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Abstract

In this paper, g -open sets are used to define some weak separation
axioms and to study some of their basic properties. The implications of

these axioms among themselves and with the known axioms Tj,

(#=0,1/2,1, 2) are investigated.

1. Introduction

In 1970, Levine [5] initiated the study of the so-called g-closed sets.
The notion has been studied extensively in recent years by many

topologists. In the same paper Levine also introduced the notion of T1/2 -

spaces which properly lie between 77 spaces and T{, spaces. In a recent
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year, a generalization of closed sets, g -closed sets were introduced and

studied by Jafari et al. [3]. This notion was further studied by Rajesh and
Ekici [7-10]. In this paper, we continue the study of related spaces with

g -open sets (i.e., complements of g -closed sets). We introduce and
characterize four new separation axioms called g - T}, (i = 0, 1/2, 1, 2).
We show that g -T:,i=0,1/2,1, 2 is weaker than T.,i =0,1/2,1, 2,
respectively.

Throughout this paper, a space stands for a topological space and a

function f: X — Y denotes a function from a space X into a space Y.

For a subset A of a space X, the closure and the interior of A in X are
denoted by cl(A) and int(A), respectively.

2. Preliminaries

Before entering our work we recall the following definitions and

results which are used in this paper.

Definition 2.1. A subset A of a space X is said to be semi-open [6] if

A c cl(int(A)). The complement of a semi-open set is called semi-closed.

The intersection of all semi-closed subsets of X that contains A, or
equivalently, the smallest semi-closed subset of X that contains A, is
called the semi-closure of A [2] and is denoted by scl(A).

Definition 2.2. Let A be a subset of a space X. Then
(i) A is generalized closed (briefly g-closed [5]) if cl(A)c U
whenever A < U and Uis open in X.
(i) A is g-closed [13] if cl(A) c U whenever A c U and U is
semi-open in X. The complement of a g -closed set is called g -open.
(iii) A is "g-closed [12] if cl(A) c U whenever A c U and U is
g -open in X. The complement of a * g -closed set is called * g -open.

(iv) A is ‘g -semi-closed [14] if scl(A) c U whenever A c U and

U is "g-open. The complement of a ﬁg -semi-closed set is called ﬁg -
semi-open.
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(v) A is g -closed [3] if cl(A) c U whenever A c U and U is

jg - semi-open. The complement of a g -closed set is called g -open. The

class of all g -open (resp. g -closed) subsets of X is denoted by g(X)
(resp. 8C(X)).

Definition 2.3. The intersection of all g -closed (resp. g -open) sets
containing A is called the g -closure (resp. g -kernel) of A [10] and is
denoted by g - cl(A) (resp. g — ker(A)).

Definition 2.4. A space X is called a T1/2 -space [5] if every g-closed

subset of X is closed in X, or equivalently, if every singleton subset of X is

open or closed.

Theorem 2.5 [3]. In any space X, the following hold:

(1) An arbitrary intersection of g -closed sets is g -closed.
(1) The finite union of g -closed setsis g -closed.

Remark 2.6. A subset is g -closed if and only if it coincides with its

-closure.

UsY]

Definition 2.7 [4]. A subset U, of a space X is said to be a

g -neighborhood of a point x € X if there exists a g -open set G in X
such that x €e G < U,.

Lemma 2.8 [4]. A subset A of a space X is g -open in X if and only if
itisa g -neighborhood of each of its points.

Definition 2.9 [8]. A function f:X —» Y 1is said to be g -

continuous if the inverse image of every open set in Yis g -open in X.

Definition 2.10 [7]. A function f:X — Y is said to be g -

irresolute if the inverse image of every g -open setin Yis g -openin X.

Definition 2.11 [1]. A function f: X — Y is said to be g" -closed
(resp. g -closed) if the image of every g -closed (resp. closed) set in X is
g -closed in Y.
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Definition 2.12 [1]. A function f: X — Y is said to be g" -open
(resp. g -open) if the image of every g -open (resp. open) set in X is
g -openin Y.

Definition 2.13 [9]. A space X is said to be g -regular if for each
closed subset F of X and each point x € F¢, there exist disjoint g -open
sets Uand Vsuchthat F c U and x € V.

Theorem 2.14. A function f: X — Y is g -irresolute if and only if
for each g -open subset W of Y and for each x € X such that f(x)e W,

then there exists a g -open subset U of X such that x € U and
fU)cw.
3. §-T, Spaces

Definition 3.1. A space X is said to be g -7, if to each pair of
distinct points x, y of X there exists a g -open set A containing x but not y
ora g -open set B containing y but not x.

Theorem 3.2. For a space X, the following are equivalent:

WD) Xis g-Typ.

(i1) For each x e X, {x}= ﬂ{F eg(X)UgC(X):x e F} =3 —cl({x})
N g — ker({x}).

Proof. The proof follows from the definitions. 0

Theorem 3.3. A space X is g — Ty if and only if for each pair of
distinct points x, y of X, g — cl({x}) = g — cl({y}).

Proof. Necessity. Let X be a g - T, space and x, y be any two
distinct points of X. There exists a g -open set G containing x but not y or
containing y but not x, say, x but not y. Thus X — G is a g -closed set
which does not contain x but contains y. Since g - cl({y}) is the smallest
g -closed set containing y, g —cl({y}) = X -G, and so x ¢ g — cl({y}).
Consequently, g - cl({x}) = g - cl({y}).
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Sufficiency. Let x, y € X, x # y. Then by assumption, g — cl({x})
# g —cl({y}). Thus there exists a point z € X such that z belongs to
g —cl({x}) but not to g —cl({y}) or z belongs to g — cl({y}) but not to
g —cl({x}), say, g -cl({x}) but not to g -cl({y}). If we suppose that
x € g —cl({y}), thenz e g —cl({x}) = g — cl({y}), which is a contradiction.
Thus x € X - (g —cl({y})), but X —(g -cl({y})) is g -open and does

not contain y, hence Xis g - Tj. O

Definition 3.4. A function f : X —» Y is said to be point g -closure

one-to-one if for each x, y € X such that g —cl({x}) = & — cl({y}), then
g —cl(if(x)}) = g - cl{f(»))).

Theorem 3.5. If f: X - Y is a point g -closure one-to-one function
and Xis g —T, space, then fis one-to-one.

Proof. Let x, y e X with x # y. Since X is g - Ty, by Theorem
3.3, g-cl{x}) = g —cl({y}). But f is point g -closure one-to-one, so
g —cl{f(x)}) = & —cl({f(y)}). Hence f(x)=# f(y). Thus, fis one-to-one. [

Theorem 3.6. Let f: X — Y be a function from a g -T, space X
intoa g —Ty space Y. Then f is point g -closure one-to-one if and only if
f is one-to-one.

Proof. Follows from Theorem 3.5 and from the definitions. O

Theorem 3.7. Let f : X — Y be an injective g -irresolute function.

IfYis g -1y, thenXis g -Ty.

Proof. Let x, y € X with x # y. Since [ is injective, f(x) = f(¥),
but Y is g -7y, so there exists a g -open set V, in Y such that
fx) e V, and f(y) & V, or there exists a g -open set V) in Y such

that f(y) eV, and f(x) e V,. By g -irresoluteness of f, f_l(Vx) is

g -open in X such that x e f1(V,) and y ¢ f 1(V,) or fﬁl(Vy) is
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g -open in X such that y e f_l(Vy) and x ¢ f_l(Vy). This shows that

XiS § - To. 0
Theorem 3.8. Let f:X — Y be an injective g-continuous

function. If Yis T,, then Xis g —Tj.

Proof. The proof is similar to that of Theorem 3.7. 0
4. g - T, Spaces

Definition 4.1. A space X is said to be g -7} if to each pair of

distinct points x, y of X, there exist two g -open sets, one containing x but

not y and the other containing y but not x.

It is evident that every 7} space is g —7;. However, the next

question asks about the converse.
Question 1. Is there an example of a g — 7T} space that isnot 7} ?
Theorem 4.2. For a space X, the following statements are equivalent:
() Xis g -Ty.
(i1) Each singleton subset of Xis g -closed in X.

(i) For every subset A of X, A = g — ker(A), or equivalently, every

subset of X is the intersection of g -open sets.

(iv) For each x e X, f{x}= g - ker({x}), or equivalently, every

singleton subset of X is the intersection of g -open sets.
Proof. (i) = (ii): Let x € X. Then by (i), for any y € X, y = «x,
there exists a g-open set V, containing y but not x. Hence

y €V, < {x}°. Now varying y over {x}° we get {x}° =|J{V, : ye {x}}.

So {x}° is the union of g -open sets. Since an arbitrary union of g -open

setsis g -open, {x} is g -closed.
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(i) = (iii): If A c X, then for each point y ¢ A, {y}° is g -open
by (ii). Hence A = ﬂ {y}° 1 y € A°} is the intersection of g -open sets.

(iii) = (iv): Obvious.

(iv) = (1): Let x,y e X and x # y. Then by (iv), there exists a

g -open set U, such that x e U, and y ¢ U,. Similarly, there exists

a g-openset U, suchthat y e U, and x ¢ U,. Hence Xis g -Tj. [

Theorem 4.3. Let X be a Ty space and f: X - Y be a g -closed

surjective function. Then Yis g - Tj.

Proof. Suppose y € Y. Since [ is surjective, there exists a point

xeX such that y = f(x). Since Xis T}, {x} is closed in X. Since f is
g -closed, f({x})={y} is g -closed in Y. Hence by Theorem 4.2, Y is
T O

USY:

Theorem 4.4. Let Xbe a g — T, space and fbe a g* -closed function

from X onto a space Y. Then Yis g —1Tj.

Proof. Similar to that of Theorem 4.3. 0

Definition 4.5. Let A be a subset of a space X and x € X. Then x is
said to be a g -limit point of A if for each U e g(X), x € U, then
UN(A\{x}) # @ and the set of all g -limit points of A is called the
g -derived set of A and is denoted by gd(A).

Theorem 4.6. If X is g -T; and x € gd(A) for some A c X,

then every g -neighborhood of x contains infinitely many points of A.

Proof. Suppose U is a g -neighborhood of x such that UN A is
finite. Let UN A = {x1, x9, ..., x,,} = B. Clearly B is a g -closed set.
Hence V =U-(B-{x}) is a g -neighborhood of x and V N (A - {x})

=, which implies that x ¢ gd(A), a contradiction. 0
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The proof of the following theorem 1is straightforward and thus
omitted.
Theorem 4.7. If A is a subset of a g — T, space X, then gd(A) is

g -closed.

Theorem 4.8. Let f: X — Y be an injective g -irresolute function.

IfYis g -Ty, thenXis g -T;.
Proof. Similar to the proof of Theorem 3.7 0

Definition 4.9. A space X is said to be g — Ry [4] if every g -open

subset of X contains the g -closure of each of its singletons.

Theorem 4.10. A space X is g -1, if and only if it is § - Ty and
g - Ry.

Proof. Let Xbe a g — T} space. Then by definitions, Xis g - T. It
follows also by Theorem 4.2 that Xis g — Ry.

Conversely, suppose that Xis both g -7, and g - R;. We want to
show that X is g — 7). Let x, y be any distinct points of X. Since X is
g - Ty, there exists a g -open set G such that x e G and y ¢ G or
there exists a g -open set H such that y e H and x ¢ H. Without loss
of generality, we may assume that there exists a g -open set G such that
xeG and ye¢G. Since X is g- Ry, gel({x})cG. As y¢QG,
y ¢ gcl({x}). Hence y € H = X — gcl({x}) and it is clear that x ¢ H.
Thus it follows that there exist g -open sets G and H containing x and y,

respectively, such that y ¢ G and x ¢ H. Hence Xis g - 1. 0

Definition 4.11. A subset A of a space X is called g -closed if
g-cl(A)cU whenever AcU and U is g-open in X, or
equivalently, if g —cl(A) c g — ker(A).

It is clear from the above definition that every g -closed set is

g -closed.
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Definition 4.12. A space X is said to be g — T1/2 if every g -closed
subset of X'is g -closed.

The following two theorems are immediate consequences of the

definitions.

Theorem 4.13. For a space X, the following statements are

equivalent:

(1) Xis g - T1/2.

(i) Every singleton subset of Xis g -open or g -closed.

Theorem 4.14. For a space X, the following statements are

equivalent:

(1) Xis g - T1/2.

(ii) For each subset A of X, A=(){F e gX)UgC(X): Ac F}=
g —cl(A)N g — ker(A).

Clearly, every g -T; space is g Ty, every g -Tjo space is
g - T, and every Tyje space is g —Tyj5. However, the converses are
not true as shown by the following examples.

Example 4.15. Let X = {a, b, ¢} with the topology t = {&, {a}, {a, b},
X}. Then the space X is g —~7 but not g —Tj. Observe that the
g -open subsets of X are the open sets.

Example 4.16. Let X = {a, b, ¢, d} with the topology t = {&, {a},
{0, ¢}, {a, b, ¢}, X}. Then the space X is g - Ty but not Tj5 as every

singleton subset of X is g -open or g -closed. Observe that every semi-
open subset of X is open and thus the g -closed sets are the closed sets

together with {b, d}, {c, d}, {a, ¢, d}, {a, b, d}. Also Xis g — Ty/2 but not

g —T;. Ttis also an example ofa g — 7T, space but not Tj.
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Definition 4.17. A space X is called weak g — Ry, if for each x € X
such that {x} = g - cl({x}) N g - ker({x}), then {x} = g - ker({x}).

It is easy to see that every g — Ry space is weak g — Ry. However,
the converse is not true as shown by the following example.

Example 4.18. Let X = {a, b, ¢} with the topology t = {&, {a}, X}.
Then the space X is weak g - Ry but not g - Ry;. Observe that the

g -open subsets of X are the open sets.

It is easy to verify now the following improvement of Theorem 4.10.
Theorem 4.19. For a space X, the following are equivalent:

Q) Xis §-1T,.

~

() Xis g -Ty and g - Ry.

(i) Xis g§ - Ty and weak g — Ry.

Definition 4.20. Let f be a function from a space X into a space Y.
Then the graph G(f) = {(x, f(x)): x € X} of f is said to be strongly
g -closed if for each (x, y)e (X xY)-G(f), there exist a g -open
subset U of X and an open subset V of Y containing x and y, respectively,

such that (U x V)N G(f) = @.

Lemma 4.21. Let f be a function from a space X into a space Y. Then

its graph G(f) is strongly g -closed if and only if for each point (x, y)
(X xY) - G(f), there exist a g -open subset U of X and an open subset V
of Y containing x and y, respectively, such that f(U)NV = @.

Proof. Follows immediately from the above definition. 0
Theorem 4.22. If f: X — Y is an injective function with a strongly

g -closed graph, then Xis g - T).

Proof. Suppose that x and y are distinct points of X. Since [ is
injective, f(x) # f(y). Thus (x, f(y) e (X xY)-G(f), but G(f) is
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strongly g -closed, so there exist a g -open set U and an open set V

containing x and f(y), respectively, such that f(U)NV = &. Hence

y ¢ U. Similarly there exist a g -open set M and an open set N
containing y and f(x), respectively, such that f(M)N N = &. Hence

x ¢ M. Thus it follows that Xis g - T3. 0

Theorem 4.23. If f : X — Y is a surjective function with a strongly
g -closed graph, then Yis Tj.

Proof. Let y; and y5 be two distinct points of Y. Since f is
surjective, there exists x € X such that f(x)= yy. Hence (x, y;)¢
G(f) and thus by Lemma 4.21 there exist a g -open set U and an open
set V containing x and y;, respectively, such that f(U)NV = &. Hence
yg ¢ V. Similarly there exists x; € X such that f(xy)= y;. Hence
(xg, ¥2) € G(f) and thus there exist a g -open set M and an open set N
containing xg and yy, respectively, such that f(M)N N = &. Hence
y1 € N. Thus it follows that Yis T;. 0

Remark 4.24. In Definition 4.20, if we consider U and V both are
g -open, then Theorem 4.23 yields that Yis g - T7.

5. g - T, Spaces

Definition 5.1. A space X is said to be g — Ty if to each pair of

distinct points x, y of X, there exist two disjoint g -open sets, one

containing x and the other containing y.

It is clear that every T, -space is g —Ty. However, the next

question asks about the converse.

Question 2. Is there an example of a g — Ty space that is not Ty ?

Remark 5.2. We observe that every g -7, space is g -1Tj.

However, the converse is not true as shown by the following example.
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Remark 5.3. An infinite set X with the finite complement topology is

g-T,. Tt is, however, not g -T, since any two non-empty open

subsets of X and hence any two non-empty g -open subsets of X intersect.

Observe that a g -open subset of X is open.

Theorem 5.4. For a space X, the following statements are equivalent:
) Xis g —Ts.
(1) For each x € X, N{g - cl(U,): U, is a g -neighborhood of x}
= {x} or equivalently, every singleton subset of X is the intersection of

g -closed neighborhoods of x.

Proof. (i) = (ii): Let X be a g — T, space and x € X. Then to
each ye X, y=#x, there exist g -open sets G and H such that
xeG,yeH and GNH=@. Since xeGcX-H, X-H is a
g -closed g -neighborhood of x to which y does not belong. Consequently,

the intersection of all g -closed g -neighborhoods of x is reduced to {x}.

(i1) = (1): Suppose that x,ye X and x # y. Then by hypothesis
there exists a g -closed g -neighborhood U of x such that y ¢ U. Now
there is a g -open set G such that x € G c U. Thus G and X - U are
disjoint g -open sets containing x and y, respectively. Hence X is
g -Ts. 0

The proof of the following theorem is straightforward and thus
omitted.

Theorem 5.5. A space X is g — Ty if and only if for each x, y € X
such that x # y, there exist g -closed sets F, and Fy such that
xeF, yeF,yeFy,xeFy and X = F; U F;.

Recall that a subset A of a space X i1s called sg-closed if whenever
A < U, where Uis semi-open in X, then scl(A) < U.

Remark 5.6. The product of two g -open sets need not be g -open as

the following example tells.
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Example 5.7. Let X = {a, b, ¢} and 1 = {J, {a, b}, X}. Then A =
{b, ¢} is g -closed. Now A x X 1is not sg-closed because if U = (X x X)
—~{(a, ¢)}, then U is semi-open in X xX and AxX c U. However,
X xX =scl(Ax X) ¢ U. Since every g -closed set is sg-closed, it follows
that A x X is not g -closed. From this we conclude that the product of
two g -closed sets need not be g -closed. Since the union of g -open sets
is g -open, it follows that the product of two g -open sets need not be

g -open.
Theorem 5.8. Every g -regular T, spaceis g —T,.

Proof. Let X be a g -regular T, space and let x, y € X be such
that x = y. Since X is 7, there exists an open set V containing x but
not y or ¥ but not x, say x but not y. Then ye X -V, X -V 1is closed
and x ¢ X - V. By g -regularity of X, there exist g -open sets G and H
suchthat x e G,y e X -V c H and GNH =J. Hence Xis g -Ty.0

Theorem 5.9. If f: X —» Y is an injective g -irresolute (resp.

g -continuous) function and Yis g — Ty (resp. Ty), then Xis g —T.
Proof. We show the first case, the other case is similar. Suppose that
x,yeX,x #y Since f is injective, f(x)# f(y), but Yis g-T,, so
there exist g -open sets G, H in Y such that f(x) € G, f(y) e H and
GNH=@. Let U=f"G) and V = f7(H). Then by hypothesis, U
and V are 3 -open setsin X. Also x € f 1(G)=U, ye f'(H)=V and
UNV =3. HenceXis g - Ty. 0

The following three theorems have easy proofs and thus omitted:

Theorem 5.10. If f: X —» Y is a bijective g -open (resp. g" -open)
function and Xis Ty (resp. 8 —Ty), then Yis g —Ty.
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Theorem 5.11. If fis a g -open function from a space X onto a space
Y and the set {(x1, x3): f(x1) = f(x9)} is closed in X x X, then Y is
g-Ts.
Theorem 5.12. If fisa g" -open function from a space X onto a space
Y and f has a strongly g -closed graph, then Yis g —Ty.

Remark 5.13. The above theorem is still true if we consider in the
definition of a strongly g -closed graph U and V to be both g -open.

Definition 5.14. A space X is said to be g - R; [4] if for each
x,ye X with g-cl({x}) = & — cl({y}), there exist disjoint g -open sets
Uand Vsuch that g —cl({x}) c U and g -cl({y}) = V.

Theorem 5.15. A space X is g - Ty if and only if it is g - Ry and
g - To.

Proof. Similar to that of Theorem 4.10. 0

Remark 5.16. In the following diagram we denote by arrows the
implications between the separation axioms which we have introduced

and discussed in this paper. However, none of these implications is

reversible.

Ty, = g-T

U U
T = g-T
U U
Ty, = &-Ty
U U

I, = &-Tp
Remark 5.17. It is not difficult to see that every g — R; space is
g - Ry. However, it follows from Theorem 4.19 and Theorem 5.15 that
any space which is g —7; but not g — Ty is an example of a g — R,

space thatisnot g — Rj.
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