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Abstract 

In this paper, g~ -open sets are used to define some weak separation 

axioms and to study some of their basic properties. The implications of 

these axioms among themselves and with the known axioms ,iT  

( )2,1,21,0=i  are investigated. 

1. Introduction 

In 1970, Levine [5] initiated the study of the so-called g-closed sets. 

The notion has been studied extensively in recent years by many 

topologists. In the same paper Levine also introduced the notion of 21T -

spaces which properly lie between 1T  spaces and 0T  spaces. In a recent 
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year, a generalization of closed sets, g~ -closed sets were introduced and 

studied by Jafari et al. [3]. This notion was further studied by Rajesh and 
Ekici [7-10]. In this paper, we continue the study of related spaces with 

g~ -open sets (i.e., complements of g~ -closed sets). We introduce and 

characterize four new separation axioms called ( ).2,1,21,0,~ =− iTg i  

We show that 2,1,21,0,~ =− iTg i  is weaker than ,2,1,21,0, =iTi  

respectively. 

Throughout this paper, a space stands for a topological space and a 

function YXf →:  denotes a function from a space X into a space Y. 

For a subset A of a space X, the closure and the interior of A in X are 

denoted by ( )Acl  and ( ),Aint  respectively. 

2. Preliminaries 

Before entering our work we recall the following definitions and 
results which are used in this paper. 

Definition 2.1. A subset A of a space X is said to be semi-open [6] if 
( )( ).AintclA ⊂  The complement of a semi-open set is called semi-closed. 

The intersection of all semi-closed subsets of X that contains A, or 
equivalently, the smallest semi-closed subset of X that contains A, is 
called the semi-closure of A [2] and is denoted by ( ).Ascl  

Definition 2.2. Let A be a subset of a space X. Then 

 (i) A is generalized closed (briefly g-closed [5]) if ( ) UAcl ⊂  

whenever UA ⊂  and U is open in X. 

 (ii) A is ĝ -closed [13] if ( ) UAcl ⊂  whenever UA ⊂  and U is 

semi-open in X. The complement of a ĝ -closed set is called ĝ -open. 

 (iii) A is g∗ -closed [12] if ( ) UAcl ⊂  whenever UA ⊂  and U is      

ĝ -open in X. The complement of a g∗ -closed set is called g∗ -open. 

 (iv) A is g -semi-closed [14] if ( ) UAscl ⊂  whenever UA ⊂  and 

U is g∗ -open. The complement of a g -semi-closed set is called g -
semi-open. 
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 (v) A is g~ -closed [3] if ( ) UAcl ⊂  whenever UA ⊂  and U is       

g - semi-open. The complement of a g~ -closed set is called g~ -open. The 

class of all g~ -open (resp. g~ -closed) subsets of X is denoted by ( )Xg~  

( .resp  ( )).~ XCg  

Definition 2.3. The intersection of all g~ -closed (resp. g~ -open) sets 

containing A is called the g~ -closure (resp. g~ -kernel) of A [10] and is 

denoted by ( )Aclg −~
 ( ( )).~.resp Akerg −  

Definition 2.4. A space X is called a 21T -space [5] if every g-closed 

subset of X is closed in X, or equivalently, if every singleton subset of X is 
open or closed. 

Theorem 2.5 [3]. In any space X, the following hold: 

 (i) An arbitrary intersection of g~ -closed sets is g~ -closed. 

(ii) The finite union of g~ -closed sets is g~ -closed. 

Remark 2.6. A subset is g~ -closed if and only if it coincides with its 

g~ -closure. 

Definition 2.7 [4]. A subset xU  of a space X is said to be a              

g~ -neighborhood of a point Xx ∈  if there exists a g~ -open set G in X 

such that .xUGx ⊂∈  

Lemma 2.8 [4]. A subset A of a space X is g~ -open in X if and only if 

it is a g~ -neighborhood of each of its points. 

Definition 2.9 [8]. A function YXf →:  is said to be g~ -

continuous if the inverse image of every open set in Y is g~ -open in X. 

Definition 2.10 [7]. A function YXf →:  is said to be g~ -

irresolute if the inverse image of every g~ -open set in Y is g~ -open in X. 

Definition 2.11 [1]. A function YXf →:  is said to be ∗g~ -closed 

(resp. g~ -closed) if the image of every g~ -closed (resp. closed) set in X is 

g~ -closed in Y. 
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Definition 2.12 [1]. A function YXf →:  is said to be ∗g~ -open 

(resp. g~ -open) if the image of every g~ -open (resp. open) set in X is           

g~ -open in Y. 

Definition 2.13 [9]. A space X is said to be g~ -regular if for each 

closed subset F of X and each point ,cFx ∈  there exist disjoint g~ -open 

sets U and V such that UF ⊂  and .Vx ∈  

Theorem 2.14. A function YXf →:  is g~ -irresolute if and only if 

for each g~ -open subset W of Y and for each Xx ∈  such that ( ) ,Wxf ∈  

then there exists a g~ -open subset U of X such that Ux ∈  and 

( ) .WUf ⊂  

3. 0
~ Tg −  Spaces 

Definition 3.1. A space X is said to be 0
~ Tg −  if to each pair of 

distinct points x, y of X there exists a g~ -open set A containing x but not y 

or a g~ -open set B containing y but not x. 

Theorem 3.2. For a space X, the following are equivalent: 

 (i) X is .~
0Tg −  

(ii) For each ,Xx ∈  { } ( ) ( ){ } { }( )xclgFxXCgXgFx −=∈∈= ~:~~∩ ∪  

{ }( ).~ xkerg −∩  

Proof. The proof follows from the definitions.  

Theorem 3.3. A space X is 0
~ Tg −  if and only if for each pair of 

distinct points x, y of X, { }( ) { }( ).~~ yclgxclg −≠−  

Proof. Necessity. Let X be a 0
~ Tg −  space and x, y be any two 

distinct points of X. There exists a g~ -open set G containing x but not y or 

containing y but not x, say, x but not y. Thus GX −  is a g~ -closed set 

which does not contain x but contains y. Since { }( )yclg −~  is the smallest 

g~ -closed set containing y, { }( ) ,~ GXyclg −⊂−  and so { }( ).~ yclgx −∉  

Consequently, { }( ) { }( ).~~ yclgxclg −≠−  
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Sufficiency. Let .,, yxXyx ≠∈  Then by assumption, { }( )xclg −~  

{ }( ).~ yclg −≠  Thus there exists a point Xz ∈  such that z belongs to 

{ }( )xclg −~  but not to { }( )yclg −~  or z belongs to { }( )yclg −~  but not to 

{ }( ),~ xclg −  say, { }( )xclg −~  but not to { }( ).~ yclg −  If we suppose that 

{ }( ),~ yclgx −∈  then { }( ) { }( ),~~ yclgxclgz −⊂−∈  which is a contradiction. 

Thus ( { }( )),~ yclgXx −−∈  but ( { }( ))yclgX −− ~  is g~ -open and does 

not contain y, hence X is .~
0Tg −   

Definition 3.4. A function YXf →:  is said to be point g~ -closure 

one-to-one if for each Xyx ∈,  such that { }( ) { }( ),~~ yclgxclg −≠−  then 

( ){ }( ) ( ){ }( ).~~ yfclgxfclg −≠−  

Theorem 3.5. If YXf →:  is a point g~ -closure one-to-one function 

and X is 0
~ Tg −  space, then f is one-to-one. 

Proof. Let Xyx ∈,  with .yx ≠  Since X is ,~
0Tg −  by Theorem 

3.3, { }( ) { }( ).~~ yclgxclg −≠−  But f is point g~ -closure one-to-one, so 

( ){ }( ) ( ){ }( ).~~ yfclgxfclg −≠−  Hence ( ) ( ).yfxf ≠  Thus, f is one-to-one.  

Theorem 3.6. Let YXf →:  be a function from a 0
~ Tg −  space X 

into a 0
~ Tg −  space Y. Then f is point g~ -closure one-to-one if and only if 

f is one-to-one. 

Proof. Follows from Theorem 3.5 and from the definitions.  

Theorem 3.7. Let YXf →:  be an injective g~ -irresolute function. 

If Y is ,~
0Tg −  then X is .~

0Tg −  

Proof. Let Xyx ∈,  with .yx ≠  Since f is injective, ( ) ( ),yfxf ≠  

but Y is ,~
0Tg −  so there exists a g~ -open set xV  in Y such that 

( ) xVxf ∈  and ( ) xVyf ∉  or there exists a g~ -open set yV  in Y such 

that ( ) yVyf ∈  and ( ) .yVxf ∉  By g~ -irresoluteness of f, ( )xVf 1−  is 

g~ -open in X such that ( )xVfx 1−∈  and ( )xVfy 1−∉  or ( )yVf 1−  is 
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g~ -open in X such that ( )yVfy 1−∈  and ( ).1
yVfx −∉  This shows that 

X is .~
0Tg −   

Theorem 3.8. Let YXf →:  be an injective continuousg -~  

function. If Y is ,0T  then X is .~
0Tg −  

Proof. The proof is similar to that of Theorem 3.7.  

4. 1
~ Tg −  Spaces 

Definition 4.1. A space X is said to be 1
~ Tg −  if to each pair of 

distinct points x, y of X, there exist two g~ -open sets, one containing x but 

not y and the other containing y but not x. 

It is evident that every 1T  space is .~
1Tg −  However, the next 

question asks about the converse. 

Question 1. Is there an example of a 1
~ Tg −  space that is not ?1T  

Theorem 4.2. For a space X, the following statements are equivalent: 

 (i) X is .~
1Tg −  

 (ii) Each singleton subset of X is g~ -closed in X. 

 (iii) For every subset A of X, ( ),~ AkergA −=  or equivalently, every 

subset of X is the intersection of g~ -open sets. 

 (iv) For each ,Xx ∈  { } { }( ),~ xkergx −=  or equivalently, every 

singleton subset of X is the intersection of g~ -open sets. 

Proof. ( ) ( ) :iii ⇒  Let .Xx ∈  Then by (i), for any ,, xyXy ≠∈  

there exists a  open-~g set yV  containing y but not x. Hence 

{ } .c
y xVy ⊂∈  Now varying y over { }cx  we get { } { { } }.:∪ c

y
c xyVx ∈=  

So { }cx  is the union of g~ -open sets. Since an arbitrary union of g~ -open 

sets is g~ -open, { }x  is g~ -closed. 
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( ) ( ):iiiii ⇒  If ,XA ⊂  then for each point ,Ay ∉  { }cy  is g~ -open 

by (ii). Hence {{ } }∩ cc AyyA ∈= :  is the intersection of g~ -open sets. 

( ) ( ):iviii ⇒  Obvious. 

( ) ( ):iiv ⇒  Let Xyx ∈,  and .yx ≠  Then by (iv), there exists a         

g~ -open set xU  such that xUx ∈  and .xUy ∉  Similarly, there exists 

a g~ -open set yU  such that yUy ∈  and .yUx ∉  Hence X is .~
1Tg −   

Theorem 4.3. Let X be a 1T  space and YXf →:  be a g~ -closed 

surjective function. Then Y is .~
1Tg −  

Proof. Suppose .Yy ∈  Since f is surjective, there exists a point 

Xx∈  such that ( ).xfy =  Since X is ,1T  { }x  is closed in X. Since f is 

g~ -closed, { }( ) { }yxf =  is g~ -closed in Y. Hence by Theorem 4.2, Y is 

.~
1Tg −   

Theorem 4.4. Let X be a 1
~ Tg −  space and f be a ∗g~ -closed function 

from X onto a space Y. Then Y is .~
1Tg −  

Proof. Similar to that of Theorem 4.3.  

Definition 4.5. Let A be a subset of a space X and .Xx ∈  Then x is 

said to be a g~ -limit point of A if for each ( ) ,,~ UxXgU ∈∈  then 

{ }( ) ∅≠xAU \∩  and the set of all g~ -limit points of A is called the 

g~ -derived set of A and is denoted by ( ).~ Adg  

Theorem 4.6. If X is 1
~ Tg −  and ( )Adgx ~∈  for some ,XA ⊂  

then every g~ -neighborhood of x contains infinitely many points of A. 

Proof. Suppose U is a g~ -neighborhood of x such that AU ∩  is 

finite. Let { } ....,,, 21 BxxxAU n ==∩  Clearly B is a g~ -closed set. 

Hence { }( )xBUV −−=  is a g~ -neighborhood of x and { }( )xAV −∩  

,∅=  which implies that ( ),~ Adgx ∉  a contradiction.  
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The proof of the following theorem is straightforward and thus 

omitted. 

Theorem 4.7. If A is a subset of a 1
~ Tg −  space X, then ( )Adg~  is            

g~ -closed. 

Theorem 4.8. Let YXf →:  be an injective g~ -irresolute function. 

If Y is ,~
1Tg −  then X is .~

1Tg −  

Proof. Similar to the proof of Theorem 3.7  

Definition 4.9. A space X is said to be 0
~ Rg −  [4] if every g~ -open 

subset of X contains the g~ -closure of each of its singletons. 

Theorem 4.10. A space X is 1
~ Tg −  if and only if it is 0

~ Tg −  and 

.~
0Rg −  

Proof. Let X be a 1
~ Tg −  space. Then by definitions, X is .~

0Tg −  It 

follows also by Theorem 4.2 that X is .~
0Rg −  

Conversely, suppose that X is both 0
~ Tg −  and .~

0Rg −  We want to 

show that X is .~
1Tg −  Let x, y be any distinct points of X. Since X is 

,~
0Tg −  there exists a g~ -open set G such that Gx ∈  and Gy ∉  or 

there exists a g~ -open set H such that Hy ∈  and .Hx ∉  Without loss 

of generality, we may assume that there exists a g~ -open set G such that 

Gx ∈  and .Gy ∉  Since X is ,~
0Rg −  { }( ) .~ Gxclg ⊂  As ,Gy ∉  

{ }( ).~ xclgy ∉  Hence { }( )xclgXHy ~−=∈  and it is clear that .Hx ∉  

Thus it follows that there exist g~ -open sets G and H containing x and y, 

respectively, such that Gy ∉  and .Hx ∉  Hence X is .~
1Tg −   

Definition 4.11. A subset A of a space X is called g -closed if 

( ) UAclg ⊂−~  whenever UA ⊂  and U is  open-~g in X, or 

equivalently, if ( ) ( ).~~ AkergAclg −⊂−  

It is clear from the above definition that every g~ -closed set is          

g -closed. 
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Definition 4.12. A space X is said to be 21
~ Tg −  if every g -closed 

subset of X is g~ -closed. 

The following two theorems are immediate consequences of the 
definitions. 

Theorem 4.13. For a space X, the following statements are 

equivalent: 

 (i) X is .~
21Tg −  

(ii) Every singleton subset of X is g~ -open or g~ -closed. 

Theorem 4.14. For a space X, the following statements are 

equivalent: 

 (i) X is .~
21Tg −  

(ii) For each subset A of ,X  ( ) ( ){ } =⊂∈= ∩ ∪ FAXCgXgFA :~~  

( ) ( ).~~ AkergAclg −− ∩  

Clearly, every 1
~ Tg −  space is ,~

21Tg −  every 21
~ Tg −  space is 

0
~ Tg −  and every 21T  space is .~

21Tg −  However, the converses are 

not true as shown by the following examples. 

Example 4.15. Let { }cbaX ,,=  with the topology { } { }{ ,,,, baa∅=τ  

}.X  Then the space X is 0
~ Tg −  but not .~

21Tg −  Observe that the 

g~ -open subsets of X are the open sets.  

Example 4.16. Let { }dcbaX ,,,=  with the topology { { },, a∅=τ  

{ } { } }.,,,,, Xcbacb  Then the space X is 21
~ Tg −  but not 21T  as every 

singleton subset of X is g~ -open or g~ -closed. Observe that every semi-

open subset of X is open and thus the g~ -closed sets are the closed sets 

together with { } { } { },,,,,,, dcadcdb { }.,, dba  Also X is 21
~ Tg −  but not 

.~
1Tg −  It is also an example of a 0

~ Tg −  space but not .0T  
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Definition 4.17. A space X is called weak 0
~ Rg −  if for each Xx ∈  

such that { } { }( ) { }( ),ker~~ xgxclgx −−= ∩  then { } { }( ).ker~ xgx −=  

It is easy to see that every 0
~ Rg −  space is weak .~

0Rg −  However, 

the converse is not true as shown by the following example. 

Example 4.18. Let { }cbaX ,,=  with the topology { }{ }.,, Xa∅=τ  

Then the space X is weak 0
~ Rg −  but not .~

0Rg −  Observe that the        

g~ -open subsets of X are the open sets. 

It is easy to verify now the following improvement of Theorem 4.10. 

Theorem 4.19. For a space X, the following are equivalent: 

  (i) X is .~
1Tg −  

 (ii) X is 0
~ Tg −  and .~

0Rg −  

(iii) X is 0
~ Tg −  and weak .~

0Rg −  

Definition 4.20. Let f be a function from a space X into a space Y. 

Then the graph ( ) ( )( ){ }XxxfxfG ∈= :,  of f is said to be strongly         

g~ -closed if for each ( ) ( ) ( ),, fGYXyx −×∈  there exist a g~ -open 

subset U of X and an open subset V of Y containing x and y, respectively, 

such that ( ) ( ) .∅=× fGVU ∩  

Lemma 4.21. Let f be a function from a space X into a space Y. Then 

its graph ( )fG  is strongly g~ -closed if and only if for each point ( ) ∈yx,  

( ) ( ),fGYX −×  there exist a g~ -open subset U of X and an open subset V 

of Y containing x and y, respectively, such that ( ) .∅=VUf ∩  

Proof. Follows immediately from the above definition.  

Theorem 4.22. If YXf →:  is an injective function with a strongly 

g~ -closed graph, then X is .~
1Tg −  

Proof. Suppose that x and y are distinct points of X. Since f is 

injective, ( ) ( ).yfxf ≠  Thus ( )( ) ( ) ( ),, fGYXyfx −×∈  but ( )fG  is 
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strongly g~ -closed, so there exist a g~ -open set U and an open set V 

containing x and ( ),yf  respectively, such that ( ) .∅=VUf ∩  Hence 

.Uy ∉  Similarly there exist a g~ -open set M and an open set N 

containing y and ( ),xf  respectively, such that ( ) .∅=NMf ∩  Hence 

.Mx ∉  Thus it follows that X is .~
1Tg −   

Theorem 4.23. If YXf →:  is a surjective function with a strongly 

g~ -closed graph, then Y is .1T  

Proof. Let 1y  and 2y  be two distinct points of Y. Since f is 

surjective, there exists Xx ∈  such that ( ) .2yxf =  Hence ( ) ∉1, yx  

( )fG  and thus by Lemma 4.21 there exist a g~ -open set U and an open 

set V containing x and ,1y  respectively, such that ( ) .∅=VUf ∩  Hence 

.2 Vy ∉  Similarly there exists Xx ∈0  such that ( ) .10 yxf =  Hence 

( ) ( )fGyx ∉20 ,  and thus there exist a g~ -open set M and an open set N 

containing 0x  and ,2y  respectively, such that ( ) .∅=NMf ∩  Hence 

.1 Ny ∉  Thus it follows that Y is .1T   

Remark 4.24. In Definition 4.20, if we consider U and V both are 

g~ -open, then Theorem 4.23 yields that Y is .~
1Tg −  

5. 2
~ Tg −  Spaces 

Definition 5.1. A space X is said to be 2
~ Tg −  if to each pair of 

distinct points x, y of X, there exist two disjoint g~ -open sets, one 

containing x and the other containing y. 

It is clear that every 2T -space is .~
2Tg −  However, the next 

question asks about the converse. 

Question 2. Is there an example of a 2
~ Tg −  space that is not ?2T  

Remark 5.2. We observe that every 2
~ Tg −  space is .~

1Tg −  

However, the converse is not true as shown by the following example. 
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Remark 5.3. An infinite set X with the finite complement topology is 

.~
1Tg −  It is, however, not 2

~ Tg −  since any two non-empty open 

subsets of X and hence any two non-empty g~ -open subsets of X intersect. 

Observe that a g~ -open subset of X is open. 

Theorem 5.4. For a space X, the following statements are equivalent: 

 (i) X is .~
2Tg −  

(ii) For each ,Xx ∈  ( ){ xx UUclg :~ −∩  is a g~ -neighborhood of }x  

{ }x=  or equivalently, every singleton subset of X is the intersection of     

g~ -closed neighborhoods of x. 

Proof. ( ) ( ):iii ⇒  Let X be a 2
~ Tg −  space and .Xx ∈  Then to 

each ,Xy ∈  ,xy ≠  there exist g~ -open sets G and H such that 

,Gx ∈ Hy ∈  and .∅=HG ∩  Since ,HXGx −⊂∈  HX −  is a 

g~ -closed g~ -neighborhood of x to which y does not belong. Consequently, 

the intersection of all g~ -closed g~ -neighborhoods of x is reduced to { }.x  

( ) ( ):iii ⇒  Suppose that Xyx ∈,  and .yx ≠  Then by hypothesis 

there exists a g~ -closed g~ -neighborhood U of x such that .Uy ∉  Now 

there is a g~ -open set G such that .UGx ⊂∈  Thus G and UX −  are 

disjoint g~ -open sets containing x and y, respectively. Hence X is  

.~
2Tg −   

The proof of the following theorem is straightforward and thus 

omitted. 

Theorem 5.5. A space X is 2
~ Tg −  if and only if for each Xyx ∈,  

such that ,yx ≠  there exist g~ -closed sets 1F  and 2F  such that 

,1Fx ∈  221 ,, FxFyFy ∉∈∉  and .21 FFX ∪=  

Recall that a subset A of a space X is called sg-closed if whenever 

,UA ⊂  where U is semi-open in X, then ( ) .UAscl ⊂  

Remark 5.6. The product of two g~ -open sets need not be g~ -open as 

the following example tells. 
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Example 5.7. Let { }cbaX ,,=  and { }{ }.,,, Xba∅=τ  Then =A  

{ }cb,  is g~ -closed. Now XA ×  is not sg-closed because if ( )XXU ×=  

( ){ },, ca−  then U is semi-open in XX ×  and .UXA ⊂×  However, 

=× XX ( ) .UXAscl ×  Since every g~ -closed set is sg-closed, it follows 

that XA ×  is not g~ -closed. From this we conclude that the product of 

two g~ -closed sets need not be g~ -closed. Since the union of g~ -open sets 

is g~ -open, it follows that the product of two g~ -open sets need not be 

g~ -open. 

Theorem 5.8. Every g~ -regular 0T  space is .~
2Tg −  

Proof. Let X be a g~ -regular 0T  space and let Xyx ∈,  be such 

that .yx ≠  Since X is ,0T  there exists an open set V containing x but 

not y or y but not x, say x but not y. Then ,VXy −∈  VX −  is closed 

and .VXx −∉  By g~ -regularity of X, there exist g~ -open sets G and H 

such that HVXyGx ⊂−∈∈ ,  and .∅=HG ∩  Hence X is .~
2Tg −  

Theorem 5.9. If YXf →:  is an injective g~ -irresolute (resp.           

g~ -continuous) function and Y is 2
~ Tg −  ( ),. 2Tresp  then X is .~

2Tg −  

Proof. We show the first case, the other case is similar. Suppose that 

.,, yxXyx ≠∈  Since f is injective, ( ) ( ),yfxf ≠  but Y is ,~
2Tg −  so 

there exist g~ -open sets G, H in Y such that ( ) ( ) HyfGxf ∈∈ ,  and 

.∅=HG ∩  Let ( )GfU 1−=  and ( ).1 HfV −=  Then by hypothesis, U 

and V are g~ -open sets in X. Also ( ) ( ) VHfyUGfx =∈=∈ −− 11 ,  and 

.∅=VU ∩  Hence X is .~
2Tg −   

The following three theorems have easy proofs and thus omitted: 

Theorem 5.10. If YXf →:  is a bijective g~ -open (resp. ∗g~ -open) 

function and X is 2T  ( ),~. 2Tgresp −  then Y is .~
2Tg −  
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Theorem 5.11. If f is a g~ -open function from a space X onto a space 

Y and the set ( ) ( ) ( ){ }2121 :, xfxfxx =  is closed in ,XX ×  then Y is 

.~
2Tg −  

Theorem 5.12. If f is a ∗g~ -open function from a space X onto a space 

Y and f has a strongly g~ -closed graph, then Y is .~
2Tg −  

Remark 5.13. The above theorem is still true if we consider in the 

definition of a strongly g~ -closed graph U and V to be both g~ -open. 

Definition 5.14. A space X is said to be 1
~ Rg −  [4] if for each 

Xyx ∈,  with { }( ) { }( ),~~ yclgxclg −≠−  there exist disjoint g~ -open sets 

U and V such that { }( ) Uxclg ⊂−~  and { }( ) .~ Vyclg ⊂−  

Theorem 5.15. A space X is 2
~ Tg −  if and only if it is 1

~ Rg −  and 

.~
0Tg −  

Proof. Similar to that of Theorem 4.10.  

Remark 5.16. In the following diagram we denote by arrows the 

implications between the separation axioms which we have introduced 

and discussed in this paper. However, none of these implications is 

reversible. 

00

2121

11

22

~

~

~

~

TgT

TgT

TgT

TgT

−⇒
⇓⇓
−⇒
⇓⇓
−⇒
⇓⇓
−⇒

 

Remark 5.17. It is not difficult to see that every 1
~ Rg −  space is 

.~
0Rg −  However, it follows from Theorem 4.19 and Theorem 5.15 that 

any space which is 1
~ Tg −  but not 2

~ Tg −  is an example of a 0
~ Rg −  

space that is not .~
1Rg −  
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