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Abstract 

In the present paper a necessary and sufficient condition for a cyclic 

extension of the rationals of degree 2l, with a prime l, to have a normal 

basis for any ambiguous ideal is given. Fields of the degree 2l are 

investigated by computational methods for primes l, with ( )( ) .1=ζlh Q  

Introduction 

In 1969, Ullom [3, Theorem 1.10] gave a sufficient condition for all 

ambiguous ideals in cyclic extension of Q  of a prime degree l to have a 

normal basis: 
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Let QK  be a cyclic extension of a prime degree l in which the prime l 

is unramified. Suppose the class number of the cyclotomic field ( )lζQ  is 

one. Then every ambiguous ideal of K has a normal basis. 

In 1992, Jakubec and Kostra extended the above result, namely they 

proved this theorem [2, Theorem 1]. 

Let QK  be a cyclic extension of prime degree l in which the prime l is 

unramified. Let m be the conductor of the field K. Every ambiguous ideal 

of K has a normal basis if and only if for any prime mpp |,  there is an 

integer ( )lζ∈γ Q  such that ( ) ( ) .pN
l

=γζ QQ  

In the present paper we investigate existence of a normal basis for 

ambiguous ideals in field extensions QK  of degree 2l, where l is a prime 

and give a necessary and sufficient condition for any ambiguous ideal of K 

to have a normal basis and we will prove the following theorem. 

Theorem 1. Let l be a prime and QK  be a cyclic tamely ramified 

extension of degree 2l. Let m be the conductor of K. Every ambiguous ideal 

of K has a normal basis if and only if for any prime mpp |,  there is an 

integer ( )lζ∈γ Q  such that ( ) ( ) pN
l

=γζ QQ  and a unit ( )lζ∈ω Q  such 

that ( ) ( ) 1±=ωζ QQ l
Tr  and ( ( ) ).2mod

lζγ≡ω QZ  

Before proving Theorem 1, let us first briefly recall some general 

properties of the ambiguous ideals according to Ullom [3]. Let FK  be a 

Galois extension of algebraic number field F with Galois group G, let 

( )FK ZZ resp.,  be the ring of integers of ( ).resp., FK  

Definition. An ideal U (possibly fractional) of K is G-ambiguous or 

simply ambiguous if U is invariant under the action of the Galois group 

G. 

Let P  be a prime ideal of F whose decomposition into prime ideals in 

K is 

( ) .. 21
e

gK pppP L=Z  
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Let ( ) .. 21 gpppP L=Ψ  It is known that 

• ( )PΨ  is ambiguous and the set of the all ( )PΨ  with P  prime in F, 

is a free basis for the group of ambiguous ideals of K. 

• An ambiguous ideal U of K may be written in the form ,TUO  where 

T is an ideal of F and 

( ) ( ) ,0,1
1 ii

a
t

a
O eaU t ≤<ΨΨ= PP L  

where 1>ie  is the ramification index of a prime ideal of K dividing .iP  

The ideal U determines OU  and T uniquely. The ambiguous ideal OU  is 

called a primitive ambiguous ideal. By [3, Remark 1.7] for QK  the 

problem of showing that an ambiguous ideal of K has a normal basis is 

reduced to the corresponding problem for primitive ambiguous ideals. 

Ullom [3, Corollary 1.2] showed that ( ) FUUTr FK I=  for FK  is 

tamely ramified. Consequently, if F is a Galois extension of Q  and ideal 

U of K has a normal basis over the rational integers ,Z  then FU I  has a 

normal basis over .Z  

Theoretical Results 

We will prove Theorem 1 as a consequence of two lemmas. First we 

prove it in the case ( ),pK ζ⊆ Q  where p is a prime. 

Lemma 1. Let QK  be a cyclic extension with degree [ ] lK 2: =Q  in 

which the prime l is unramified. Let ( )pK ζ⊆ Q  for a prime p. Every 

ambiguous ideal of K has a normal basis if and only if for p there is an 

integer ( )lζ∈γ QZ  such that ( ) ( ) pN
l

=γζ QQ  and a unit ( )lζ∈ω QZ  

such that ( ) ( ) 1±=ωζ QQ l
Tr  and ( ( ) ).2mod

lζγ≡ω QZ  

Proof. The existence of a normal basis for all ambiguous ideals is 

equivalent to the existence of circulant matrices ( ,,circ 2,1,2 iili aa=A  

)lia 2,...,  transformating a normal basis of ideal ( )jπ  to a normal basis of 
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( ),1+π j  i.e., matrices such that 

( ) ( ) ( ) ( ) ( ) .21232 12210
K

ll
K p

l ZZ =π→ππ→π→π→
−− AAAA

L  

Assume now that such matrices iA  exist, then since the index 

[( ) ( )]1: +ππ ii  is equal to p the determinant of each matrix .pi ±=A  

The formula for computing the determinant of circulant matrix 
( )liiili aaa 2,2,1,2 ...,,,circ=A  is 

( )∏
−

=

ζ=
12

0
2 ,

l

j

j
lii qA  (1) 

where ( ) .12
2,

2
3,2,1,

−++++= l
liiiii zazazaazq L  

Each term ( )k
liq 2ζ  represents an element of the field ( ),lζQ  

furthermore this element is an eigenvalue of the matrix ,iA  so we denote 

it by ,, kiλ  i.e., 

( ) .12
22,

2
23,22,1,,

kl
lli

k
li

k
liiki aaaa −ζ++ζ+ζ+=λ L  (2) 

The form of ki,λ  can be simplified using the fact that 










ζ−

ζ
=ζ +

. oddfor 

, evenfor 

2

2

2

j

j
jl

l

j

lj
l  

So one gets 

( ) ( ) ( ) ( ),2,1,1,0, iliiii ll
NN λλλλ= ζ+ζ QQQQA  (3) 

with 

( ) ( )∑ ∑
= =

−
+

− ζ−−=λ=λ
l

j

l

j

j
ljliji

j
ijii aaa

2

1 1

1
,,

1
1,,0, ,1,  

( ) ( )∑ ∑
= =

−
+

−
+ ζ+=λ−=λ

l

j

l

j

j
ljlijiiji

l
li aaa

2

1 1

1
,,2,,

1
1, .,1  
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Note that the basis of the ring of integers KZ  is transformated to a 

basis of the ideal KpZ  by the diagonal matrix ( ),0...,,0,diag2 pl=D  i.e., 

.KK pZZ D
→  Thus we get following matrix equality: 

.1210 DAAA =⋅ −lL  

Denote by nF  the Fourier transformation matrix, i.e., such a matrix 

that 

( )

( ) ( ) ( )

,

1

1
1

1111

1

11121

1242

12

1























ζζζ

ζζζ
ζζζ

==

−−−−

−

−

−

nn
n

n
n

n
n

n
nnn

n
nnn

n
H
n

n

L

MOMMM

L

L

L

FF  (4) 

then 1−
nnAFF  is a diagonal matrix with entries being eigenvalues of the 

circulant matrix A. 

Using the above facts, we get 

,1210 DAAA =⋅ −lL  

,1
22

1
212102

−−
− =⋅⋅⋅ lllll DFFFA AAF L  

,1
2122

1
212

1
202 DFAFFAFFAF =⋅⋅⋅⋅⋅⋅⋅ −

−
−−

lllllll L  

DDDD =⋅ −1210 lL  

with diagonal matrices ( )....,,,diag 12,1,0,2 −λλλ= liiiliD  

From which it follows easily, thus we have 

∏ ∏
−

=

−

=

=λ=λ
12

0

12

0
,, ,,

l

j

l

i
jiji pp  (5) 

for each .12...,,2,1,0, −= lji  Notice that the first product represents 

the determinant of the matrix .iA  
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Since ∑ =
∈=λ l

j jii a
2

1 ,0, ,Z  we have pi ±=λ 0,  for some ∈i  

{ }12...,,1,0 −l  and 10, ±=λk  for .ik ≠  Similarly, pli ±=λ +1,  for some 

{ }12...,,1,0 −∈ li  and 11, ±=λk  for .ik ≠  

Particularly, in what follows we show that p=λ 0,0  and .1,1 pll =λ ++  

Finally, equality (3) shows that either ( ) ( ) pN il
=λζ 1,QQ  and 2,iλ  is 

a unit of KZ  or ( ) ( ) pN ili
=λζ 2,, QQ  and 1,iλ  is a unit of .KZ  

The circulant matrix ( )liiili aaa 2,2,1,2 ...,,,circ=A  is similar to the 

block matrix 

,1
block, 








== +

∗−
−

il

ii
ii

AO

AA
XAXA  (6) 

where X is unimodular matrix with entries jkx  defined as follows: 

( )
( )







−≡≤<
−≡≤

=
else.0

,mod12and2for1
,2mod12andfor1

ljkljl

ljklj

x jk  (7) 

The blocks of block,iA  are circulant matrices of this form 

( ),...,,...,,,circ 12,1,2,2,3,3,1,1, −−+++
− +−+−−−= lililiiliiliili aaaaaaaaA  

( ),...,,...,,,circ 12,1,2,2,3,3,1,1, −−+++
+ ++++= lililiiliiliili aaaaaaaaA  

( ),...,,...,,,circ 1,2,3,1, −++
∗ = liililili aaaaA  (8) 

and the block lO  is the zero matrix of degree l. 

The determinant of block,iA  depends only on the determinants of the 

blocks +
iA  and −

iA  and hence we have 

.block,
1 −+− === iiiii AAAXAXA  
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Now let B be a circulant matrix of degree l, with the determinant 

( ) ( )∏
=

ζ+++=
l

i

i
ll qbbb

1
21 ,BB L  

( ) ( ) ( ),21 β+++= ζ QQ l
Nbbb lLB  (9) 

where 1
21

−ζ++ζ+=β l
lll bbb L  is an element of ( ).lζQ  

Also let 1
21

−ζ++ζ+=γ l
lll ccc L  be another element of ( )lζQ  and 

( )ll ccc ...,,,circ 21=C  be its circulant matrix. 

Thus obviously in order to get ,pi ±=A  one has to take the blocks 

BA =−
i  and ,CA =+

i  as in one of the following four possibilities: 

( ) ( ) ( ) ( )∑ ∑
= =

ζζ ±=γ±=±=β±=
l

i

l

i
ii ll

NcNpb
1 1

,1,1,1, QQQQ  (10) 

( ) ( ) ( ) ( )∑ ∑
= =

ζζ ±=γ±=±=β±=
l

i

l

i
ii ll

NpcpNb
1 1

,1,,,1 QQQQ  (11) 

( ) ( ) ( ) ( )∑ ∑
= =

ζζ ±=γ±=±=β±=
l

i

l

i
ii ll

NpcNb
1 1

,1,,1,1 QQQQ  (12) 

( ) ( ) ( ) ( )∑ ∑
= =

ζζ ±=γ±=±=β±=
l

i

l

i
ii pNcNb

ll
1 1

.,1,1,1 QQQQ  (13) 

Observe that in the cases of (10) and (12) both β and γ are units of 

( ).lζQZ  In the cases (11) and (13) one has a unit and an element with 

norm equal to p. 

From the form of blocks in (8) and matrices B, C we get following 
system of linear equations: 

,
11,1, klii baa =− +  ,1,1, 1klii caa =+ +  

,
33,3, klii baa =− +  ,3,3, 3klii caa =+ +  

 L  L  

 ,
121,12, −

=− −− lklili baa  ,
121,12, −

=+ −− lklili caa  (14) 
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with the solutions 

( ) ,2
111, kki cba +=  ( ) ,2

111, kkli cba −=+  

( ) ,2
333, kki cba +=  ( ) ,2

333, kkli cba +=+  

 L  L  

 ( ) ,2
121212, −−

+=− ll kkli cba  ( ) .2
12121, −−

−=− ll kkli cba  (15) 

The indices jk  of b and c in (15) depend on j in jia ,  and are equal to 

,
2

1+= jkj  (16) 

for odd j. For even j, particularly, for ( )lljia 2mod, +  they are the same. 

From the above it is also easy to see that in order to get Z∈jia ,  for 

{ }lj 2...,,2,1∈  the 

( )2mod
jj kk cb ≡  

must hold for all { }....,,2,1 lkj ∈  

Finally, observe that one has 

∑ ∑
= =

=
l

j

l

k
kji ba

2

1 1
, .  

By the proof of [2, Lemma 1] for a matrix iA  to transform a normal 

basis of the ideal ( )iπ  to a normal basis of the ideal ( )1+πi  it is now 

sufficient to show that i solves the following congruence: 

( ) ( ),mod0~~ 12
2,2,1, pgagaa li
li

i
ii ≡+++ −L  (17) 

where ,~ 2
1

l
p

rg
−

=  with r primitive root modulo p. 

We recall here that in the proof of [2, Lemma 1] the congruences 

( ) ( ),mod01
21 pgbgbb li

l
i ≡+++ −L  (18) 

with l
p

rg
1−

=  are solved. Our goal is to transform congruences (17) to 

the above form. To do it, observe that directly from the definitions of g 
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and g~  one sees relations among them 

,~2 gg =  ( ),mod1~ pgl −≡  

( ),mod~ 2 pgg
l

≡  ( ).mod1~2 pg l ≡  (19) 

We start with dividing the congruence ( ) ( )∑ =
− ≡l

j
ji

ji pga
2

1
1

, mod0~  

into two parts. One with even exponents, one with odd. Then we replace 

coefficients jia ,  by 
jkb  resp. 

jkc  as in solutions of (15) and divide once 

again 

 ( ) ( )∑ ∑
= =

−−
−

+
+

−−
l

x

l

y

yikkxikk
g

cb
g

cb yyxx

1 1

1222 ~
2

~
2

221212  

( ) ( )∑ ∑
= =

−− +=
−

l

x

l

y

yi
k

xi
k gbgb

yx
1 1

1222 ~
2
1~

2
1

212
 

 ( ) ( ) .~
2
1~

2
1

1 1

1222
212∑ ∑

= =

−− −+
−

l

x

l

y

yi
k

xi
k gcgc

yx
 

Observe that in order to have ( )
122122

resp.,
−−

==
xyxy kkkk ccbb  the 

following must hold ( ),mod122 lxy −≡  i.e., ,122 lxy ±−=  and thus 

we get 

( ) ( )( )∑ ∑
= =

−±−−
−−

+
l

x

l

x

lxi
k

xi
k gbgb

xx
1 1

11222 ~
2
1~

2
1

1212
 

( ) ( )( ) .~
2
1~

2
1

1 1

11222
1212∑ ∑

= =

−±−−
−−

−+
l

x

l

x

lxi
k

xi
k gcgc

xx
 

All exponents are even now so, we can replace g~  by g, i.e., 

( ) ( ) ( )∑ ∑
= =

−−
−−

+
l

x

l

x

l
ixi

k
xi

k ggbgb
xx

1 1

2
11

1212 2
1

2
1  

( ) ( ) ( ) .
2
1

2
1

1 1

2
11

1212∑ ∑
= =

−−
−−

−+
l

x

l

x

l
ixi

k
xi

k ggcgc
xx
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Finally, since xk x =−12  and ( ) ( ) ( )lli
l

i gg 1~2 −==  we get 

( ) ( ) ( )∑ ∑
= =

−− −+
l

x

l

x

xi
x

ixi
x gbgb

1 1

11
2
11

2
1  

( ) ( ) ( ) .
2
11

2
1

1 1

11∑ ∑
= =

−− −−+
l

x

l

x

xi
x

ixi
x gcgc  

From the above we see that if i is even solution of the congruence 

(17), then it also solves the congruence ( ) ( )∑ =
− ≡

l
x

xi
x pgb

1
1 .mod0  Odd 

solutions of (17) are solutions of the congruence ( ) 0
1

1 ≡∑ =
−l

x
xi

x gc  

( ).mod p  

Thus this way we may obtain solutions of (17) for all ∈i  

{ },12...,,2,1 −l  since obviously if i solves the congruence (18), then li +  

solves it too and the change of i to li +  corresponds to the change of 

positions of the blocks in matrix block,iA  or interchanging roles of B and 

C. 

Now let β and γ be as in the case (10). We shall show that the 

circulant matrix iA  reached from (15), transforms a normal basis of the 

KZ  to the normal basis of the ideal ( ).π  

Notice first that a pair with the same parities of ib  and ic  always 

exists. Since ( )lp mod1≡  and hence one can take the unit β with the 

representing circulant matrix in the form 

( ),...,,,,1circ bbbbl +=B  

with .1
l

pb −=  To verify that such β is a unit observe that each term in 

(9) can be reduced to 1 by subtraction 10 −ζ++ζ+= l
ll bbb L  and thus it 

follows that β has the norm equal to 1. Furthermore, b is even, since 

plb =+ 1  with l and p being odd primes, so we can take matrix C to be 

the identity matrix, i.e., ( ).0...,,0,0,1circl  
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As a solution of (14) we get matrix 

( ),...,,,,1circ20 aaaal +=A  

with 
l

pa
2

1−=  and sum of its entries equal to p. 

To verify that the index ,0=i  one has to solve these congruences 

( ) ( ) ( ) ( ),mod01 12 pgbgbbgb liii ≡+++++ −L  

( ) ( )∑
−

=

−≡
1

0

mod1
l

j

ji pgb  

and thus from plb =+ 1  it follows easily that .0=i  

Thus the matrix 0A  transforms normal basis of the ring of integers 

in the field K to the normal basis of ideal ( ).π  

The case (12) is similar to the above construction, so let =B  

( )0...,,0,0,1circl  be the identity matrix, 
l

pc 1−=  and 

( )....,,,,1circ ccccl +=C  

Then we get the circulant matrix 

( ),,...,,,,,1circ2 aaaaaali −−+=A  

again with 
l

pa
2

1−=  and sum of its entries equal to 1. 

We show that Theorem 1 holds in the case with prime conductor p. To 

prove in the case of the squarefree conductor spppm L21=  we will need 

the following lemma. 

Lemma 2. Let K be as in Theorem 1 with the squarefree conductor 

,21 spppm L=  where ip  is a prime for ....,,2,1 si =  Let 
ipL⊂Q  

( ) [ ] .2:, lL
ii pp =ζ⊂ QQ  Then 

.
1

ip

s

i
LK

=
⊂∨  
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Proof. The proof is by the same way as the proof of [2, Lemma 2] for 

field extension of prime degree l. The situation in case of extension of 

degree 2l is similar. 

( ) HHHHLG sp

s

i
m i

=×××≅












ζ

=
L21

1
∨Q  

with 

( )∗⊂ ZZ ii pH    for  si ...,,2,1=  

and the index 

[( ) ] .2: lHp ii =∗ZZ  

Clearly [( ) ] .2lmH ∗= ZZ  Let ( )( ).KGG mζ= Q  It is sufficient to 

show that .GH ⊂  Let ( ) .∗∈ ZZ mx  The order of the group ( ) Gpi
∗ZZ  

equals 2l and so .2 Gx l ∈  Thus we have .GH ⊂  

Remark. From the above it is easy to see that also in the case of non-

cyclic extension ( )mK ζ⊂ Q  with [ ] 4: =QK  any ambiguous ideal has a 

normal basis, since 

,
1

i

s

i
KK

=
⊂∨  

where ( )
ipiK ζ⊆ Q  and [ ] 4: =QiK  for ( )4mod1≡ip  and [ ] 2: =QiK  

for ( ).4mod3≡ip  

Now we are in position to complete the proof of Theorem 1. 

Proof. By Lemma 1 any ambiguous ideal of ,...,,2,1, siL
ip =  has a 

normal basis. By [3, Proposition 1.8] any ambiguous ideal of 
ip

s
i L1=∨  has 

a normal basis and so by [3, Corollary 1.2] any ideal of K has a normal 

basis. Which proves Theorem 1. 

Computational Results 

Methods. In the next part of this paper we shall discuss existence or 
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non-existence of pairs of an element γ and a unit ( )lζ∈ω Q  such that 

( )[ ]( )lζω≡γ QZ2mod  

which by Lemma 1 ensures existence of normal basis for ambiguous 

ideals. Especially the cases with prime ,19≤l  i.e., those for which 

( )( ) ,1=ζlh Q  are solved and also examples will be given. 

We start with some simple observations. As the elements ∈ωγ,  

( )lζQ  can be represented as ∑ =
−ζ=γ l

i
i
lic

1
1  or by circulant matrix 

( ),...,,,circ 21 ll ccc=γA  resp. by ωA  with the coefficients iω  of the unit 

ω. 

We are mainly interested in comparing parity of pairs iic ω,  and 

hence to each γA  we attach “parity” matrix ( ),circ il c=γA  where by ic  

we denote the residue class modulo 2. 

In what follows, since there is no risk of confusion, we will use the 
term parity for both, integers in usual meaning and for matrices and 
vectors in the way it is defined above, i.e., parity term by term. 

One can easily determine that the number of all possible distributions 

of odd and even numbers in the vector ( )lccc ...,,, 21  is .2l  

Since to get ∑ =
±=l

i ic
1

1  one has to have odd number of odd ic ’s, we 

may decrease this number to .2 1−l  

Finally the determinant of the circulant matrix with all entries being 

odd, i.e., ( ),12....,,12,12circ 21 +++ ll kkk  is divisible by 12 −l  and hence 

is not a prime, so we may discard this possibility and conclude that      

there is only 12 1 −−l  of distributions of odd and even entries in 
( ),...,,,circ 21 ll ccc  such that they can represent the elements of ( )lζQ  

with prime norm. 

On the other hand, since the group of units in ( ),lζQ  for l prime and 

,19≤l  is generated by the fundamental units, one can determine the 

number of all units distinct from the parity point of view. 
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The fundamental units can be computed by the formula 

,
1
1

2
1















ζ−
ζ−

ζ=ε
−

l

a
l

a

la  (20) 

with ( ) .21...,,3,2 −= la  Next we use 1ε  for the unit .lζ  

Notice that nonzero coefficients in (20) are all equal to 1±  and that 
there is even number of them, but this can be changed by adding resp. 

subtracting element ,1 12 −ζ++ζ+ζ+ l
lll L  i.e., zero, to ,aε  so we may 

always assume to have fundamental units in the form 

1
,2,1,

−ζ++ζ+=ε l
llalaaa eee L  

with odd number of odd coefficients ., iae  

Once we determine fundamental units ,aε  their representation 

matrices 
aεE  and the parity matrices 

aεE  belonging to them, we 

compute the power of ,m
aε

E  and ,n
bε

E  with ( ){ },21...,,3,2, −∈ pba  

N∈nm,  to find a pair m, n such that 

.nm
ba εε = EE  

From the last section of tables we can see that all possible parity 
matrices can be written as a power of only one suitably chosen 

fundamental unit iε  and power of .lζ  Only one exception appears in case 

of ,17=l  where we have to choose two fundamental units ji εε ,  and the 

unit lζ  to produce all possible parity matrices. 

For the fundamental units ( )∑ =
±=ε=l

i aia se
1 , 1  is not valid, to put 

them in this form compute ( )as ε  for each ( ) 21...,,3,2 −= la  and ,fix aε  

such that ( )as ε  is primitive root modulo l, then for ( ) ,21...,,3,2 −= li  

ai ≠  one can find N∈k  such that 

( ) ( ) ( ).mod1 lss k
ai ±≡εε  
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Thus the units k
aiεε  can be put in the form with sum of coefficients 

equal to .1±  Particularly this is done by adding the term 

( ) ( )121
1 −ζ++ζ+ζ+

±εε l
lll

k
ai

l
s

L  

we denote the yielding units by .iω  

This way we obtain the new set 

( ){ },21...,,3,2; −=ω lii  

with iω  from product .k
aiεε  In what follows we denote this relation by 

.i
k
ai ω≈εε  Notice that this set is not the set of fundamental units, in fact 

it generates subgroup of rank ( ) 21−l  in the unit group. 

Computational investigation of the parity cycles for units ,iω  the 

dependence between them and the dependence between parities of iω  

and the fundamental units ,jε  resp. their powers, shows that both sets 

( ){ }21...,,3,2; −=ε lii  and ( ){ }21...,,3,2; −=ω lii  produce the same 

parity matrices and for both it is enough to choose just one generator, 

except for .17=l  

To get all possible parity matrices one has to multiply those we get by 

,
1

i
εE  with ,1...,,1,0 −= li  since l is obviously length of 1ε  cycle. 

Hence this way we are able to computationally determine the number 

of all distinct parity matrices for each l. Thus to decide whether there is 

such a pair γ, ω as Lemma 1 demands us to find, it just left to compare 

this number with .12 1 −−l  

Prime .2=l  Let the circulant matrix ( )ba,circ2=C  represent an 

element γ. One immediately sees that if ,1±=+ ba  then ,1 ab −±=  so a 

and b have opposite parities. Obviously one of the units 1, resp. i with 

matrices ( )0,1circ2  resp. ( )1,0circ2  have the same parity matrix as the 

element γ. 
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Prime 3=l  [1]. Since in this case ,312 1 =−−l  i.e., there are 3 

possibilities to get an element with prime norm, namely with the 

representing matrices ( ) ( )32133213 2,12,2circ,2,2,12circ kkkkkk ++  

and ( ).12,2,2circ 3213 +kkk  

On the other hand the units 2
33,,1 ζζ  have the matrices ( ),0,0,1circ3  

( )0,1,0circ3  and ( ).1,0,0circ3  

Thus we can always choose a unit with the same parity as an 

arbitrary element of ( ).3ζQ  

Prime .5=l  Let us illustrate the use of computational results, 

which are summarized in Appendix B. 

The fundamental units iε  resp. 2,1, =ω ii  are equal to 

,51 ζ=ε  ,11 ε=ω  

,1 4
552 ζ−ζ−−=ε  3

5
2
52

2
1 1 ζ−ζ−=ω≈ε  

resp. written as circulant matrices 

( ),0,0,0,1,0circ51
=εE  ( ),0,0,0,1,0circ51

=ωW  

( ),1,0,0,1,1circ52
−−−=εE  ( ).0,1,1,0,1circ522

1
−−=≈ ωε

WE  

Computing the powers of the fundamental units and the units iω  we 

get Table 1, where the input k at i, j-th place means that ,
ji

k
εε = EE  or 

the same for matrices belonging to iω ’s. 

Table 1. Parity dependence of the units in ( )5ζQ  

  1ε  2ε     1ω  2ω  
         
1ε   6 -  1ω   6 - 

2ε   3 4  2ω   3 4 

From Table 1 we also see that 1ω  has parity cycle is of length 5, and 

2ω  has cycle length 3, so there is 1535 =⋅  possible distributions of odd 

and even numbers in representation of any unit in ( ).5ζQ  
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The number of all possible distributions of odd and even coefficients 

in representation matrices of elements with prime norm is =−12l  
.15116 =−  

So for any γ with ( ) ( ) pN =γζ QQ 5
 the condition of Lemma 1 is 

always fulfilled and so for the fields tamely ramified cyclic extensions K 

with [ ]Q:K  there exists a normal basis for all ambiguous ideals. 

Prime .7=l  From the tables of fundamental units iε  and the units 

iω  of ( ),7ζQ  resp. tables with their parity dependence (Appendix B, 

Subsection )7=l  we see that the units 32, ωω  produce the same cycle 

with length 7. The parity cycle of the unit 1ω  is also 7. 

Thus the number of all parity distinct units is 124977 1 −<=⋅ −l  

,63126 =−=  so there are 14 possibilities, which can yield element with 

prime norm and are different from those we get as units iω  powers. 

Now denote by iA  these three parity matrices 

( ),1,1,0,1,0,0,0circ71 =A  

( ),1,0,1,1,0,0,0circ72 =A  

( ),1,0,1,0,0,0,1circ73 =A  

counting them together with their conjugates we get the rest 14 

possibilities, since elements with parity 1A  have only two conjugates, 

watching them from parity point of view. 

Analyse the determinant of the matrix ( ,12,2,2,2circ 43217 +kkkk  

)12,12,2 765 ++ kkk  with ,Z∈ik  i.e., matrix of element with the same 

parity as ,1A  is equal to .,4 Z∈zz  Determinants of matrices with the 

same parity as ,3,2, =iiA  are also divisible by 4. 

Hence for any γ with prime norm, one can find unit with 

corresponding coefficient parity in the case of .7=l  

Prime .11=l  The computation (Appendix B, Subsection 11) shows 
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that there are 3413111 =⋅  of units different from parity point of view. 

Notice that 11 is length of parity cycle of 1ω  and 31 length of parity cycle 

of the unit .5ω  

Since 10271212341 101 =−=−< −l  and as this difference grows 

the probability of non-existence of pair γ, ω with ( )2modiic ω≡  grows as 

well, also checking determinants, like it was done in the case of ,7=l  

become at least tedious. 

So we produce a counter-example. Computing the determinant of 

matrix ( ),0,0,0,0,0,0,0,0,1,1,1circ11 −  and matrices received by all 

permutations of its coefficients we get 495 elements of ( ),11ζQ  out of 

which there are 55 units, i.e., with determinant equal to 1, 220 of them 
have determinant 23 and 110 with 67 resp. 199. 

Thus we obtained 440 non-units, with prime norm congruent to 1 
modulo 11 and each distinct with respect to the parities of coefficients, 

and since the number of distinct units is 341 there must be γ with no 

corresponding ω. 

The element 3
11111 ζ−ζ+=γ  has the norm 23 and there is no unit 

with the same parity as γ, and hence can serve us as a counter-example. 

And all of its conjugates, resp. all of those 220 permutations with this 
determinant are counterexamples as well. 

Of course one could ask a question, whether there could be another 
element with norm 23, which satisfied condition of Lemma 1. Answer is 
no, because the elements of the same norm differs only by multiple of 

unit, then by taking parity matrices received as multiples of element 23γ  

and each of units in form 21
21
ii εε  with ,31...,,2,1,11...,,2,1 21 == ii  we 

get set of all parities for elements with norm equal to 23. Comparing this 
with set of unit parity matrices one can see that there is nothing common, 

hence there is no pair γ, ω with ( ) ( ) .23
11

=γζ QQN  

On the other hand element ,1 8
11

3
11 ζ−ζ+=γ  with ( ) ( )γζ QQ 11

N  

199=  and unit 19
5ω=v  have the same coefficient parities 
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( ,431904218520713,366928542891668,9780671015495487circ11 −−−=v  

,524969743607854,769926650081205,394271445200761  

,394271445200761,769926650081205,524969743607854  

),366928542891668,431904218520713 −−  

which is really awkward to carry through the computation, but using 
parity tables once again one can get unit with the same parity as      
follows: 

,535
18
5

19
5 vv ′=ωω≠ωω=ω=  

with 

( ),10,6,1,8,12,12,8,1,6,10,11circ11 −−−−−=′v  

which is much more comfortable. 

Prime .13=l  The situation in ( )13ζQ  is similar to the case of 

,11=l  namely after computing fundamental units and determining their 

parity dependence, we find that there are only 8196313 =⋅  parity 

distinct units and against 81911213 =−  possible odd-even distributions, 

as follows from the results and the tables in Appendix B, Subsection 

.13=l  

Permuting 13-tuple ( )0,0,0,0,0,0,0,0,0,0,1,1,1 −  and computing 

the determinants of all corresponding circulant matrices one finds 78 
units and elements with norms 27, 53, 79, 131, 521 each occurring          
156-times, that is, 780 non-units, which is less than total number of 
parity distinct units, however it is enough to produce the counter-
example. 

For the element 3
13131 ζ+ζ−=γ  with the norm equal to 53 there is 

no matching unit and there is no such unit even for γv, where v is any of 

those 819 parity distinct units. 

On the other hand, let now be 12
13

3
1313 ζ−ζ+ζ=γ  with ( ) ( )γζ QQ 13

N  

,521=  and let the unit v be ,60
61ωω  then γ and v have the same parities. 
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Multiplying γ by ,3
6

12
1 ωω  one can get another pair 

6
13

5
13

4
13

3
13

2
1313 46269414215613279 ζ+ζ−ζ−ζ−ζ−ζ−−=γ′  

,1062122154148108 12
13

11
13

10
13

9
13

8
13

7
13 ζ−ζ+ζ+ζ+ζ+ζ+  

.10 =ω=′v  

Prime .17=l  In the case of the field ( )17ζQ  a counter-example will 

be produced once again. But first of all notice that the tables in Appendix 

B, Subsection ,17=l  show that all possible parity different units are 

given as product 651
651
iii ωωω  with 171 1 ≤≤ i  and ,1 5i≤  ,166 ≤i  

implying that its number is .6553512124352 161 =−=−< −l  

To produce the counter-example, check the determinants of circulant 

matrices with entries being permutation of 17-tuple ( 0,0,0,0,1,1,1 −  

),0,0,0,0,0,0,0,0,0,0  one gets 136 units and elements with the 

norms 103, 137, 307, 409, 613, 3571. 

Let γ be an element of ( )17ζQ  with the norm equal to 103, namely 

.1 6
1717 ζ−ζ+=γ  Then to such element there is no unit satisfying 

conditions of Theorem 1 with the same parity. 

The same is true for those elements of norms 137, 307, 409, 613, so in 
the fields satisfying conditions of Theorem 1 with these conductors, there 
are ambiguous ideals without a normal basis. 

On the other hand, if we let the field K be as in Theorem 1 with the 

conductor ,3571=p  then as shows the example of the element γ with the 

norm equal to 3571=p  and the unit v from the cyclotomic field ( ),17ζQ  

,1 16
1717 ζ−ζ+=γ  

9
17

8
17

7
17

6
17

4
17

3
17

2
1717 444222233 ζ−ζ−ζ−ζ−ζ+ζ+ζ+ζ+=v  

 16
17

15
17

14
17

13
17

11
17

10
17 322224 ζ+ζ+ζ+ζ+ζ−ζ−  

there is a pair with matching parities, and one may construct 
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transformation matrices .iA  Henceforth one may obtain normal bases of 

all ambiguous ideals of such field K. 

Prime .19=l  All parity different units are products of powers of     

1ω  and ,9ω  see Appendix B, Subsection ,19=l  and their number 

,970951119 =⋅  while .2621431212 181 =−=−−l  So counter-example 

must be shown once again. 

Permutations of ( )0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1 −  give 

us 171 units and the elements having norms equal to 191, 229, 419, 647, 
761, 1483, 9349. 

For the elements with the norms equal to 191, 229, 419, 647, 761, 
1483, resp. for the fields as in Theorem 1 there are ambiguous ideals 
without a normal basis. As an example of such element take =γ  

7
19191 ζ−ζ+  with the ( ) ( ) .191

19
=γζ QQN  

Now let γ to be the element of ( )19ζQ  with the norm equal to 9349 

and the unit v with the same parity, namely 

,1 10
19

9
19 ζ−ζ+=γ  

6
19

5
19

4
19

3
19

2
1919 2448386182627 ζ−ζ−ζ−ζ−ζ+ζ+=v  

12
19

11
19

10
19

9
19

8
19

7
19 8242727248 ζ+ζ+ζ+ζ+ζ+ζ+  

,26186384824 18
19

17
19

16
19

15
19

14
19

13
19 ζ+ζ+ζ−ζ−ζ−ζ−  

then one gets the elements 13α  resp. 32α  with the corresponding matrices 

( ,2424,19,12,3,4,9,12,13,14,14circ3813 −−−−−=A  

,3,4,9,12,13,13,13,14,13,12,9,4,3,12,19 −−−−  

)13,13,12,9,4,3,12,19,24,24,19,12 −−−−−−−  

( ,24,24,19,12,3,4,9,12,13,14,14circ3832 −−−−−−=A  

,3,4,9,12,13,13,13,14,13,12,9,4,3,12,19 −−−−−−  

).13,13,12,9,4,3,12,19,24,24,19,12 −−−−−−−  



VIKTOR DUBOVSKÝ and JURAJ KOSTRA 224

The matrix 13A  transforms a normal basis of ideal ( )13∏  to a normal 

basis of ideal ( )14∏  and 32A  transforms basis of ( )32∏  to the basis 

( ).33∏  The rest of transformation matrices can be obtained as above and 

so for every ambiguous ideal in the cyclic tamely ramified extension there 

exists normal basis. 

The elements with norms 191, 229, 419, 647, 761, 1483, obtained 

above, can serve us as a counter-example, since there is no unit with the 

same parity and hence in the fields K, as in Theorem 1, with these 

conductors, there exist ambiguous ideals without normal integral basis. 

Conclusion 

From the above computations we have that any ambiguous ideal of a 

cyclic tamely ramified algebraic number field K has a normal basis         

for [ ] lK 2: =Q  with 7,5,3,2=l  and for 19,17,13,11=l  there exist 

ambiguous ideals without normal basis. 

Appendix A. Example 

We shall illustrate the results on example of element 2
771 ζ−ζ+=γ  

( ),7ζ∈ Q  

( ) ( ) .29
7

=γζ QQN  

So let the prime p be equal to 29 and L be an extension of rationals of 

degree 14, i.e., .7=l  Also denote by ( )29ζ⊂ QK  with [ ] .7: =QK  

Primitive root modulo 29 is ,2=r  hence 

.4~,16 2
11

====
−−
l

p
l

p

rgrg  

Element γ can be represented by the circulant matrix 

( ),0,0,0,0,1,1,1circ7 −=C  

and hence its parity matrix is ( ).0,0,0,0,1,1,1circ7=C  
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Solution of the congruence 

( ) ( ),mod01 2 pgg ii ≡−+  

is 2=i  and so the matrix C transforms normal basis of ideal ( )2π  in K 

to the normal basis of ideal ( ).3π  

In order to find matrices transformating ideal basis in L, one have to 

find unit ( )7ζ∈ω Q  with the same parity as γ. All possible parities are 

represented by ,31
jiωω  with 7...,,2,1, =ji  so we search through them 

and find 

6
31ωω=v  

,280113411342807851259785 6
7

5
7

4
7

3
7

2
77 ζ−ζ−ζ−ζ−ζ+ζ+=  

this is quite awkward to carry through all computations, but using the 

fact that 6
3ω  has the same parity as ,2ω  we may replace the unit v by ,v′  

,221 5
7

4
7

2
7721 ζ+ζ+ζ−ζ−−=ωω=′v  

with the same parity. 

Having γ and v′  according to the proof of Lemma 1 we get two 

elements of ( )14ζQ  as a solution of equations (14). Denote them by 2α  

and ,9α  particularly they are 

,10
14

9
14

8
14

7
14

4
14

3
14142 ζ+ζ+ζ+ζ+ζ−ζ−ζ−=α  

.10
14

9
14

8
14

7
14

4
14

3
14149 ζ+ζ−ζ+ζ−ζ−ζ+ζ=α  

Notice that one can obtain matrices corresponding to the element ,2α  

resp. 9α  using the transformation matrix X defined in (7), i.e., 
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.

01000000100000
00010000001000
00000100000010
10000001000000
00100000010000
00001000000100
00000010000001
01000000000000
00010000000000
00000100000000
00000001000000
00000000010000
00000000000100
00000000000001
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From norm two block matrices 

,, 







=








=

∗∗

CO
SUS

UO
RCR

ll
 

where C resp. U are circulant matrices representing γ resp. .v′  Matrices 

( ) 2UCR +−=∗  and ( ) ,2UCS −=∗  thus matrices 2A  and 9A  can be 

obtained by 

,1
2 RXXA −=  

.1
9 SXXA −=  (21) 

Solving congruences (17) one finds that 

( ) ( ) ( ) ( ) ( ) ( ) ( ),29mod0~~~~~~~ 10999897949399 ≡+−+−−+ ggggggg  

( ) ( ) ( ) ( ) ( ) ( ) ( )29mod0~~~~~~~ 10292827242322 ≡++++−−− ggggggg  

and hence the matrix ( )0,0,0,1,1,1,1,0,0,1,1,0,1,0circ142 −−−=A  

transforms a normal basis of L ideal ( )2∏  to a normal basis of ideal ( )3∏  

and the matrix ( )0,0,0,1,1,1,1,0,0,1,1,0,1,0circ149 −−−=A  a normal 

basis of ( )9∏  to a normal basis of ( ).10∏  

To find the rest of transformation matrices one just takes all 
conjugates of the element 2α  and solves corresponding congruences. This 

way we obtained matrices iA  for .7,140 ≠<< ii  
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The matrices 0A  and 7A  are as in the proof of Lemma 1, i.e., with 

entries computed from the term ,
2

1
l

p −  particularly 

,
2

1...,,
2

1,
2

1,1
2

1circ20 




 −−−+−=

l
p

l
p

l
p

l
p

lA  

( ).2...,,2,2,3circ140 =A  

( )2,2,2,2,2,2,2,2,2,2,2,2,2,3circ140 =A  : ( ) ( )∏→LZ  

( )1,0,1,0,1,1,1,1,0,0,0,1,0,0circ141 −−−=A  : ( ) ( )2∏→∏  

( )0,0,0,1,1,1,1,0,0,1,1,0,1,0circ142 −−−=A  : ( ) ( )32 ∏→∏  

( )1,1,0,1,1,0,1,0,0,0,1,1,0,0circ143 −−−=A  : ( ) ( )43 ∏→∏  

( )0,1,1,0,0,0,1,0,1,0,1,1,0circ144 −−−=A  : ( ) ( )54 ∏→∏  

( )1,0,1,1,0,0,1,1,1,1,0,0,0,0circ145 −−−=A  : ( ) ( )65 ∏→∏  

( )0,1,0,0,0,1,1,1,1,0,1,0,1,0circ146 −−−=A  : ( ) ( )76 ∏→∏  

( )2,2,2,2,2,2,2,2,2,2,2,2,2,3circ147 −−−−−−−=A  : ( ) ( )87 ∏→∏  

( )1,0,1,0,1,1,1,1,0,0,0,1,0,0circ148 −−−=A  : ( ) ( )98 ∏→∏  

( )0,0,0,1,1,1,1,0,0,1,1,0,1,0circ149 −−−=A  : ( ) ( )109 ∏→∏  

( )1,1,0,1,1,0,1,0,0,0,1,1,0,0circ1410 −−−=A  : ( ) ( )1110 ∏→∏  

( )0,1,1,0,0,0,1,0,1,1,0,1,1,0circ1411 −−−=A  : ( ) ( )1211 ∏→∏  

( )1,0,1,1,0,0,1,1,1,1,0,0,0,0circ1412 −−−=A  : ( ) ( )1312 ∏→∏  

( )0,1,0,0,0,1,1,1,1,0,1,0,1,0circ1413 −−−=A  : ( ) ( )1413 ∏→∏  

The above table summarizes all the transformation matrices and also 

shows that each ideal of the field L has a normal basis. 
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Appendix B. Tables 

Prime .5=l  

: The fundamental units iε  and the iω  units 

( ),0,0,0,1,0circ51
=εE  ( ),0,0,0,1,0circ51

=ωW  

( ),1,0,0,1,1circ52
−−−=εE  ( ).0,1,1,0,1circ522

1
−−=≈ ωε

WE  

: Parity dependence of the units in ( )5ζQ  

  1ε  2ε     1ω  2ω  
         
1ε   6 -  1ω   6 - 

2ε   3 4  2ω   3 4 

Prime .7=l  

: The fundamental units iε  

( ),0,0,0,0,0,1,0circ71
=εE  

( ),1,1,0,0,1,1,1circ72
−−−−−=εE  

( ).1,0,0,0,0,1,1circ73
=εE  

: The units iω  

( ),0,0,0,0,0,1,0circ711
== ωε WE  

( ),1,0,2,2,0,1,1circ7
3

22
−−−=≈ ωε WE  

( ).1,0,1,1,0,1,1circ7332
−−−=≈ ωεε WEE  

: Parity dependence of the units in ( )7ζQ  

  1ε  2ε  3ε     1ω  2ω  3ω  
           
1ε   8 - -  1ω   8 - - 

2ε   7 8 3  2ω   7 8 6 

3ε   7 5 8  3ω   7 6 8 
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Prime .11=l  

: The fundamental units iε  

( ),0,0,0,0,0,0,0,0,0,1,0circ111
=εE  

( ),1,1,1,1,0,0,1,1,1,1,1circ112
−−−−−−−−−=εE  

( ),1,0,0,0,0,0,0,0,0,1,1circ113
=εE  

( ),1,1,1,0,0,0,0,1,1,1,1circ114
−−−−−−−=εE  

( ).1,1,0,0,0,0,0,0,1,1,1circ115
=εE  

: The units iω  

( ),0,0,0,0,0,0,0,0,0,1,0circ1111
== ωε WE  

( ),3,3,2,2,7,7,2,2,3,3,3circ11
5

22
−−−−−−−=≈ε ωWE  

( ),2,0,1,1,1,1,1,1,0,2,3circ11
2

332
−−−−−−=≈ε ωε WEE  

( ),4,1,2,3,3,3,3,2,1,4,5circ11
3

442
−−−−−−=≈ε ωε WEE  

( ).1,1,0,1,1,1,1,0,1,1,1circ11552
−−−−−=≈εε ωWEE  

: Parity dependence of the units in ( )11ζQ  

  1ε  2ε  3ε  4ε  5ε     1ω  2ω  3ω  4ω  5ω  
               
1ε   12 - - - -  1ω   12 - - - - 

2ε   31 32 7 3 15  2ω   31 32 8 26 28 

3ε   31 9 32 27 11  3ω   31 4 32 11 19 

4ε   31 21 23 32 5  4ω   31 6 17 32 13 

5ε   31 29 17 25 32  5ω   31 10 18 12 32 

Prime .13=l  

: The fundamental units iε  

( ),0,0,0,0,0,0,0,0,0,0,0,1,0circ131
=εE  
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( ),1,1,1,1,1,0,0,1,1,1,1,1,1circ132
−−−−−−−−−−−=εE  

( ),1,0,0,0,0,0,0,0,0,0,0,1,1circ13ε3
=E  

( ),1,1,1,1,0,0,0,0,1,1,1,1,1circ134
−−−−−−−−−=εE  

( ),1,1,0,0,0,0,0,0,0,0,1,1,1circ13ε5
=E  

( ).1,1,1,0,0,0,0,0,0,1,1,1,1circ136
−−−−−−−=εE  

: The units iω  

( ),0,0,0,0,0,0,0,0,0,0,0,1,0circ13ωε 11
== WE  

( ),10,1,4,5,5,5,5,5,5,4,1,10,15circ13
6

22
−−−−−−−−=≈ε ωWE  

( ),2,0,1,1,1,1,1,1,1,1,0,2,3circ13
2

332
−−−−−−−−=≈ε ωε WEE  

( ),5,5,4,0,6,10,10,6,0,4,5,5,5circ13
4

442
−−−−−−−=≈ε ωε WEE  

( ),3,3,2,1,4,5,5,4,1,2,3,3,3circ13
3

552
−−−−−−−=≈ε ωε WEE  

( ).1,1,0,1,1,1,1,1,1,0,1,1,1circ13662
−−−−−−=≈ε ωε WEE  

: Parity dependence of the units in ( )13ζQ  

  1ε  2ε  3ε  4ε  5ε  6ε     1ω  2ω  3ω  4ω  5ω  6ω  
                 
1ε   14 - - - - -  1ω   14 - - - - - 

2ε   63 64 15 3 7 31  2ω   21 22 - - - - 

3ε   21 - 22 17 - -  3ω   63 30 64 56 8 13 

4ε   21 - 5 22 - -  4ω   9 - - 10 - - 

5ε   9 - - - 10 -  5ω   63 51 8 7 64 41 

6ε   63 61 33 57 49 64  6ω   63 12 34 14 20 64 

Prime .17=l  

: The fundamental units iε  

( ),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0circ171
=εE  
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( ),1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1circ172
−−−−−−−−−−−−−−−=εE  

( ),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1circ173
=εE  

( ),1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1circ174
−−−−−−−−−−−−−=εE  

( ),1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1circ175
=εE  

( ),1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1circ176
−−−−−−−−−−−=εE  

( ),1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1circ177
=εE  

( ).1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1circ178
−−−−−−−−−=εE  

: The units iω  

11 ωε WE =  

( ),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0circ17=  

232
2

ωε WEE ≈ε  

( ),1,1,1,1,1,0,2,4,4,2,0,1,1,1,1,1,1circ17 −−−−−−−−−−−=  

3
8
3 ωε ≈ WE  

( ,385,378,350,274,120,118,398,630,721circ17 −−−−−=  

),630,398,118,120,274,350,378,385 −−−−−  

443

4
ωε WEE ≈ε  

( ,42,30,12,4,14,18,19,19,19circ17 −−−−−−=  

),19,19,18,14,4,12,30,42 −−−−−  

553

3
ωεε ≈ WEE  

( ),15,9,2,4,7,8,8,8,8,8,8,7,4,2,9,15,17circ17 −−−−−−−−−−=  
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663 ωε WEE ≈ε  

( ),1,1,1,1,0,1,2,2,2,2,1,0,1,1,1,1,1circ17 −−−−−−−−−=  

773

5
ωWEE ≈εε  

( ,99,94,79,49,4,47,92,121,131circ17 −−−−−=  

),121,92,47,4,49,79,94,99 −−−−−  

883

6
ωεε ≈ WEE  

( ,351,307,218,92,49,175,265,314,329circ17 −−−−−=  

).314,265,175,49,92,218,307,351 −−−−  

: Parity dependence of the fundamental units iε  in ( )17ζQ  

  1ε  2ε  3ε  4ε  5ε  6ε  7ε  8ε  
          
1ε   18 - - - - - - - 

2ε   15 16 - 3 - - - 7 

3ε   15 - 16 - - - - - 

4ε   15 - - 16 - - - - 

5ε   15 - - - 6 - - - 

6ε   15 - - - - 16 - - 

7ε   15 - - - - - 16 - 

8ε   15 13 - 9 - - - 16 

: Parity dependence of the units iω  in ( )17ζQ  

  1ω  2ω  3ω  4ω  5ω  6ω  7ω  8ω  
          
1ω   18 - - - - - - - 

2ω   15 16 - - - - - - 

3ω   15 - 16 - - - - - 

4ω   15 - - 16 - - - - 

5ω   15 - - - 16 - - - 

6ω   15 - - - - 16 - 7 

7ω   15 - - - - - 16 - 

8ω   15 - - - - 13 - 16 
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: Parity dependence among iω ’s 

,7
6

8
52 ωω≈ω  ,12

6
11
53 ωω≈ω  ,3

6
10
54 ωω≈ω  

,10
6

4
57 ωω≈ω  .7

68 ω≈ω  

Prime .19=l  

: The fundamental units iε  

( ),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0circ191
=εE  

( ,0,1,1,1,1,1,1,1,1,1circ192
−−−−−−−−−=εE  

),1,1,1,1,1,1,1,1,0 −−−−−−−−  

( ),1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1circ193
=εE  

( ,0,0,1,1,1,1,1,1,1,1circ194
−−−−−−−−=εE  

),1,1,1,1,1,1,1,0,0 −−−−−−−  

( ),1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1circ195
=εE  

( ,0,0,0,1,1,1,1,1,1,1circ196
−−−−−−−=εE  

),1,1,1,1,1,1,0,0,0 −−−−−−  

( ),1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1circ197
=εE  

( 0,0,0,0,1,1,1,1,1,1circ198
−−−−−−=εE  

),1,1,1,1,1,0,0,0,0 −−−−−  

( ).1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1circ199
=εE  

: The units iω  

( ),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0circ1911
== ωε WE  
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2
WE ωε ≈9

2
 

( ,99,57,9,18,26,27,27,27,27,27circ19 −−−−−−−=  

),27,27,27,27,26,18,9,57,99 −−−−−−  

332

5
ωε ≈ WEE ε  

( ,20,11,9,4,5,5,5,5,5,5circ19 −−−−−−−=  

),5,5,5,5,5,4,9,11,20 −−−−−−  

442

7
ωε WEE ≈ε  

( ,27,27,27,27,26,19,2,37,71,85circ19 −−−−−−=  

),71,37,2,19,26,27,27,27,27 −−−−−−  

552

2
ωεε ≈ WEE  

( ,1,1,1,1,1,1,0,2,3,3circ19 −−−−−−=  

),3,2,0,1,1,1,1,1,1 −−−−−−  

662

4
ωεε ≈ WEE  

( ,11,10,6,0,4,5,5,5,5,5circ19 −−−−−−=  

),5,5,5,5,4,0,6,10,11 −−−−−  

772

3
ωεε ≈ WEE  

( ,5,5,4,1,2,3,3,3,3,3circ19 −−−−−−=  

),3,3,3,3,2,1,4,5,5 −−−−−  

882

6
ωεε ≈ WEE  

( 37,36,30,15,5,20,26,27,27,27circ19 −−−−−−=  

),27,27,26,20,5,15,30,36,37 −−−−−  
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992 ωεε ≈ WEE  

( 1,1,1,1,0,1,1,1,1,1circ19 −−−−−=  

).1,1,1,1,0,1,1,1,1 −−−−  

: Parity dependence of the fundamental units iε  in ( )19ζQ  

  1ε  2ε  3ε  4ε  5ε  6ε  7ε  8ε  9ε  
           
1ε   20 - - - - - - -  

2ε   511 512 15 3 127 31 63 7 255 

3ε   511 477 512 409 281 479 413 273 17 

4ε   511 341 5 512 383 351 21 343 85 

5ε   511 169 491 507 512 129 427 161 171 

6ε   511 33 495 99 103 512 35 231 239 

7ε   73 - - - - - 74 65 - 

8ε   73 - - - - - 9 74 - 

9ε   511 509 481 505 257 449 385 497 512 

: Parity dependence of the units iω  in ( )19ζQ  

  1ω  2ω  3ω  4ω  5ω  6ω  7ω  8ω  9ω  
           
1ω   20 - - - - - - -  

2ω   511 512 59 285 355 231 348 115 142 

3ω   511 26 512 256 32 385 361 435 115 

4ω   511 52 2 512 64 259 211 359 230 

5ω   511 416 16 8 512 28 155 317 307 

6ω   73 - - - - 74 - - - 

7ω   511 395 310 155 211 287 512 457 391 

8ω   511 40 316 158 403 42 123 512 59 

9ω   511 18 40 20 258 70 132 26 512 
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