A NOTE ON THE POSITIVE SOLUTIONS OF THE DIFFERENCE EQUATION SYSTEM

$$
x_{n+1}=\frac{1}{y_{n}}, y_{n+1}=\frac{y_{n}}{x_{n-1} y_{n-1}}
$$

HACI CIVCIV

Department of Mathematics
Faculty of Art and Science
Selcuk University
42031 Konya, Turkey
e-mail: hacicivciv@selcuk.edu.tr

Abstract

The main purpose of this study aims to give general formulas for the positive solutions of the difference equation system $$
x_{n+1}=\frac{1}{y_{n}}, y_{n+1}=\frac{y_{n}}{x_{n-1} y_{n-1}}, n=0,1,2, \ldots
$$ where $x_{-1}=k, x_{0}=h$ and $y_{0}=b, y_{-1}=a$ are positive real numbers.

 Thus, we improve the paper in reference [1].
1. Introduction

Cinar [1] investigated the solutions of the difference equation system

$$
\begin{equation*}
x_{n+1}=\frac{1}{y_{n}}, y_{n+1}=\frac{y_{n}}{x_{n-1} y_{n-1}}, n=0,1,2, \ldots, \tag{1.11}
\end{equation*}
$$

where $x_{-1}=k, x_{0}=h$ and $y_{0}=b, y_{-1}=a$ are positive real numbers

2000 Mathematics Subject Classification: 65Q05, 26A09.
Keywords and phrases: difference equation system, positive solutions, periodicity.
and in that paper, he gave only the following two theorems:
Theorem 1 [1]. Let $\left\{x_{n}, y_{n}\right\}$ be a solution of difference equation system (1.1). Then all solutions of equating system (1.1) are periodic with period four.

Theorem 2 [1]. Let $\left\{x_{n}, y_{n}\right\}$ be a solution of difference equation system. Then for $n=0,1,2, \ldots$, all solutions of equation system (1.1) are

$$
\begin{array}{ll}
x_{4 n+1}=\frac{1}{b}, & y_{4 n+1}=\frac{b}{k a}, \\
x_{4 n+2}=\frac{a k}{b}, & y_{4 n+2}=\frac{1}{a k h}, \\
x_{4 n+3}=a k h, & y_{4 n+3}=\frac{1}{h}, \\
x_{4 n+4}=h, & y_{4 n+4}=b .
\end{array}
$$

From Theorem 2, it is seen that in [1], the solutions $\left\{x_{n}, y_{n}\right\}_{n=0}^{\infty}$ of equating system (1.1) have been presented in eight forms as $x_{4 n+1}$, $x_{4 n+2}, x_{4 n+3}, x_{4 n+4}$ and $y_{4 n+1}, y_{4 n+2}, y_{4 n+3}, y_{4 n+4}$ for $n=0,1,2, \ldots$ In this paper, we have simplified this situation reducing from eight forms to two forms. Also, using periodicity of the sine and cosine functions, we say immediately that the solutions $\left\{x_{n}, y_{n}\right\}_{n=0}^{\infty}$ of equating system (1.1) are periodic with period four.

2. Main Theorem

Theorem 3. Let $\left\{x_{n}, y_{n}\right\}$ be a solution of difference equation system. Then all solutions of equation system (1.1) are
and all solutions of equating system (1.1) are periodic with period four.

Proof. By substituting

$$
\begin{equation*}
x_{n+1}=\frac{1}{y_{n}} \tag{2.1}
\end{equation*}
$$

into the equation

$$
y_{n+1}=\frac{y_{n}}{x_{n-1} y_{n-1}}
$$

we obtain

$$
y_{n+1}=\frac{y_{n-2} y_{n}}{y_{n-1}}
$$

or

$$
\begin{equation*}
y_{n-1} y_{n+1}=y_{n-2} y_{n} \tag{2.2}
\end{equation*}
$$

Letting $z_{n}=y_{n-1} y_{n+1}, n=0,1,2, \ldots$ in equation (2.2) creates

$$
\begin{equation*}
z_{n}-z_{n-1}=0, n=0,1,2, \ldots \tag{2.3}
\end{equation*}
$$

The characteristic equation of the difference equation (2.3) is $\lambda-1=0$, and thus we have the general solution of (2.3) as

$$
z_{n}=y_{-2} y_{0}, n=0,1,2, \ldots
$$

or

$$
\begin{equation*}
y_{n-1} y_{n+1}=y_{-2} y_{0}, n=0,1,2, \ldots \tag{2.4}
\end{equation*}
$$

Since $y_{n}>0$ for $n=0,1,2, \ldots$, using the transformation

$$
\begin{equation*}
w_{n}=\ln y_{n}, n=0,1,2, \ldots \tag{2.5}
\end{equation*}
$$

in equation (2.4), we obtain

$$
\exp \left(w_{n-1}+w_{n+1}\right)=\exp \left(w_{-2}+w_{0}\right), n=0,1,2, \ldots
$$

From where we get

$$
\begin{equation*}
w_{n-1}+w_{n+1}=w_{-2}+w_{0}, n=0,1,2, \ldots \tag{2.6}
\end{equation*}
$$

Since the characteristic equation roots of the homogeneous equation are $\mu_{1}=i$ and $\mu_{2}=-i$, we obtain the general solution of equation (2.6) as

$$
\begin{equation*}
w_{n}=c_{1} \cos \left(\frac{n \pi}{2}\right)+c_{2} \sin \left(\frac{n \pi}{2}\right)+\frac{1}{2}\left(w_{-2}+w_{0}\right), n=0,1,2, \ldots \tag{2.7}
\end{equation*}
$$

From equations (2.5) and (2.7), we have

$$
y_{n}=\exp \left(c_{1} \cos \left(\frac{n \pi}{2}\right)+c_{2} \sin \left(\frac{n \pi}{2}\right)\right) \sqrt{y_{-2} y_{0}}, n=0,1,2, \ldots
$$

To find the constants c_{1} and c_{2}, we use the initial data

$$
\begin{aligned}
& y_{0}=e^{c_{1}} \sqrt{y_{-2} y_{0}} \\
& y_{1}=e^{c_{2}} \sqrt{y_{-2} y_{0}}
\end{aligned}
$$

Finally, after solving the above system of equations, we obtain $c_{1}=\frac{1}{2} \ln \left(y_{0} x_{-1}\right)=\frac{1}{2} \ln b k \quad$ and $\quad c_{2}=\ln \frac{\sqrt{y_{0}}}{y_{-1} \sqrt{x_{-1}}}=\ln \frac{\sqrt{b}}{a \sqrt{k}}$. Hence all the solutions $\left\{x_{n}, y_{n}\right\}_{n=0}^{\infty}$ of the equation system are given by

$$
\begin{aligned}
y_{n} & =\exp \left[\frac{1}{2} \cos \left(\frac{n \pi}{2}\right) \ln b k+\frac{1}{2} \sin \left(\frac{n \pi}{2}\right) \ln \frac{b}{k a^{2}}\right] \sqrt{\frac{b}{k}} \\
& =(b k)^{1 / 2 \cos \left(\frac{n \pi}{2}\right)\left(\frac{b}{k a^{2}}\right)^{1 / 2 \sin \left(\frac{n \pi}{2}\right)} \sqrt{\frac{b}{k}}} \\
& =b^{\frac{1}{2}\left(1+\cos \left(\frac{n \pi}{2}\right)+\sin \left(\frac{n \pi}{2}\right)\right)_{k^{2}} \frac{1}{2}\left(-1+\cos \left(\frac{n \pi}{2}\right)-\sin \left(\frac{n \pi}{2}\right)\right)_{a}^{\sin \left(\frac{n \pi}{2}\right), n=1,2, \ldots}}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{n+1} & =\frac{1}{y_{n}} \\
& =b^{-\frac{1}{2}\left(1+\cos \left(\frac{n \pi}{2}\right)+\sin \left(\frac{n \pi}{2}\right)\right)_{k}-\frac{1}{2}\left(-1+\cos \left(\frac{n \pi}{2}\right)-\sin \left(\frac{n \pi}{2}\right)\right)_{a}-\sin \left(\frac{n \pi}{2}\right), n=0,1,2, \ldots} .
\end{aligned}
$$

Since the functions $f(x)=\sin x$ and $g(x)=\cos x$ have 2π period, solutions of equating system (1.1) are periodic with period four. Therefore, the proof is completed.

References

[1] C. Cinar, On the positive solutions of the difference equation system $x_{n+1}=\frac{1}{y_{n}}$,
$y_{n+1}=\frac{y_{n}}{x_{n-1} y_{n-1}}$, Appl. Math. Comp. 158 (2004), 303-305.
[2] S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1996.

