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Abstract

A module M is called duo module if every submodule of M is fully
invariant. M has the SIP (or the SSP) if the intersection (or the sum) of
two direct summands of M is direct summand. In this note we prove that
every duo module has the SSP and the SIP.

1. Introduction

Throughout R will be a ring with identity, and modules are unital
right R-modules. Let M be a module. Then we use N < M to mean that

N is a submodule of M and N g® M to indicate that N i1s a direct
summand of M. Let S = Endg(M). A submodule N of M is said to be
fully invariant if f(N) < N for each f € S. A module M is called duo

module if every submodule of M is fully invariant. The ring R is called
right duo ring if every right ideal in R is a left ideal. In fact, R is a duo
ring if every one-sided ideal is two-sided.

A right artinian right self-injective ring is called quasi-Frobenius ring
(or QF-ring for short). When we were discussing and reporting papers on
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the question of when a right perfect right self-injective ring is QF, we
encountered the following results in the context:

(D In [3, Corollary 2.5] it is proved that: Let M be a quasi-p-
injective and duo module. If A and B are direct summands of M, then so
are AN B and A + B.

(II) In [6, Proposition 3.3] it is proved that: Let M be a duo and
PQ-injective module. Then M has the SIP, and in [6, Proposition 3.4] it is
shown that: Let M be a duo, principal and PQ-injective. Then M has both
the SIP and the SSP.

(III) In [7, Theorem 3.1] it has been shown that: Let R be a right

P-injective right duo ring. If A and B are right ideals of R with A <® R R

and B c® Ry, then (AN B) c® Ry and (A ® B) =® Rp.

(IV) In [8, Lemma 2.5] it is proved that: Let M be a quasi-principally
injective module and A and B be its submodules.

(1) If A is a direct summand of M and B = A, then B is a direct

summand of M.

(2) If A and B are direct summands of M with A B =0, then
A ® B is a direct summand of M.

(V) In [9, Proposition 4.4] it is shown that: Every duo and semi-
projective module has the SIP, and in [9, Proposition 4.6] it is also proved

that: Every duo and semi-projective module with the property (C3) has
the SSP.

(VD) In [11, Proposition 3.6] it has been shown that every duo and
semi-injective module has the SIP and the SSP.

We generalize the aforementioned results (I)-(VI) and we prove that
every duo module has the SIP and the SSP. For the unexplained
terminology, the reader is referred to [2], [5] or [10].

2. Duo Modules

We start by proving the following results.
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Lemma 1. R is a right duo ring if and only if the right R-module Rp
is a duo module.

Proof. Assume that R is a right duo ring. Then every right ideal is a
left ideal. Let I be any right ideal and f € End(Rp). Let x € I. Then

f(x) = f(1)x € I since fis also a left ideal. Hence f(I) < I.

Conversely, suppose that Rp is a duo module, and let I be any right

ideal in R. For x € R define RgR by f.(r) = xr, where r € R. f, isa
well-defined right R-homomorphism of R. By hypothesis f,(I) < I. Hence
xl <1 for all x € R. It follows that R is a left ideal of R.

Lemma 2. Let a module M = M' ® M" be the direct sum of modules
M' and M". If M is a duo module, then M' and M" are duo modules,
Hom(M', M") = 0 and Hom(M", M') = 0.

Proof. Let N < M' and f € Hom(M', M"). Then f can be extended
toa g € End(Mg), so that g(M")=0. By assumption, f(N)= g(N)< N.
The rest is clear.

Lemma 3. Let M be any duo left R-module. Then the natural

projections of M are central idempotents of the endomorphism ring
S = End(M) of M.

Proof. Let M = M'® M" and © denote the projection of M with
kernel M". Let f S and m = m'+m", where m' e M', m" € M". By
Lemma 2, f=f+f" where [ eEndM'),f"eEndM"). Now
m(m)=m',  f(m) = f'(m’)+ f'(m"), f(m') = f'(m), f(m") = f"(m").  Then
f(r(m)) = f(m') = f'(m') = n(f(m)) for all m € M. Hence frn = nf for all
fesS.

Example 4. Let Z denote the ring of integers. Then for any prime
integer p and positive integer n, Z/Zp" as Z-modules are duo but the
rational numbers @ as a Z-module is not duo.

Proof. Let f € Endz(Z) and I = nZ be an ideal of Z. Since f is
determined by f(1), for all ¢t € Z, f(nt) = f(1)nt € 1. Hence f(I) < I and

s0 Z is duo module. Same holds for Z/Zp" since any [ € End;(Z/Zp") is
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determined by f(1), where 1 =1+ Zp" € Z/Zp™. Let f € End;(Q) be
given by f(a/b) = a/2b, where a/b e @ and let I =(1/2)Z be the
Z-submodule of @. Then f(1/2) = 1/4 and 1/4 ¢ I. It follows that I is not
invariant under f and so @ is not a duo Z-module.

We now come to our main result and prove the following theorem
which unifies and generalizes several known results in [3, 6-9, 11].

Theorem 5. Let M be a duo module. Then M has the SIP and the
SSP.

Proof. Suppose that M is a duo module. Let N and K be two direct
summands of M. Notice that for the natural projections o and B as

M=N®N 35N and M=K®K % K, respectively, N = a(M)
and K =p(M). Hence M =oa(M)®N' and M =p(M)® K'. By
hypothesis
a(M)=aBM)®K')<aB(M))+au(K') <a(M)NBM)+a(M)NK'<a(M).
Hence
a(M) = o(M)NBM)® (M) N K". @
It follows that NN K = o(M) N B(M) is a direct summand of M. Hence
M has the SIP. Then (1) also shows that if M = A ® B, then
a(M) = (a(M)NA)® ((M)N B). 2)
Since o(M) and B(M) are direct summands and M has the SIP, there
exists U < M such that
M = (a(M)NBM)) ®U. 6))
Then B(M)=o(M)NB(M)®UNP(M) by the modularity. So a(M)+ (M)
=a(M)+aM)NBM)+UNPM) =a(M)®UNP(M). Since M has
the SIP and B(M) and U are direct summands, there exists V < M such
that
M=UNBM)®V. 4)

By (4), (2) and o(M)NU NB(M) = 0,

a(M)=a(M)NUNBM)® a(M)NV =a(M)NV < V.
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Hence V = o(M)® N'(NV, by modularity and M = a(M)® N'. So we
replace Vin M = U N B(M)® V to obtain

M=UNBM)+a(M)+ NNV = (a(M)+BM))®(N'NV).
Thus N +K =a(M)+B(M) is direct summand of M. Thus M has the SSP.

We now provide the following example which is an application of our
main result.

Example 6. Let Z and @ denote the ring of integers and the field of
rational numbers, respectively.

(1) The Z-module Z ® A is not duo for any Z-module A.

(2) For any distinct prime integers p; (i =1, 2, ..., n), the Z-module
M=e!, Z/Zpini is duo module for any positive integers n; (i =1, 2, ..., n).

(3) The Z-module @ ® A is not a duo module for any Z-module A.

Proof. (1) Let A be any nonzero Z-module. Assume that Z ® A is
duo Z-module. By Theorem 5, Z ® A has the SIP and the SSP. Hence by
[1] and [4] the image and kernel of any feHomy(Z,A)

(or f € Homyz(A, Z)) are direct summands. It follows that A is isomorphic

to a direct summand of Z and Z is isomorphic to a direct summand of A. A
contradiction. Hence Z @ A is not duo Z-module.

(2) We complete the proof by induction and we may assume n = 2. Let
p and ¢ be distinct prime integers. Then we prove M =(Z/Zp")® Z] Zq®
is duo, where r and s are positive integers, and let r' and s’ be integers
such that p'r'+¢®s’'=1. Now assume N is any submodule of M and
(a,b)e N. Then p'r'(a,b)=(0p"r",b)=(0,b)e N and ¢°s'(a,b)=(q¢°s'a,0)=
(a,0)e N. Hence N=(NN(Z/Zp"))®(NN(Z/Zq®)). Let N; =N
(Z/Zp") and Ny = NN (Z/Zq®). Let f € Endz(M). Then f(a, b) = f(a, 0)
+f(0,b) e Ny + Ny = N since Z/Zp" and Z/Zq® are duo and (a, 0) € N;
and (0, b) € Ny. Hence M is duo Z-module.

B) If @ ® A is duo module for any Z-module A, then @ will be a duo

Z-module by Lemma 2. But this contradicts Example 4. Therefore,
@ ® A is not duo module for any Z-module A.
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