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Abstract

In the present paper a necessary and sufficient condition for a cyclic
extension of the rationals of degree 2/, with a prime [/, to have a normal
basis for any ambiguous ideal is given. Fields of the degree 2[ are

investigated by computational methods for primes [, with A(Q(g;)) = 1.

Introduction

In 1969, Ullom [3, Theorem 1.10] gave a sufficient condition for all
ambiguous ideals in cyclic extension of Q of a prime degree [ to have a

normal basis:
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Let K/Q be a cyclic extension of a prime degree | in which the prime [
is unramified. Suppose the class number of the cyclotomic field Q(;) is
one. Then every ambiguous ideal of K has a normal basis.

In 1992, Jakubec and Kostra extended the above result, namely they
proved this theorem [2, Theorem 1].

Let K/Q be a cyclic extension of prime degree 1 in which the prime [ is

unramified. Let m be the conductor of the field K. Every ambiguous ideal

of K has a normal basis if and only if for any prime p, p|m there is an

integer y € Q(C;) such that |NQ(CZ)/Q(Y)| = p.

In the present paper we investigate existence of a normal basis for

ambiguous ideals in field extensions K/Q of degree 2/, where [ is a prime

and give a necessary and sufficient condition for any ambiguous ideal of K

to have a normal basis and we will prove the following theorem.

Theorem 1. Let [ be a prime and K/Q be a cyclic tamely ramified

extension of degree 21. Let m be the conductor of K. Every ambiguous ideal

of K has a normal basis if and only if for any prime p, p|m there is an

integer v € Q(C;) such that | No(,)/o(v)| = p and a unit o € Q(¢;) such
that Try(,)/q(®) = £1 and o =y (mod 2 Zg,))-

Before proving Theorem 1, let us first briefly recall some general
properties of the ambiguous ideals according to Ullom [3]. Let K/F be a

Galois extension of algebraic number field F with Galois group G, let
Zk (resp., Zf) be the ring of integers of K (resp., F).

Definition. An ideal U (possibly fractional) of K is G-ambiguous or
simply ambiguous if U is invariant under the action of the Galois group

G.

Let P be a prime ideal of F whose decomposition into prime ideals in

Kis

PLg = (pr-pg - pg)°
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Let W(P) = py.pa -+ pg. It is known that

e Y(P) is ambiguous and the set of the all W () with 8 prime in F,

is a free basis for the group of ambiguous ideals of K.

e An ambiguous ideal U of K may be written in the form UpT, where
T is an ideal of F and

UO :\P(Snl)al,,,\}l(gpt)at, 0<(li Sei,

where e; > 1 is the ramification index of a prime ideal of K dividing ;.
The ideal U determines Uy and T uniquely. The ambiguous ideal Uy is
called a primitive ambiguous ideal. By [3, Remark 1.7] for K/Q the

problem of showing that an ambiguous ideal of K has a normal basis is

reduced to the corresponding problem for primitive ambiguous ideals.

Ullom [3, Corollary 1.2] showed that Trg/p(U) = UNF for K/F is

tamely ramified. Consequently, if F'is a Galois extension of Q and ideal
U of K has a normal basis over the rational integers Z, then U (] F has a

normal basis over Z.
Theoretical Results

We will prove Theorem 1 as a consequence of two lemmas. First we

prove it in the case K < Q(C,), where p is a prime.

Lemma 1. Let K/Q be a cyclic extension with degree [K : Q] = 2 in
which the prime [ is unramified. Let K < Q(Qp) for a prime p. Every

ambiguous ideal of K has a normal basis if and only if for p there is an

integer y € ZLq,) such that | Noe,)o(v)|=p and a unit o € Zg(,)
such that Tr(,)/(e) = £1 and o = y(mod 2Zg(,))-

Proof. The existence of a normal basis for all ambiguous ideals is

equivalent to the existence of circulant matrices A; = circg;(a; 1, @; 2,

.., @ 97) transformating a normal basis of ideal (n’) to a normal basis of
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(n/*1), i.e., matrices such that
Ag , Ay Ag 1 A2
Zg = (W)= @) = @) @) 5 (1) = pZg.

Assume now that such matrices A; exist, then since the index

[(x') : ("*1)] is equal to p the determinant of each matrix | A; | = + p.

The formula for computing the determinant of circulant matrix

A; = cicml(aiJ, Qj 95 oo ai,2l) 1s
21-1 '
|A = [ Jas(ch) W
j=0

where ¢;(z) = a1 +a; 92 + Gi’gzz +oee ai,zlzm_l.

Each term qi(Cgl) represents an element of the field Q(¢;),
furthermore this element is an eigenvalue of the matrix A;, so we denote
it by }“i,kw i‘e.,

k 2k 20-1)k
i =a;1 +0a;90y +a; 305 +-+ ai,ZIC(gl )k, 2)

The form of A; ; can be simplified using the fact that
1
i L2 for even j,
Car =97 1j

-¢,2  forodd .

So one gets

| A; | = 2i,0Ng()0®i,1)2i 11N )0, 2), 3
with
21 !
1 -
rio = Zai,j’ i1 = Z(—l)] (@i, j — a1+ n
j=1 j=1

2l !
-1 i1
Migs1 = E (-1)"a;j, Mg = E (i, j +ai1.j)6]
j=1 J=1
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Note that the basis of the ring of integers Z g is transformated to a

basis of the ideal pZg by the diagonal matrix D = diagy(p, O, ..., 0), i.e.,
D . . .
Zg = pZg. Thus we get following matrix equality:
Ag- Ay Agy =D

Denote by F,, the Fourier transformation matrix, i.e., such a matrix

that

1 1 1 1
Lt G e not
FI - F,' - ik ¢2 ¢ b | )
Lo 200 e

then F,LAF,:1 is a diagonal matrix with entries being eigenvalues of the

circulant matrix A.
Using the above facts, we get

Ag-A;--Ag 1 =D,
Fy - Ag - Aq - Agy - Fy = FyDFy/,
Fy Ao -Fy -Fy Ay Fy - Fy Ay, Fy =D,
Dy -Dy-Dg1 =D
with diagonal matrices D; = diagg;(kj o, Aj 1, s Aj 97-1)-

From which it follows easily, thus we have

21-1 2[-1
HM,J‘ =D, HM,]' =D, (6
j=0 =0

for each i, j = 0,1, 2, ..., 2l — 1. Notice that the first product represents

the determinant of the matrix A;.
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Since A; o = Zfil a; j €Z, we have L;g=xp for some i€
{0,1, ..., 21 -1} and Ay o = #1 for k = i. Similarly, A; ;,; = £p for some

i€1{0,1,..,20 -1} and A = *1 for k = i.
Particularly, in what follows we show that Ly o = p and A 7,1 = p.

Finally, equality (3) shows that either N,y (Aj1) = p and ;5 is

aunit of Zg or N, l)/@(xi,z) = p and %, ; is a unit of Zg.

The circulant matrix A; = circg(a; 1, @; 9, ..., @; ;) is similar to the

block matrix

— sk
1 A; A
A block = XA X =177 L (6)
0, A
where X is unimodular matrix with entries xj;, defined as follows:
1 for j<land k =2j-1 (mod2]),
xjp =41 forl<j<2land k =2j-1 (mod!), (7
0 else.
The blocks of A; pjock are circulant matrices of this form
Ay =cirey(a1 = 1415 @3 = Q1435 0 ~ 2 T W 125 e~ 11+ 21-1);
+ .
A =cire(a; 1 + @141, @3 + @ 1435 o Q2 + QG 14y e Q11 GG 971 )s
* .
Aj = cirey(a 141, @ 1485 - Q25 - @ 1-1)s ®)

and the block O; is the zero matrix of degree /.

The determinant of A; pjocx depends only on the determinants of the

blocks Af and A; and hence we have

|A; | = | XAX T | =] A poek | = | AT [| AT |.
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Now let B be a circulant matrix of degree [, with the determinant
[
|B|= (b +by+-+0) ] [am(C)),
i=1

| B|=(by +bg + - +b;) Ny, /B, )
where B =b; +byl; + - + blgfl is an element of Q(¢;).
Also let v =¢; + 9l + - + cld_l be another element of Q(¢;) and
C = cir¢(¢q, ¢, ..., ¢;) be its circulant matrix.

Thus obviously in order to get | A; | = +p, one has to take the blocks

A7 = B and A} = C, as in one of the following four possibilities:

1 l
D bi=#p, Nggyo®) =1, Y ¢ =1, Nogyol) =1, (10)
=1 i

=*1, Nge)ye®) = p, ¢ =p, Ngg)pl)==1 (11

/
/
i =L, Nogyo®) =L Y c=p, Nogyoh) ==, (12
=1
>

!
D b =1, Nog o) = 1, ¢ =l Nogyol)=*p. (13

Observe that in the cases of (10) and (12) both B and y are units of
Zoy(g;)- In the cases (11) and (13) one has a unit and an element with

norm equal to p.

From the form of blocks in (8) and matrices B, C we get following
system of linear equations:

a1 =1 = b, a1+ a1 =gy

@3 = Q143 =gy Qi3+ Qi3 = Cpy,

@ioi1 — @11 = by 5 Qg1 F Qi1 = Cpy s (14)
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with the solutions
ai1 = O +o,)/20 aj i = (b —cpy )2

a3 = (bpg +0g)/2, @143 = (bpy +cpy)/2,

Gio11 = Orgyy +Cyy )2 @i 11 = gy = Cyy; )/2- (15)

The indices k; of b and ¢ in (15) depend on j in @; ; and are equal to

R dt1 (16)

for odd j. For even j, particularly, for a; ;,j(moda2:) they are the same.

From the above it is also easy to see that in order to get a; ; € Z for
jedl, 2, .., 20 the
b, = cp,; (mod 2)

must hold for all %; € {1, 2, ..., I}.

Finally, observe that one has

21 l

Z ai’j = Zbk
k=1

Jj=1

By the proof of [2, Lemma 1] for a matrix A; to transform a normal

basis of the ideal (n') to a normal basis of the ideal (x'*!) it is now
sufficient to show that i solves the following congruence:
~i ~i20-1
a1 +a; 98"+ + a; ()" = 0 (mod p), (17)

p-l
where g = r 2! | with r primitive root modulo p.

We recall here that in the proof of [2, Lemma 1] the congruences

by +byg’ + -+ by(g")™" = 0 (mod p), (18)
p-1

with g =r ! are solved. Our goal is to transform congruences (17) to

the above form. To do it, observe that directly from the definitions of g
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and g one sees relations among them

g =g g' = -1 (mod p),
K
g = g2 (mod p), g% =1 (mod p). (19)
~ivj-1
We start with dividing the congruence Z 9 (8 iY=1 = 0 (mod p)

into two parts. One with even exponents, one with odd. Then we replace
coefficients a; ; by bkj resp. cp; as in solutions of (15) and divide once

again

l l
by, +cp, : bry, — Cr i
2x -1 ox-1 (31\2x—2 2y 2y (~i1\2y-1
Z 2 (&) +Z 2 (&)

x=1 y=1

l l
1 ~i\2x-2 , 1 ~i2y-1
= Ezlbk%—l(g ) +§Z;bk2y(g )
x= y=

l

!
1 ~i2x-2 1 ~i\2y—1
+§Z;ck2x—l (g*) -3 Ckzy(g ) .
x=

y=1
Observe that in order to have by, = by, (resp., Chyy = Chy, ;) the

following must hold 2y = 2x —1 (mod [), ie., 2y = 2x —1+ [, and thus

we get

[\3

l !
1 ~in2x-2 1 ~L (2x-1£1)-1
Ezkax—l (g ) _Z; oy - 1

l

l
1 ~iv2x—2 1 ~i 1+])—
DI ERS DIL NS

x=1

All exponents are even now so, we can replace g by g, i.e.,

l l
1 -1 1 -1, ive
5 D Ok (€T 5 Y by, (8T (g2
x=1 x=1

l

l
1 -1 1 N DN
+5 D gy (8T =5 ey, (8 (82
x=1

x=1



212 VIKTOR DUBOVSKY and JURAJ KOSTRA

.1 .
Finally, since kg, ; = x and (g')2 = (8') = (-1)) we get
1 l 1 !
_— : —_—
§Zlbx<gl)x +(—1>1521bx(gl>x
xX= x=

l l
1 i —1 i 1 i —1
+§Zlcx<gl>x —<—1>‘§Zlcx<gl>x :
x= x=

From the above we see that if i is even solution of the congruence

(17), then it also solves the congruence Zizl b, (g")! = 0 (mod p). Odd

solutions of (17) are solutions of the congruence Zizl Cy (gi)x_1 =0
(mod p).

Thus this way we may obtain solutions of (17) for all ie

{1, 2, ..., 21 — 1}, since obviously if i solves the congruence (18), then i + [

solves it too and the change of i to i + [ corresponds to the change of

positions of the blocks in matrix A; pjocx Or interchanging roles of B and
C.

Now let B and y be as in the case (10). We shall show that the
circulant matrix A; reached from (15), transforms a normal basis of the

Z g to the normal basis of the ideal (r).

Notice first that a pair with the same parities of b, and ¢; always
exists. Since p =1 (mod /) and hence one can take the unit p with the

representing circulant matrix in the form

B = circ;(b +1, b, b, ..., b),
with b = pT—l To verify that such B is a unit observe that each term in

(9) can be reduced to 1 by subtraction 0 = b + bl; +--- + bqéfl and thus it

follows that B has the norm equal to 1. Furthermore, b is even, since

Ib+1 = p with [ and p being odd primes, so we can take matrix C to be

the identity matrix, i.e., circ;(1, 0, O, ..., 0).
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As a solution of (14) we get matrix
Ay = circgi(a +1, qa, a, ..., a),

p-1
21

with a =

and sum of its entries equal to p.

To verify that the index i = 0, one has to solve these congruences

(b+1)+0bg +b(g" )+ +b(g") =0 (mod p),

-1
bZ(gi)j = -1 (mod p)
=0

and thus from b +1 = p it follows easily that i = 0.

Thus the matrix A transforms normal basis of the ring of integers

in the field K to the normal basis of ideal (r).

The case (12) is similar to the above construction, so let B =

circ;(1, 0, O, ..., 0) be the identity matrix, ¢ = p Z_ 1 and

C = cir¢j(c+1, ¢, ¢, ..., C).
Then we get the circulant matrix
A; = circyi(a +1, —a, a, —aq, ..., a, a),

again with a = 2= 1

and sum of its entries equal to 1.

We show that Theorem 1 holds in the case with prime conductor p. To

prove in the case of the squarefree conductor m = p;py --- p, we will need

the following lemma.

Lemma 2. Let K be as in Theorem 1 with the squarefree conductor
m = piPg -+ Ps, Where p; is a prime for 1 =1,2,..,s. Let Q c Lpi
< QCp ) [Lp; : Q] = 2. Then

4
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Proof. The proof is by the same way as the proof of [2, Lemma 2] for
field extension of prime degree [. The situation in case of extension of

degree 2/ is similar.
S
G| Q) Ly, | = Hy xHy x--xHy = H
1=1

with
H; c (Z/p;Z)" for i=1,2,..,5
and the index

(z/p; Z)" : H;] = 2L

Clearly H =[z/mZ)'T*. Let G = G(Q(&,,)/K). It is sufficient to
show that H c G. Let x € (Z/mZ)*. The order of the group (Z/p;Z)" /G
equals 2/ and so x?! ¢ G. Thus we have H c G.

Remark. From the above it is easy to see that also in the case of non-
cyclic extension K < Q(¢,,) with [K : Q] = 4 any ambiguous ideal has a

normal basis, since

where K; c Q(Cp,) and [K; : Q] =4 for p; =1 (mod 4) and [K; : Q] = 2
for p; = 8 (mod 4).

Now we are in position to complete the proof of Theorem 1.

Proof. By Lemma 1 any ambiguous ideal of Lpi’ i=1,2, .. 8 hasa

normal basis. By [3, Proposition 1.8] any ambiguous ideal of \/leLpi has

a normal basis and so by [3, Corollary 1.2] any ideal of K has a normal

basis. Which proves Theorem 1.
Computational Results

Methods. In the next part of this paper we shall discuss existence or



ON NORMAL BASES OF IDEALS 215

non-existence of pairs of an element y and a unit ® € Q(¢;) such that

v = o (mod 2Z[Q(¢;)])

which by Lemma 1 ensures existence of normal basis for ambiguous
ideals. Especially the cases with prime [ <19, i.e. those for which

h(Q(&;)) = 1, are solved and also examples will be given.
We start with some simple observations. As the elements vy, © €

Q(¢;) can be represented as y = Zizl cigé_l or by circulant matrix
A, = circ(cy, cg, ..., ¢7), resp. by A, with the coefficients o; of the unit
o.

We are mainly interested in comparing parity of pairs ¢;, ®; and

hence to each A, we attach “parity” matrix Ky = circ;(c;), where by ¢;
we denote the residue class modulo 2.

In what follows, since there is no risk of confusion, we will use the
term parity for both, integers in usual meaning and for matrices and
vectors in the way it is defined above, i.e., parity term by term.

One can easily determine that the number of all possible distributions

of 0odd and even numbers in the vector (c;, cg, ..., ;) is 2.

Since to get 25:1 ¢; = 1 one has to have odd number of odd ¢;’s, we

may decrease this number to 21,

Finally the determinant of the circulant matrix with all entries being
odd, i.e., circ;(2k; +1, 2kg +1, ...., 2k; + 1), is divisible by 2!~1 and hence
1s not a prime, so we may discard this possibility and conclude that

there is only 2!=1 _1 of distributions of odd and even entries in
circy(cq, €9, -..,¢;), such that they can represent the elements of Q((;)

with prime norm.
On the other hand, since the group of units in Q(¢;), for / prime and

[ <19, is generated by the fundamental units, one can determine the

number of all units distinct from the parity point of view.
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The fundamental units can be computed by the formula
1-a a
ef1-¢
gq = G2 {—’J (20)

with a = 2, 3, ..., (I - 1)/2. Next we use ¢; for the unit ¢;

Notice that nonzero coefficients in (20) are all equal to +1 and that
there is even number of them, but this can be changed by adding resp.

subtracting element 1+ §; + C% + oo+ Qﬁfl, l.e., zero, to g,, SO we may

always assume to have fundamental units in the form
_ -1
€ = €g,1 T ea,QCl +- 4+ ea,lgl
with odd number of odd coefficients e, ;.

Once we determine fundamental units e¢,, their representation

matrices E;  and the parity matrices Ega belonging to them, we

compute the power of E;n, and Ezb, with a, b € {2, 3, ..., (p —1)/2},

a
m, n € N to find a pair m, n such that
E™ = E"
£q ep’

From the last section of tables we can see that all possible parity
matrices can be written as a power of only one suitably chosen

fundamental unit ¢; and power of £;. Only one exception appears in case
of [ =17, where we have to choose two fundamental units ¢;, € j and the

unit ; to produce all possible parity matrices.

For the fundamental units Zi:l eq.i = s(gq) = %1 is not valid, to put

them in this form compute s(g,) for each a = 2, 3, ..., (I - 1)/2 and fix g,
such that s(e,) is primitive root modulo /, then for i = 2, 3, ..., (I -1)/2,

i # a one can find k € N such that

s(g;)s(ey )" = +1 (mod 7).
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Thus the units sieg can be put in the form with sum of coefficients

equal to +1. Particularly this is done by adding the term

s(e;ef) £1

l @+C+CF ++ i)

we denote the yielding units by o;.

This way we obtain the new set
{o;;1=2,8, ..., (I-1)/2},

k

with ®; from product ¢;e;. In what follows we denote this relation by

siag ~ ®;. Notice that this set is not the set of fundamental units, in fact

it generates subgroup of rank (/ —1)/2 in the unit group.

Computational investigation of the parity cycles for units w;, the
dependence between them and the dependence between parities of w;
and the fundamental units ¢;, resp. their powers, shows that both sets
{e;;1=2,8, ..., (1-1)/2} and {w;; i =2, 3, ..., (I -1)/2} produce the same
parity matrices and for both it is enough to choose just one generator,
except for [ = 17.

To get all possible parity matrices one has to multiply those we get by
Eil, with i =0, 1, ..., [ — 1, since [ is obviously length of ¢; cycle.

Hence this way we are able to computationally determine the number
of all distinct parity matrices for each I. Thus to decide whether there is

such a pair y, ® as Lemma 1 demands us to find, it just left to compare

this number with 2/71 — 1.

Prime [ = 2. Let the circulant matrix C = circy(a, b) represent an
element y. One immediately sees that if a + b = +1, then b = 1 — q, soa

and b have opposite parities. Obviously one of the units 1, resp. i with

matrices circy(l, 0) resp. circy(0, 1) have the same parity matrix as the

element y.
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Prime [ =3 [1]. Since in this case 21 _1 =3, ie. there are 3
possibilities to get an element with prime norm, namely with the
representing matrices circs(2k; + 1, 2kg, 2k3), circs(2k;, 2k + 1, 2k3)

and circg(2k;, 2ky, 2kg +1).

On the other hand the units 1, (3, Q% have the matrices circs(1, 0, 0),
circ3(0, 1, 0) and circg(0, 0, 1).

Thus we can always choose a unit with the same parity as an

arbitrary element of Q({3).

Prime [ =5. Let us illustrate the use of computational results,

which are summarized in Appendix B.

The fundamental units ¢; resp. o;, i =1, 2 are equal to
g1 = G5, o = g,
g9 = -1-C5 - (3, 6 ~ 0y =13 - (3
resp. written as circulant matrices
E; = circs(0, 1, 0, 0, 0), W, = circs(0, 1, 0, 0, 0),
E., = circs(-1, -1, 0, 0, -1), ES% ~ W, = circs(1, 0, -1, -1, 0).
Computing the powers of the fundamental units and the units o; we

get Table 1, where the input & at i, j-th place means that Egk = Egj, or
1

the same for matrices belonging to ®;’s.

Table 1. Parity dependence of the units in Q(C5)

L lafe] [ [ol]o]
€1 6 - (]} 6 -
€9 3 4 P 3 4

From Table 1 we also see that ®; has parity cycle is of length 5, and
®9 has cycle length 3, so there is 5-3 =15 possible distributions of odd

and even numbers in representation of any unit in Q({5).
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The number of all possible distributions of odd and even coefficients

In representation matrices of elements with prime norm is 2l =
16 -1 =15.

So for any y with | Ng,)/(v)| = p the condition of Lemma 1 is

always fulfilled and so for the fields tamely ramified cyclic extensions K

with [K : Q] there exists a normal basis for all ambiguous ideals.

Prime [/ = 7. From the tables of fundamental units ¢; and the units
o; of Q(¢;), resp. tables with their parity dependence (Appendix B,
Subsection ! = 7) we see that the units g, 3 produce the same cycle

with length 7. The parity cycle of the unit ®; is also 7.

Thus the number of all parity distinct units is 7-7 = 49 < 21 1
=26_1= 63, so there are 14 possibilities, which can yield element with

prime norm and are different from those we get as units ®; powers.

Now denote by Ki these three parity matrices
A, = circ;(0, 0,0, 1, 0, 1, 1),
Ay = cireq(0, 0, 0,1, 1, 0, 1),
Aj = circ;(1,0,0,0,1, 0, 1),
counting them together with their conjugates we get the rest 14

possibilities, since elements with parity Kl have only two conjugates,

watching them from parity point of view.

Analyse the determinant of the matrix circy(2k;, 2ky, 2ks, 2k4 +1,

2ks, 2kg + 1, 2k +1) with k; € Z, i.e., matrix of element with the same
parity as Kl, is equal to 4z, z € Z. Determinants of matrices with the
same parity as Ki, i = 2, 3, are also divisible by 4.

Hence for any y with prime norm, one can find unit with

corresponding coefficient parity in the case of [ = 7.

Prime [ = 11. The computation (Appendix B, Subsection 11) shows
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that there are 11-31 = 341 of units different from parity point of view.
Notice that 11 is length of parity cycle of ®; and 31 length of parity cycle

of the unit w;.

Since 341 < 21 —1 =210 _1 21027 and as this difference SrOwWs
the probability of non-existence of pair y, ® with ¢; = ®; (mod 2) grows as
well, also checking determinants, like it was done in the case of [ = 7,
become at least tedious.

So we produce a counter-example. Computing the determinant of
matrix circy;(1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0), and matrices received by all
permutations of its coefficients we get 495 elements of Q((;;), out of
which there are 55 units, i.e., with determinant equal to 1, 220 of them

have determinant 23 and 110 with 67 resp. 199.

Thus we obtained 440 non-units, with prime norm congruent to 1
modulo 11 and each distinct with respect to the parities of coefficients,
and since the number of distinct units is 341 there must be y with no

corresponding .

The element vy =1+ {37 - C%l has the norm 23 and there is no unit

with the same parity as y, and hence can serve us as a counter-example.
And all of its conjugates, resp. all of those 220 permutations with this

determinant are counterexamples as well.

Of course one could ask a question, whether there could be another
element with norm 23, which satisfied condition of Lemma 1. Answer is
no, because the elements of the same norm differs only by multiple of

unit, then by taking parity matrices received as multiples of element yo3

and each of units in form 8?8;2 with 7 =1,2,..,11, i =1, 2, ..., 31, we

get set of all parities for elements with norm equal to 23. Comparing this
with set of unit parity matrices one can see that there is nothing common,
hence there is no pair y, ® with | Ng,,/o(v)| = 23.

On the other hand element y =1+ ¢ —¢5), with | Nog, o]

=199 and unit v = }? have the same coefficient parities
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v = cire;1(-1015495487978067, —854289166836692, —421852071343190,
144520076139427, 665008120576992, 974360785452496,
974360785452496, 665008120576992, 144520076139427,
—421852071343190, —854289166836692),

which is really awkward to carry through the computation, but using
parity tables once again one can get unit with the same parity as
follows:

v = 0%9 = m%8oa5 # w305 = U,

with
v’ = cirey(-11, -10, -6, 1, 8, 12, 12, 8, 1, -6, —10),
which 1s much more comfortable.

Prime [ =13. The situation in Q({;3) is similar to the case of
[ = 11, namely after computing fundamental units and determining their
parity dependence, we find that there are only 13-63 = 819 parity

213 _1 =8191 possible odd-even distributions,

distinct units and against
as follows from the results and the tables in Appendix B, Subsection

[ =13.

Permuting 13-tuple (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and computing

the determinants of all corresponding circulant matrices one finds 78
units and elements with norms 27, 53, 79, 131, 521 each occurring
156-times, that is, 780 non-units, which is less than total number of
parity distinct units, however it is enough to produce the counter-

example.

For the element y =1 -3 + Cf’g with the norm equal to 53 there is

no matching unit and there is no such unit even for yv, where v is any of

those 819 parity distinct units.

On the other hand, let now be y = {13 + ¢35 — (1% with No(g3)/0()

= 521, and let the unit v be mlmgo, then y and v have the same parities.
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Multiplying y by 0)%2(,0%, one can get another pair

Y = =79 -132¢3 — 15673 — 142075 — 9475 — 26475 + 46475

+108¢]5 +148¢85 +154¢75 +122¢19 + 62¢11 — 10212,

’

vV =wmy =1.

Prime [ = 17. In the case of the field Q({;7) a counter-example will

be produced once again. But first of all notice that the tables in Appendix
B, Subsection [ =17, show that all possible parity different units are
given as product wilo)éf’m? with 1<i4 <17 and 1<, ig <16,
implying that its number is 4352 < 2/"1 —1 = 216 _1 = 65535.

To produce the counter-example, check the determinants of circulant

matrices with entries being permutation of 17-tuple (1,1, -1, 0, 0, 0, 0
0,0,0,0,0,0,0,0,0,0), one gets 136 units and elements with the
norms 103, 137, 307, 409, 613, 3571.

Let y be an element of Q({;7) with the norm equal to 103, namely

vy =1+ —C%. Then to such element there is no unit satisfying

conditions of Theorem 1 with the same parity.

The same 1s true for those elements of norms 137, 307, 409, 613, so in
the fields satisfying conditions of Theorem 1 with these conductors, there

are ambiguous ideals without a normal basis.

On the other hand, if we let the field K be as in Theorem 1 with the
conductor p = 3571, then as shows the example of the element y with the

norm equal to p = 3571 and the unit v from the cyclotomic field Q(&;7),
y=1+G7 - Gif,
v =3+ 3017 + 20T + 207 + 2617 — 2077 — 44{7 - 4¢T7 - 4Ly
~AG17 - 2617 + 2617 + 2017 + 2617 + 3417

there is a pair with matching parities, and one may construct
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transformation matrices A;. Henceforth one may obtain normal bases of

all ambiguous ideals of such field K.

Prime [ =19. All parity different units are products of powers of

®; and ®g, see Appendix B, Subsection [ =19, and their number

19511 = 9709, while 2l-1 1 =218 1 =262143. So counter-example

must be shown once again.

Permutations of (1,1, -1,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0) give
us 171 units and the elements having norms equal to 191, 229, 419, 647,
761, 1483, 9349.

For the elements with the norms equal to 191, 229, 419, 647, 761,
1483, resp. for the fields as in Theorem 1 there are ambiguous ideals
without a normal basis. As an example of such element take y =

1+ C19 - CZg with the NQ(ClQ)/Q(Y) =191.

Now let y to be the element of Q({;9) with the norm equal to 9349

and the unit v with the same parity, namely
v =1+&iy -GS,
v = 27 + 26019 + 180y — 6579 — 38Cig — 4807 — 24T
+8L]g + 24 + 27C7 + 27479 + 24079 + 8L]5
— 2415 - 48C{5 - 38C13 — 6C1§ + 18474 + 26L15,
then one gets the elements o3 resp. agg with the corresponding matrices
A3 = circsg(14, 14, 13,12, 9, 4, -3, 12, 19, —24 —24,
~19, -12, -3, 4, 9,12, 13, 14, 13, 13, 13,12, 9, 4, -3,
-12, 19, -24, —24, -19, -12, -3, 4, 9, 12, 13, 13)
Agy = circgg(14, —14, 13, -12, 9, -4, -3, 12, 19, 24, —24,
19, 12, 3, 4, -9, 12, —13, 14, -13, 13, -13, 12, -9, 4, 3,

-12,19, —-24, 24, -19, 12, -3, —4, 9, -12, 13, -13).
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The matrix A5 transforms a normal basis of ideal (IT*?) to a normal
basis of ideal (IT'*) and Aj, transforms basis of ([1°2) to the basis

(l_[33). The rest of transformation matrices can be obtained as above and

so for every ambiguous ideal in the cyclic tamely ramified extension there

exists normal basis.

The elements with norms 191, 229, 419, 647, 761, 1483, obtained
above, can serve us as a counter-example, since there is no unit with the
same parity and hence in the fields K, as in Theorem 1, with these

conductors, there exist ambiguous ideals without normal integral basis.
Conclusion

From the above computations we have that any ambiguous ideal of a
cyclic tamely ramified algebraic number field K has a normal basis
for [K : Q] =2l with [ =2,3,5,7 and for [ =11, 13,17, 19 there exist

ambiguous ideals without normal basis.

Appendix A. Example

We shall illustrate the results on example of element y =1+ {7 — C%

e Q7).
No(g)/ar) = 29.

So let the prime p be equal to 29 and L be an extension of rationals of
degree 14, i.e., I =7. Also denote by K < Q({99) with [K : Q] =T7.

Primitive root modulo 29 is r = 2, hence

p1 p-l

~

g=rt =16, g=r2 =4
Element y can be represented by the circulant matrix
C = cireq(1, 1, -1, 0, 0, 0, 0),

and hence its parity matrix is C = circq(1, 1, 1, 0, 0, 0, 0).
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Solution of the congruence
L+g' ~(g')* =0 (mod p),
is i = 2 and so the matrix C transforms normal basis of ideal (n?) in K
to the normal basis of ideal (x3).

In order to find matrices transformating ideal basis in L, one have to

find unit ® € Q({;) with the same parity as y. All possible parities are

represented by wi‘”é, with i, j =1, 2,..., 7 so we search through them

and find

v = (olo)g

= 785 +1259¢, + 7852 — 280¢5 — 1134¢3 —1134¢52 — 28028,
this is quite awkward to carry through all computations, but using the
fact that wg has the same parity as wy, we may replace the unit v by v,
’ 2
V' = o0y = ~1 -Gy —CF + 207 + 207,
with the same parity.

Having y and v’ according to the proof of Lemma 1 we get two

elements of Q({;4) as a solution of equations (14). Denote them by ag

and og, particularly they are

3 4 7 8 9 10
ag = —C1g —C1g — Cia +Cig + C1a + C1s + Ci4s

3 4 7 8 9 10
ag = Cig4 +Cis —Cig — Cia + 814 — Cig + Cig-

Notice that one can obtain matrices corresponding to the element ag,

resp. og using the transformation matrix X defined in (7), i.e.,
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10 0 000 0 0 O OO OOFP®O
0 0100 0 0 0 O0OO0OO0OTO0OTGOFO0
0 0 001 000 O O0OO0OO0OTO0OTPO
0 0 0 00O1 00O 0O O0OO0OTO0OTO
0 0 0 00OOO1 O0O0O0O0OTO
0 0 0 00OOOOO0O1O0O0O0
X:0000000000001 0
100 0 0 0 O0OT1O0O0O0O0OO0Of
0 0100 0 0 0 O0OT1O0O0O0O0
0 0 001 0000 O0OO0OT1TO0TO0
0 0 0O 00OO1 00O O0OO0O0OTO0OT1
010 0 0 0O O OT1O0O0OTO0OO0OTGO
0 0 061 0600 0 0 O0O1 O0O0O0
0 0 0001 0000 O0OO0OT1O0

From norm two block matrices
R - C R , S - U S ,
O, U 0, C
where C resp. U are circulant matrices representing y resp. v'. Matrices
R* = (-C +U)/2 and S* = (C - U)/2, thus matrices Ay and Ag can be

obtained by
A, = X IRX,

Ag = X7ISX. (21)

Solving congruences (17) one finds that

g+ @) -@)-@) +@°-@%) +(@)"° =0 (mod 29),

~82 - (@) - @)+ @) @)+ @) + (@) =0 (mod 29)
and hence the matrix Ay = circy4(0, -1, 0, -1, -1, 0, 0,1,1,1, 1, 0, 0, 0)
transforms a normal basis of L ideal (IT?) to a normal basis of ideal ([T°)
and the matrix Ag = circy4(0,1,0,1,-1,0,0,-1,1,-1,1, 0, 0, 0) a normal
basis of (IT%) to a normal basis of ([T'°).

To find the rest of transformation matrices one just takes all
conjugates of the element a4 and solves corresponding congruences. This

way we obtained matrices A; for 0 <i < 14,1 = 7.
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The matrices Ay and A, are as in the proof of Lemma 1, i.e., with

entries computed from the term pz—_ll , particularly

Ay = 01rc2l(p ll +1, p2—ll’ p2—ll s ey p2—ll)’

Ay = circi4(3, 2, 2, ..., 2).
Ag =circy4(3,2,2,2,2,2,2,2,2,2, 22,2, 2) . (zg) > ()
A, = cire;4(0,0,1,0,0,0,1, -1, -1,1,0, -1, 0, 1) . (1) > (I13)
A, = cire4(0, -1,0, -1, -1,0,0,1, 1,1, 1, 0, 0, 0) : (I1%) - (I1%)
Aj = circy4(0,0,1,1,0,0,0,-1,0,1,1, 0, -1, —1) - (I1?) - (1Y)
A, = cire;4(0,1, -1,0,-1,0,1, 0, 0, 0, -1, 1, 0) (1) - (I1°)
Aj = cire;4(0,0,0,0,1,-1,1,-1,0,0, -1, 1, 0, 1) . (I1°) - (I1°)
Ag = cireyy (0, -1,0,1,0, -1, -1,1,1, 0, 0, 0, 1, 0) : (1) > (I1)
A; =cire;4(3,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2) : (I1") - (I1%)
Ag = cire;4(0,0,1,0,0,0,1,1, -1, -1, 0, 1, 0, -1) (M%) — (I1%)

Ag = cirei4(0,1,0,1,-1,0,0,-1,1, -1, 1, 0, 0, 0)
Ay = cirey4(0,0,1,-1,0,0,0,1,0, 1,1, 0, -1, 1)
Ay = circy4(0,-1,-1,0,1,1,0,-1,0,0, 0, 1, 1, 0)
Ay = circy4(0,0,0,0,1,1,1,1, 0,0, -1, -1, 0, —1)

A13 = CiI'C]_4(O, 1, 0, —1, 0, 1, —1, —1, 1, O, 0, 0, 1, 0)

: (117) > (')
() - (@t
() - ([IT7)
(1) - (1)

C (T3 > (1Y)

The above table summarizes all the transformation matrices and also

shows that each ideal of the field L has a normal basis.
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Prime [ = 5.

Appendix B. Tables

: The fundamental units ¢; and the o; units

E, = cires(0, 1, 0, 0, 0),

E;, = cires(-1, -1, 0, 0, —1),

W, = cire5(0, 1, 0, 0, 0),

Eslz ~W,, = cires(1, 0, -1,

: Parity dependence of the units in Q((5)

ENEN

L [[or[o]
€1 6 (] 6
€9 3 4 ®9 3 4

Prime [ = 7.

: The fundamental units ¢;

E

E,,

E.,

: The units o;

E

E

€1

3
€

cire; (0,1, 0, 0, 0, 0, 0),
cire;(-1, -1, -1, 0, 0, -1, -1),

cire;(1, 1, 0, 0, 0, O, 1).

= le = Circ7(0, 17 07 07 07 07 0),

. W, = circy (-1, -1, 0, 2, 2, 0, -1),

E, E;, ~W,, =circ;(-1,-1,0,1,1,0, -1).

: Parity dependence of the units in Q({7)

IENENEY

IENESE

€1 8 - - (] 8
€9 7 8 3 W9 7 8 6
es || 7] 5 | 8 o3 || 7] 6| 8

1, 0).
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: The fundamental units ¢;

E

€1

E

€2

E,,

E

€4

E,

= circ;1(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
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: The units o;

E

€1

€

2
E? E, ~ W,

=W

1

= cirey;(0,1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

®3

cirey1(-1, -1,

cirey1(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1),

cire;(1, 1, 1,0, 0, 0,0, 0, 0, 1, 1).

= circy1(3, 2, 0, -1, -1, -1,

-1,-1,-1,0,0, -1, -1,

_]_’

cire;; (-1, -1, -1, -1, 0, 0, 0, 0, -1, -1, 1),

-1),

E52 ~ W, = cirey;(-3, -3, -3,-2,2,7,7, 2, -2, -3, -3),

_1> _]-a _1a Oa 2)’

E§2E£4 ~ W, = circ;(5, 4,1, -2, -3, -3, -3, -3, -2, 1, 4),

E E

€277¢5

~W,, = circ;7(-1, -1, -1,0,1,1,1,1, 0, -1, -1).

: Parity dependence of the units in Q(&;7)

[ &1 [ ep [ es [ ea | |

o1 |03 | @ o] o]

€ || 12 o || 12 - - .

€9 31 (32| 7 3 | 15 wy || 31 32| 8 | 26 | 28

€3 3119 |32 27|11 w3 ([ 31 ] 4 |32 |11 | 19

€4 3112112332 | 5 oy || 31 6 | 17|32 13

€5 31 (29|17 | 25| 32 o5 ([ 31 10| 18| 12 | 32
Prime [ = 13.

: The fundamental units ¢;

E,, = cirej30,1,0,0,0,0,0,0,0,0,0,0,0),

229
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E, = circejs(-1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, —1),

€9
E,, = cireys(1, 1, 0,0, 0,0, 0,0,0,0,0, 0, 1),
E£4 = CiI'C13(—1, _19 _17 _17 _17 07 O, O, O, _1, _1a _1a _1);

E,, = circj3(1,1,1,0,0,0,0,0,0,0,0,1,1),

Eg,

circyz(-1, -1, -1, -1, 0,0, 0, 0, 0, 0, -1, -1, —-1).
: The units o;

E, =W, =circ;3(0,1,0,0,0,0,0,0,0,0,0,0,0),

ESZ ~ W, = cire;3(15,10, 1, -4, -5, -5, =5, -5, -5, =5, -4, 1, 10),

2
E. E, ~ W,,

cire3(3, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 2),

15:;*21384 ~ W, = circj3(-5, -5, -5, -4, 0, 6, 10, 10, 6, 0, —4, —5, —5),

L1
3 .
Es2E85 ~ Wm5 = circyz(-3,-3,-3,-2,1,4,5,5,4,1, -2, -3, -3),

E.E._ =W

ey By wg = Cirei3(1,1,1,0, -1, -1, -1, -1, -1, -1, 0, 1, 1).

: Parity dependence of the units in Q({;3)

L [[ealeafesfealos[ee] | [lor[on]on|oa]os]og]
£ 14| - - - - - o || 14

eo || 63|64 (15| 3 | 7 |31 oy || 21 | 22

eg (|21 - |22 |17 | - - w3 [| 633064 |56| 8 |13
g4 (121 - | B |22 - - o4 (| 9| - - 110

€5 9 | - - - |10 - o5 || 63|51 8| 7 |64]41
€g || 63|61 | 33|57 |49 |64 wg || 631234 |14 |20 | 64
Prime [ = 17.

: The fundamental units ¢;

E,, = circ;7(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
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E. = circi7(-1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, -1, -1, -1),
E,.. = circ;7(1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1),
E., = circ;7(-1, -1, -1,-1,-1,-1,-1,0,0, 0,0, -1, -1, -1, -1, -1, —1),
= cirey7(1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1),
E. = circ;7(-1, -1, -1, -1, -1,-1,0,0,0, 0,0, 0, -1, -1, -1, -1, -1),
E. =circe;7(1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1, 1),
E,. = circ;7(-1,-1,-1,-1,-1,0,0,0,0,0,0, 0,0, =1, -1, -1, —1).
: The units o;
E, =W,
= cirey7(0,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0),
E82E§3 ~ W,
= cirey7(-1, -1, -1, -1, -1, -1, 0, 2, 4, 4, 2, 0, -1, -1, -1, -1, 1),
Ej; ~ W,
= cireq7(721, 630, 398, 118, —120, —274, —350, —378, —385,
—385, —378, —350, —274, —120, 118, 398, 630),
E;‘SES4 ~W,,
= cirey7(-19, -19, -19, —18, 14, —4, 12, 30, 42,
42, 30,12, —4, —14, —18, —19, -19),
Engg5 ~ W,

= cire;7(17,15,9, 2, -4, -7, -8, -8, -8, -8, -8, -8, -7, -4, 2, 9, 15),
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Eg3Eeg ~ Wog
= cireyp(-1, -1, -1, -1, -1, 0,1, 2, 2, 2, 2,1, 0, -1, -1, -1, 1),
5 ~
E33E87 ~ Wy,
— cireyr (131, 121, 92, 47, —4, —49, —79, —94, —99

~99, —94, —79, —49, —4, 47, 92, 121),

~ W,

€8 8

E°E
€3
= circy;(~329, —314, —265, —175, —49, 92, 218, 307, 351,
351, 307, 218, 92, —49, —175, —265, —314).

: Parity dependence of the fundamental units ¢; in Q(;7)

|l e lea [es|oa e[ o6 |er]ecs]

€ 18 - - - - - - -
€9 15|16 | - 3 - - - 7
€3 15 - 16 - - - - -
€4 || 16| - - 16 | - - - -
€5 15 - - - 6 - - -
€ || 15| - - - - 16 | - -
€7 15 - - - - - 16 -
€g 15| 13| - 9 - - - 16

: Parity dependence of the units w; in Q(&17)

I EN R EN N E E E

ol 18 - - - - - - -
[ap) 15| 16 - - - - - -
w3 15 - 16 - - - - -
o4 || 15| - - 16 | - - - -
W5 15 - - - 16 - - -
og || 15| - - - - 16 | - 7
7 15 - - - - - 16 -
og || 15| - - - - 13| - 16
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: Parity dependence among o;’s

8 17 11 12 10 3
W9 ~ MF50g, w3 = 0F5 0g , Wy = W5 0g,
4 10 7
W7 & O50q , wg = Wg.
Prime [/ = 19.

: The fundamental units ¢;

E, = circ;q(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

€1

E,, = circjg(-1, -1, -1, -1, -1, -1, -1, -1, -1, 0,

0’ _]—> _1> _1> _1a _1a _1’ _1’ _1)’

E,, = circi9(1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1),

E,, = circig(-1, -1, -1, -1, -1, -1, -1, -1, 0, 0,

07 07 _17 _17 _17 _1, _1, _1, _1)7

E,, = cirej9(1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11),

E; = circig(-1, -1, -1, -1, -1, -1, -1, 0, 0, 0,

09 09 07 _17 _17 _15 _15 _15 _1)7

E, = cire;9(1,1,1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1),

E,, = circyg(-1, -1, -1, -1, -1, -1, 0,0, 0, 0

0> 0> 07 0’ _]-’ _]-’ _15 _15 _1)’

E,, = circj9(1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1).

: The units o;

233

E, =W, = circ;9(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0),
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9 .
E) ~ W,

= circyg(-27, 27, =27, =27, =27, —-26, -18, 9, 57, 99,

99, 57, 9, 18, —26, —27, —27, —27, —27),

5 ~
E] E,, ~ W,
= circyg(-5, -5, =5, =5, =5, =5, —4, 9, 11, 20,

20,11, 9, -4, -5, -5, -5, -5, —5),

7 ~
E! E., ~ W,,
= cire;o(85, 71, 37, 2, -19, —26, 27, —27, —27, —21,

-27, =27, -217, -21, -26, -19, 2, 37, 71),
2 ~
E2E, ~ W,
= circyg(3, 3, 2, 0, -1, -1, -1, -1, -1, -1,
-1,-1,-1, -1, -1, -1, 0, 2, 3),

4 ~
E! E. ~ W,
= cireo(~5, =5, -5, -5, =5, —4, 0, 6, 10, 11,

11, 10, 6, 0, -4, -5, =5, —5, —5),

3 ~
E!E, ~ W,
= circig(-3, -3, -3, -3, -3, -2, 1, 4, 5, 5,

5’ 59 47 15 _27 _37 _35 _35 _3)5

6 ~
Ea2E88 ~ st
= circ9(—27, —27, —27, —26, —20, -5, 15, 30, 36, 37

37, 86, 30, 15, -5, —20, —26, —27, —27),
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E,E, ~ W,
= cirepg(-1, -1, -1, -1, -1, 0,1, 1,1, 1
1,1,1,1,0, -1, -1, -1, —1).

: Parity dependence of the fundamental units ¢; in Q(;9)

L e [ [og [ eafes [ o6 | er[es]e|
€ 20 -
€9 ||B511 (512|156 | 3 |127| 31 | 63 | 7 |255
€3 || 511|477 | 512|409 | 281|479 | 413|273 | 17
€4 ||511|341| 5 |512 383|351 | 21 |343| 85
€5 || 511|169 | 491 | 507 | 512 | 129 | 427 | 161 | 171
€ || 511 | 33 |495| 99 | 103|512 | 35 | 231|239
€7 73 - - - - - 74 | 65
€g 73 - - - - - 9 | 74
€9 || 511 | 509 | 481 | 505 | 257 | 449 | 385 | 497 | 512

: Parity dependence of the units o; in Q(&;9)

L o [on [0 ][0 ]0s]ar]os]o]
ol 20 -
oy || 511 | 512 | 59 | 285 | 355 | 231 | 348 | 115 | 142
o3 || 511 | 26 | 512|256 | 32 | 385|361 (435|115
o4 [|511| 52 | 2 | 512 | 64 | 259|211 | 359|230
o5 || 511|416 | 16 | 8 |512| 28 | 155|317 | 307
0 || 73 - - - - 74
o7 || 511 395|310 | 155 | 211 | 287 | 512 | 457 | 391
og || 511 | 40 | 316 | 158 | 403 | 42 | 123|512 | 59
og [[511| 18 | 40 | 20 | 258 | 70 | 132 | 26 | 512
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