DUO MODULES AND DUO RINGS

N. AGAYEV, T. KOŞAN, A. LEGHWEL

and

A. HARMANCI

(Received December 1, 2005)

Submitted by K. K. Azad

Abstract

A module M is called duo module if every submodule of M is fully invariant. M has the SIP (or the SSP) if the intersection (or the sum) of two direct summands of M is direct summand. In this note we prove that every duo module has the SSP and the SIP.

1. Introduction

Throughout R will be a ring with identity, and modules are unital right R-modules. Let M be a module. Then we use $N \leq M$ to mean that N is a submodule of M and $N \subseteq^{\oplus} M$ to indicate that N is a direct summand of M. Let $S=\operatorname{End}_{R}(M)$. A submodule N of M is said to be fully invariant if $f(N) \leq N$ for each $f \in S$. A module M is called duo module if every submodule of M is fully invariant. The ring R is called right duo ring if every right ideal in R is a left ideal. In fact, R is a duo ring if every one-sided ideal is two-sided.

A right artinian right self-injective ring is called quasi-Frobenius ring (or QF-ring for short). When we were discussing and reporting papers on

[^0]Keywords and phrases: duo module, modules with the SSP, modules with the SIP.
the question of when a right perfect right self-injective ring is $Q F$, we encountered the following results in the context:
(I) In [3, Corollary 2.5] it is proved that: Let M be a quasi-pinjective and duo module. If A and B are direct summands of M, then so are $A \cap B$ and $A+B$.
(II) In [6, Proposition 3.3] it is proved that: Let M be a duo and $P Q$-injective module. Then M has the SIP, and in [6, Proposition 3.4] it is shown that: Let M be a duo, principal and $P Q$-injective. Then M has both the SIP and the SSP.
(III) In [7, Theorem 3.1] it has been shown that: Let R be a right P-injective right duo ring. If A and B are right ideals of R with $A \subseteq{ }^{\oplus} R_{R}$ and $B \subseteq^{\oplus} R_{R}$, then $(A \cap B) \subseteq^{\oplus} R_{R}$ and $(A \oplus B) \subseteq^{\oplus} R_{R}$.
(IV) In [8, Lemma 2.5] it is proved that: Let M be a quasi-principally injective module and A and B be its submodules.
(1) If A is a direct summand of M and $B \cong A$, then B is a direct summand of M.
(2) If A and B are direct summands of M with $A \cap B=0$, then $A \oplus B$ is a direct summand of M.
(V) In [9, Proposition 4.4] it is shown that: Every duo and semiprojective module has the SIP, and in [9, Proposition 4.6] it is also proved that: Every duo and semi-projective module with the property $\left(C_{3}\right)$ has the SSP.
(VI) In [11, Proposition 3.6] it has been shown that every duo and semi-injective module has the SIP and the SSP.

We generalize the aforementioned results (I)-(VI) and we prove that every duo module has the SIP and the SSP. For the unexplained terminology, the reader is referred to [2], [5] or [10].

2. Duo Modules

We start by proving the following results.

Lemma 1. R is a right duo ring if and only if the right R-module R_{R} is a duo module.

Proof. Assume that R is a right duo ring. Then every right ideal is a left ideal. Let I be any right ideal and $f \in \operatorname{End}\left(R_{R}\right)$. Let $x \in I$. Then $f(x)=f(1) x \in I$ since f is also a left ideal. Hence $f(I) \leq I$.

Conversely, suppose that R_{R} is a duo module, and let I be any right ideal in R. For $x \in R$ define $R \xrightarrow{f_{x}} R$ by $f_{x}(r)=x r$, where $r \in R$. f_{x} is a well-defined right R-homomorphism of R. By hypothesis $f_{x}(I) \leq I$. Hence $x I \leq I$ for all $x \in R$. It follows that R is a left ideal of R.

Lemma 2. Let a module $M=M^{\prime} \oplus M^{\prime \prime}$ be the direct sum of modules M^{\prime} and $M^{\prime \prime}$. If M is a duo module, then M^{\prime} and $M^{\prime \prime}$ are duo modules, $\operatorname{Hom}\left(M^{\prime}, M^{\prime \prime}\right)=0$ and $\operatorname{Hom}\left(M^{\prime \prime}, M^{\prime}\right)=0$.

Proof. Let $N \leq M^{\prime}$ and $f \in \operatorname{Hom}\left(M^{\prime}, M^{\prime \prime}\right)$. Then f can be extended to a $g \in \operatorname{End}\left(M_{R}\right)$, so that $g\left(M^{\prime \prime}\right)=0$. By assumption, $f(N)=g(N) \leq N$. The rest is clear.

Lemma 3. Let M be any duo left R-module. Then the natural projections of M are central idempotents of the endomorphism ring $S=\operatorname{End}(M)$ of M.

Proof. Let $M=M^{\prime} \oplus M^{\prime \prime}$ and π denote the projection of M with kernel $M^{\prime \prime}$. Let $f \in S$ and $m=m^{\prime}+m^{\prime \prime}$, where $m^{\prime} \in M^{\prime}, m^{\prime \prime} \in M^{\prime \prime}$. By Lemma $2, \quad f=f^{\prime}+f^{\prime \prime}, \quad$ where $\quad f^{\prime} \in \operatorname{End}\left(M^{\prime}\right), f^{\prime \prime} \in \operatorname{End}\left(M^{\prime \prime}\right)$. Now $\pi(m)=m^{\prime}, \quad f(m)=f^{\prime}\left(m^{\prime}\right)+f^{\prime \prime}\left(m^{\prime \prime}\right), f\left(m^{\prime}\right)=f^{\prime}\left(m^{\prime}\right), f\left(m^{\prime \prime}\right)=f^{\prime \prime}\left(m^{\prime \prime}\right)$. Then $f(\pi(m))=f\left(m^{\prime}\right)=f^{\prime}\left(m^{\prime}\right)=\pi(f(m))$ for all $m \in M$. Hence $f \pi=\pi f$ for all $f \in S$.

Example 4. Let Z denote the ring of integers. Then for any prime integer p and positive integer $n, Z / Z p^{n}$ as Z-modules are duo but the rational numbers Q as a Z-module is not duo.

Proof. Let $f \in \operatorname{End}_{Z}(Z)$ and $I=n Z$ be an ideal of Z. Since f is determined by $f(1)$, for all $t \in Z, f(n t)=f(1) n t \in I$. Hence $f(I) \leq I$ and so Z is duo module. Same holds for $Z / Z p^{n}$ since any $f \in E n d_{Z}\left(Z / Z p^{n}\right)$ is
determined by $f(\overline{1})$, where $\overline{1}=1+Z p^{n} \in Z / Z p^{n}$. Let $f \in \operatorname{End}_{Z}(Q)$ be given by $f(a / b)=a / 2 b$, where $a / b \in Q$ and let $I=(1 / 2) Z$ be the Z-submodule of Q. Then $f(1 / 2)=1 / 4$ and $1 / 4 \notin I$. It follows that I is not invariant under f and so Q is not a duo Z-module.

We now come to our main result and prove the following theorem which unifies and generalizes several known results in [3, 6-9, 11].

Theorem 5. Let M be a duo module. Then M has the SIP and the $S S P$.

Proof. Suppose that M is a duo module. Let N and K be two direct summands of M. Notice that for the natural projections α and β as $M=N \oplus N^{\prime} \xrightarrow{\alpha} N \quad$ and $\quad M=K \oplus K^{\prime} \xrightarrow{\beta} K$, respectively, $\quad N=\alpha(M)$ and $\quad K=\beta(M)$. Hence $\quad M=\alpha(M) \oplus N^{\prime} \quad$ and $\quad M=\beta(M) \oplus K^{\prime} . \quad$ By hypothesis

$$
\alpha(M)=\alpha\left(\beta(M) \oplus K^{\prime}\right) \leq \alpha(\beta(M))+\alpha\left(K^{\prime}\right) \leq \alpha(M) \cap \beta(M)+\alpha(M) \cap K^{\prime} \leq \alpha(M)
$$

Hence

$$
\begin{equation*}
\alpha(M)=\alpha(M) \cap \beta(M) \oplus \alpha(M) \cap K^{\prime} \tag{1}
\end{equation*}
$$

It follows that $N \cap K=\alpha(M) \cap \beta(M)$ is a direct summand of M. Hence M has the SIP. Then (1) also shows that if $M=A \oplus B$, then

$$
\begin{equation*}
\alpha(M)=(\alpha(M) \cap A) \oplus(\alpha(M) \cap B) \tag{2}
\end{equation*}
$$

Since $\alpha(M)$ and $\beta(M)$ are direct summands and M has the SIP, there exists $U \leq M$ such that

$$
\begin{equation*}
M=(\alpha(M) \cap \beta(M)) \oplus U \tag{3}
\end{equation*}
$$

Then $\beta(M)=\alpha(M) \cap \beta(M) \oplus U \cap \beta(M)$ by the modularity. So $\alpha(M)+\beta(M)$ $=\alpha(M)+\alpha(M) \cap \beta(M)+U \cap \beta(M)=\alpha(M) \oplus U \cap \beta(M)$. Since M has the SIP and $\beta(M)$ and U are direct summands, there exists $V \leq M$ such that

$$
\begin{equation*}
M=U \cap \beta(M) \oplus V \tag{4}
\end{equation*}
$$

By (4), (2) and $\alpha(M) \cap U \cap \beta(M)=0$,

$$
\alpha(M)=\alpha(M) \cap U \cap \beta(M) \oplus \alpha(M) \cap V=\alpha(M) \cap V \leq V
$$

Hence $V=\alpha(M) \oplus N^{\prime} \cap V$, by modularity and $M=\alpha(M) \oplus N^{\prime}$. So we replace V in $M=U \cap \beta(M) \oplus V$ to obtain

$$
M=U \cap \beta(M)+\alpha(M)+N^{\prime} \cap V=(\alpha(M)+\beta(M)) \oplus\left(N^{\prime} \cap V\right)
$$

Thus $N+K=\alpha(M)+\beta(M)$ is direct summand of M. Thus M has the SSP.
We now provide the following example which is an application of our main result.

Example 6. Let Z and Q denote the ring of integers and the field of rational numbers, respectively.
(1) The Z-module $Z \oplus A$ is not duo for any Z-module A.
(2) For any distinct prime integers $p_{i}(i=1,2, \ldots, n)$, the Z-module $M=\oplus_{i=1}^{n} Z / Z p_{i}^{n_{i}}$ is duo module for any positive integers $n_{i}(i=1,2, \ldots, n)$.
(3) The Z-module $Q \oplus A$ is not a duo module for any Z-module A.

Proof. (1) Let A be any nonzero Z-module. Assume that $Z \oplus A$ is duo Z-module. By Theorem 5, $Z \oplus A$ has the SIP and the SSP. Hence by [1] and [4] the image and kernel of any $f \in \operatorname{Hom}_{Z}(Z, A)$ (or $f \in \operatorname{Hom}_{Z}(A, Z)$) are direct summands. It follows that A is isomorphic to a direct summand of Z and Z is isomorphic to a direct summand of A. A contradiction. Hence $Z \oplus A$ is not duo Z-module.
(2) We complete the proof by induction and we may assume $n=2$. Let p and q be distinct prime integers. Then we prove $M=\left(Z / Z p^{r}\right) \oplus Z / Z q^{s}$ is duo, where r and s are positive integers, and let r^{\prime} and s^{\prime} be integers such that $p^{r} r^{\prime}+q^{s} s^{\prime}=1$. Now assume N is any submodule of M and $(a, b) \in N$. Then $p^{r} r^{\prime}(a, b)=\left(0 p^{r} r^{\prime}, b\right)=(0, b) \in N$ and $q^{s} s^{\prime}(a, b)=\left(q^{s} s^{\prime} a, 0\right)=$ $(a, 0) \in N$. Hence $\quad N=\left(N \cap\left(Z / Z p^{r}\right)\right) \oplus\left(N \cap\left(Z / Z q^{s}\right)\right)$. Let $\quad N_{1}=N \cap$ $\left(Z / Z p^{r}\right)$ and $N_{2}=N \cap\left(Z / Z q^{s}\right)$. Let $f \in \operatorname{End}_{Z}(M)$. Then $f(a, b)=f(a, 0)$ $+f(0, b) \in N_{1}+N_{2}=N$ since $Z / Z p^{r}$ and $Z / Z q^{s}$ are duo and $(a, 0) \in N_{1}$ and $(0, b) \in N_{2}$. Hence M is duo Z-module.
(3) If $Q \oplus A$ is duo module for any Z-module A, then Q will be a duo Z-module by Lemma 2. But this contradicts Example 4. Therefore, $Q \oplus A$ is not duo module for any Z-module A.

References

[1] M. Alkan and A. Harmanci, On summand sum and summand intersection property of modules, Turkish J. Math. 26 (2002), 131-147.
[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
[3] S. Chotchaisthit, When is a quasi-p-injective module continuous?, Southeast Asian Bull. Math. 26 (2002), 391-394.
[4] J. L. Garcia, Properties of direct summands of modules, Comm. Algebra 17 (1989), 73-92.
[5] S. H. Mohamed and B. J. Müller, Continuous and discrete modules, L. M. S. Lecture Notes 147, Cambridge University Press, Cambridge, U. K., 1990.
[6] W. K. Nicholson, J. K. Park and M. F. Yousif, Principally quasi-injective modules, Comm. Algebra 27(4) (1999), 1683-1693.
[7] G. Puninski, R. Wisbauer and M. Yousif, On P-injective rings, Glasg. Math. J. 37 (1995), 373-378.
[8] N. V. Sanh and K. P. Shum, On quasi-principally injective modules, Algebra Colloq. 6(3) (1999), 269-276.
[9] H. Tansee and S. Wongwai, A note on semi-projective modules, Kyungpook Math. J. 42 (2002), 369-380.
[10] R. Wisbauer, Foundations of Module and Ring Theory, Gordon \& Breach, Reading, MA, 1991.
[11] S. Wongwai, On the endomorphism ring of a semi-injective module, Acta Math. Univ. Comenian. LXXI(1) (2002), 27-33.

N. Agayev
Department of Mathematics
Gazi University
06500 Ankara, Turkey
e-mail: nagayev@gazi.edu.tr
T. Koşan, A. Leghwel and A. Harmanci
Department of Mathematics
Hacettepe University
06532 Beytepe Campus, Ankara, Turkey
e-mail: tkosan@hacettepe.edu.tr
abdurzak@hacettepe.edu.tr
harmanci@hacettepe.edu.tr

[^0]: 2000 Mathematics Subject Classification: 16D60, 16D99, 16S90.

