3. Example 3, results. 

 

Figure 4. Example 4, the channel with the cylinder. 
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The coarsest grid (level 0) is presented in Figure 5. All computations 
were carried out on level 3 of the spatial grid refinement resulting in 
107,712 velocity d.o.f. and 39,936 pressure d.o.f. The time-step was 
chosen as .01.0=τ  

 

Figure 5. Example 4, the coarsest grid (level 0). 

The characteristic values of the flow are the drag coefficient ( )tcd  

and the lift coefficient ( )tcl  at the cylinder. These coefficients can be 

computed by 

( ) ( ) ( ) ( )( ) ( )[ ],,,,,20 ddddtd vpvuuvuvutc ∇⋅−∇⋅+∇∇ν+−=  

( ) ( ) ( ) ( )( ) ( )[ ],,,,,20 lllltl vpvuuvuvutc ∇⋅−∇⋅+∇∇ν+−=  

for all functions ( ( ))21 Ω∈ Hvd  with ( )1,0=|Sdv  and dv  vanishes on 

all other boundaries and for all test functions ( ( ))21 Ω∈ Hvl  with 

( )1,0=|Slv  and lv  vanishes on all other boundaries, respectively. 

Another benchmark value from [14] is the difference of the pressure 
between the front and the back at the cylinder at the final time 
( ) ( ).2.0,25.0,82.0,15.0,8 pp −  Reference values for this difference and 

the maximal values of the drag and the lift coefficient are given in [3]. 

Figure 6 shows the lift and drag coefficients and the pressure 
difference as functions of time. In all graphs, also the reference curve 
from [3] is given. We see that the backward Euler scheme (BWE) 
produced the most inaccurate results. This is the only method which is 
for this time-step length, unable to generate the correct oscillations in the 
lift coefficient. From the zoom of the lift coefficient curves (Figure 6), it 
becomes obvious that all methods are relatively close the reference curve. 
The best results were obtained by the Rosenbrock methods. 
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Figure 6. Example 4, lift coefficient. 

In Table 7, the pressure difference at the final time 8=t  is given. 
We present the value itself, its deviation from the reference value given 
in [3] and the relative error. The best results were obtained by means of 
ROS3PW2 and ROSI2P2. All Rosenbrock methods produce quite accurate 
results which are much better than the results obtained by the use of the 
Crank-Nicolson scheme (CN) and the fractional-step θ-scheme (FS). Also, 
for this value, the results from BWE were the most inaccurate ones. 

Example 5. We consider the Navier-Stokes equations (4.14) in three 
space dimensions ( )3.,e.i =d  with Dirichlet boundary conditions on the 

whole boundary and with the solution 

( ) ( ),,,, 2
1 zyezyxtu t += −  

( ) ( ),2,,, 24
2 zxtzyxtu −=  

( ) ( ),2,,, 50
3 yxyezyxtu t += −  

( ) ( ).332,,, 3 −++= zyxtzyxtp  
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The computations were carried out with ,1=Re  a spatial grid 

consisting of cubes of edge length ,161=h  and variable time-step sizes. 

Considering the velocity error, ROS3Pw and ROSI2P1 gave the best 
results. The most inaccurate results were obtained by the use of 
ROWDAIND2 and ROSI2P2. Considering the pressure error, we have a 
different situation. Here, ROWDAIND2 and ROSI2P2 gave the very good 
results. The schemes ROS3Pw yielded accurate results, too. Bad solvers 
for this example were ROSI2P1 and ROSI2PW. 

Table 7. Pressure difference at 1116.0,8 −=∆= refpt  from [3] 

Method p∆  
refpp ∆−∆  %100∗

∆

∆−∆

ref

ref
p

pp
 

BWE −1.17553e−01 −5.9531e−03 5.53e+00 

CN −1.10304e−01 1.2956e−03 1.16e+00 

FS −1.10170e−01 1.4301e−03 1.28e+00 

ROS3P −1.11683e−01 −8.3245e−05 7.46e−02 

ROWDAIND2 −1.11750e−01 −1.4972e−04 1.34e−01 

ROS3Pw −1.11653e−01 −5.2525e−05 4.71e−02 

ROS3PW2 −1.11570e−01 3.0263e−05 2.71e−02 

ROSI2P1 −1.11793e−01 −1.9335e−04 1.73e−01 

ROSI2P2 −1.11641e−01 −4.0951e−05 3.67e−02 

ROSI2Pw −1.11809e−01 −2.0880e−04 1.87e−01 
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Figure 7. Example 5, results. 
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