RELATIVE PROPERTIES AND FUNCTION SPACES

BRUNO A. PANSERA

Dipartimento di Matematica Universitá di Messina Contrada Papardo, Salita Sperone 31 98166 Sant'Agata – Messina, Italy e-mail: bpansera@dipmat.unime.it

Abstract

We investigate duality between (covering) properties in topological spaces and the closure-type properties of mappings. We give a version of the Pytkeev property for continuous mappings.

1. Introduction

In this paper all the spaces are Tychonoff. The notation and terminology we follow are standard [6]. Let *X* be a topological space. Then

- (1) the symbol \mathcal{O} denotes the collection of open covers of X;
- (2) the symbol Ω denotes the collection of ω -covers of X. An open cover \mathcal{U} of a space X is called an ω -cover if X is not a member of \mathcal{U} and every finite subset of X is contained in a member of \mathcal{U} [7];
- (3) the symbol \mathcal{K} denotes the collection of k-covers of X. An open cover \mathcal{U} of a space X is called a k-cover if X is not a member of \mathcal{U} and

2000 Mathematics Subject Classification: 54C35, 54A25.

Keywords and phrases: (selectively) Reznichenko property, (selectively) Pytkeev property, k-cover, countable (strong) fan tightness, groupability, $C_p(X)$, $C_k(X)$, selection principle.

This research was supported by a grant from I.N.D.A.M. and M.U.R.S.T. through PRA 2003.

Submitted by Takashi Noiri

Received November 25, 2004

every compact subset of X is contained in a member of \mathcal{U} [5].

Let A and B be collections of subsets of a topological space X. Then

- (a) the symbol $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle: For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(b_n : n \in \mathbb{N})$ such that for each $n \in A_n$ and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} ;
- (b) the symbol $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(B_n : n \in \mathbb{N})$ such that for each n B_n is a finite subset of A_n and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B} .

For a space X by $C_p(X)$ we denote the space of all continuous real-valued functions on X in the pointwise convergence topology. For a function $f \in C_p(X)$, a finite set F in X and a positive real number ε we let

$$W(f; F; \varepsilon) = \{ g \in C_p(X) : |f(x) - g(x)| < \varepsilon, \forall x \in F \}.$$

The standard local base of a point $f \in C_p(X)$ consists of the sets $W(f; F; \varepsilon)$, where F is a finite subset of X and ε is a positive real number.

By $C_k(X)$ we denote the space of all continuous real-valued functions on a space X endowed with the compact-open topology. For a function $f \in C_k(X)$, a compact set $K \subset X$ and a positive real number ε we let

$$W(f; K; \varepsilon) = \{ g \in C_p(X) : |f(x) - g(x)| < \varepsilon, \forall x \in K \}.$$

The standard local base of a point $f \in C_k(X)$ consists of the sets $W(f; K; \varepsilon)$, where K is a compact subset in X and ε is a positive real number.

The symbol $\underline{0}$ denotes the constantly zero function in $C_p(X)$ and in $C_k(X)$. Since $C_p(X)$ and $C_k(X)$ are homogenous spaces we may consider the point 0 when studying local properties of them.

In [1] Arhangel'skiĭ considered the mapping π from $C_p(X)$ (resp.

 $C_k(X)$) into $C_p(Y)$ (resp. $C_k(Y)$) defined by $\pi(f) = f_{|Y}$, for each $f \in C_p(X)$ (resp. $f \in C_k(X)$).

Some results in the literature show that there is a duality between relative covering properties of a subspace Y of a Tychonoff space X and the closure-type properties of the mapping π . This sort of duality was documented by Gordienko for the Lindelöf property [8], by Kočinac and Babinkostova for the Menger property and for the Rothberegr property [13], by Guido and Kočinac for the Hurewicz property [9] and by Babinkostova et al. for the γ -sets [2].

This investigation is a part of general idea to transfer properties of topological spaces to continuous mappings [3] and [4].

2. The Countable (Strong) Fan Tightness

For a space X and a point $x \in X$, the symbol Ω_x denotes the set $\{A \subset X \setminus \{x\} : x \in \overline{A}\}.$

Let Y be a subspace of a space X. We denote by $\Omega_X(\mathcal{K}_X)$ the collection of ω -cover (k-cover) of X and by $\Omega_Y(\mathcal{K}_Y)$ the collection of ω -cover (k-cover) of Y, by sets open in X.

A space X has countable fan tightness [1] if for each $x \in X$ and each sequence $(A_n:n\in\mathbb{N})$ of elements of Ω_x there is a sequence $(B_n:n\in\mathbb{N})$ of finite sets such that, for each $n\in\mathbb{N}$, $B_n\subset A_n$ and $x\in\overline{\bigcup_{n\in\mathbb{N}}B_n}$, i.e., if $S_{fin}(\Omega_x,\Omega_x)$ holds for each $x\in X$.

A space X has countable strong fan tightness [21] if for each $x \in X$ the selection principle $S_1(\Omega_x, \Omega_x)$ holds.

Definition 2.1. Let f be a continuous mapping from X to Y. Then

(1) f has countable fan tightness [13] if for each $x \in X$ and each sequence $(A_n : n \in \mathbb{N})$ of elements of Ω_x there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that, for each n, $B_n \subset A_n$ and $f(x) \in \overline{\bigcup_{n \in \mathbb{N}} f(B_n)}$.

(2) f has countable strong fan tightness [13] if for each sequence $(A_n:n\in\mathbb{N})$ of elements of Ω_x there exists a sequence $(x_n:n\in\mathbb{N})$ such that $x_n\in A_n$, for each $n\in\mathbb{N}$, and $f(x)\in\overline{\{f(x_n):n\in\mathbb{N}\}}$.

In the paper [13] it was shown the following theorem.

Theorem 2.1. For a subspace Y of a space X, the following are equivalent:

- (1) $S_1(\Omega_X, \Omega_Y)$ holds;
- (2) $\pi: C_p(X) \to C_p(Y)$ has countable strong fan tightness.

We show

Theorem 2.2. For a subspace Y of a space X, the following are equivalent:

- (1) $S_1(\mathcal{K}_X, \mathcal{K}_Y)$ holds;
- (2) $\pi: C_k(X) \to C_k(Y)$ has countable strong fan tightness.

Proof. (2) \Rightarrow (1) Let $\{\mathcal{U}_n:n\in\mathbb{N}\}$ be a sequence of k-covers of X. For each n and a compact subset K of X we denote by $\mathcal{U}_{n,K}$ the set $\{U\in\mathcal{U}_n:K\subset U\}$. If $U\in\mathcal{U}_{n,K}$, let $f_{U,K}:X\to[0,1]$ be a continuous function satisfying $f_{U,K}(K)=0$, $f_{U,K}(X\setminus U)=1$. Let, for each $n\in\mathbb{N}$, $A_n=\{f_{U,K}:U\in\mathcal{U}_{n,K},K\text{ compact}\}$. Then $\underline{0}$ is in the closure of A_n , for each $n\in\mathbb{N}$. If $W(\underline{0},K,\varepsilon)$ is a neighborhood of $\underline{0}$ and $U\in\mathcal{U}_{n,K}$, then the function $f_{U,K}$ belongs to $A_n\cap W(\underline{0},K,\varepsilon)$, for each n. Since $\pi:C_k(X)\to C_k(Y)$ has the countable strong fan tightness, there exists a sequence $(f_{K_n,U_n}:n\in\mathbb{N})$ such that, for each n, $f_{K_n,U_n}\in A_n$ and $\pi(\underline{0})$ belongs to the closure of $\{\pi(f_{K_n,U_n}):n\in\mathbb{N}\}$. Consider the sets $U_n,n\in\mathbb{N}$. We claim that the sequence $(U_n:n\in\mathbb{N})$ witnesses that $S_1(K_X,K_Y)$ holds. Let T be a compact subset of Y. From $\pi(\underline{0})\in\overline{\{\pi(f_{K_n,U_n}):n\in\mathbb{N}\}}$ it follows that there is an $i\in\mathbb{N}$ such that $W(\pi(\underline{0}),T,1)$ contains the function $\pi(f_{K_i,U_i})$. Then $T\subset U_i$. Otherwise, for some $x\in T$ one has that $x\notin U_i$, so that

 $\pi(f_{K_i,U_i})(x) = f_{K_i,U_i}(x) = 1 \quad \text{which contradicts the fact} \quad \pi(f_{K_i,U_i}) \in W(\pi(0),T,1).$

 $(1) \Rightarrow (2) \text{ Let } (A_n:n\in\mathbb{N}) \text{ be a sequence of subsets of } C_k(X) \text{ the closures of which contain } \underline{0}. \text{ Fix } n. \text{ For every compact set } K\subset X \text{ the neighborhood } W\Big(\underline{0},K,\frac{1}{n}\Big) \text{ of } \underline{0} \text{ intersects } A_n, \text{ so there exists a continuous function } f_{K,n}\in A_n \text{ such that } |f_{K,n}(x)|<\frac{1}{n}, \text{ for each } x\in K. \text{ Since } f_{K,n} \text{ is a continuous function there are neighborhoods } U_x \text{ of } x, x\in K, \text{ such that, for } U_{K,n}=\bigcup_{x\in K}U_x\supset K, \text{ we have } f_{K,n}(U_{K,n})\subset \left(-\frac{1}{n},\frac{1}{n}\right). \text{ Let } \mathcal{U}_n=\{U_{K,n}:K \text{ compact subset of } X\}. \text{ For each } n, \mathcal{U}_n \text{ is a k-cover of } X. \text{ By the condition 2 one can find a sequence } (U_{K,n}:n\geq m) \text{ such that, for each } n, U_{K,n}\in\mathcal{U}_n \text{ and } \{U_{K,n}:n\in\mathbb{N}\} \text{ is a k-cover for Y. Consider the corresponding functions } f_{K,n} \text{ in } A_n. \text{ We verify that the sequence } \{f_{K,n}:n\in\mathbb{N}\} \text{ witnesses for } (A_n:n\in\mathbb{N}) \text{ that } \pi \text{ has the countable strong fan tightness. Let } W(\pi(\underline{0}),T,\varepsilon) \text{ be a neighborhood of } \pi(\underline{0}) \text{ in } C_k(Y) \text{ and let } m \text{ be a natural number such that } \frac{1}{m}<\varepsilon. \text{ Since T is a compact subset of Y and } S_1(K_X,K_Y) \text{ holds, there is an } n_0\in\mathbb{N}, n_0\geq m, \text{ such that one can find a } U_{K,n_0}\in\mathcal{U}_n \text{ with } T\subset U_{K,n_0}. \text{ We have}$

$$\pi(f_{K,n})(T) = f_{K,n}(T) \subset f_{K,n}(U_{K,n_0}) \subset \left(-\frac{1}{n_0}\,,\,\frac{1}{n_0}\right) \subset \left(-\frac{1}{m}\,,\,\frac{1}{m}\right) \subset \left(-\,\varepsilon,\,\varepsilon\right),$$
 i.e.,
$$\pi(f_{K,n}) \in W(\pi(\underline{0}),\,T,\,\varepsilon).$$

In a similar way one can prove:

Theorem 2.3. For a subspace Y of a space X, the following are equivalent:

- (1) $S_{fin}(\mathcal{K}_X, \mathcal{K}_Y)$ holds;
- (2) $\pi: C_k(X) \to C_k(Y)$ has countable fan tightness.

3. The Pytkeev Property of Continuous Mappings

For a space X and $x \in X$ a family \mathcal{F} of subsets of X is called π -network at x if every neighborhood of x contains an element of \mathcal{F} .

A space X is called a *Pytheev space* [16] if $x \in \overline{A} \setminus A$ and $A \subset X$ implies the existence of a countable π -network at x consisting of infinite subsets of A.

Now we transfer this property to the mapping as follows.

Definition 3.1. Let X and Y be topological spaces and let $f: X \to Y$ be a continuous mapping. f has the *Pytkeev property at* $x \in X$ if for each $A \subset X$ and every $x \in X$ such that $x \in \overline{A} \setminus A$ there is a sequence $(B_n : n \in \mathbb{N})$ of infinite subsets of A such that $(f(B_n) : n \in \mathbb{N})$ is π -network at f(x).

If f has this property at all points $x \in X$ we shall say that f has the *Pytkeev property*.

Remark 3.1. Observe that if either X or Y has the Pytkeev property, then f has that property.

In [19] Sakai gave a characterization of the Pytkeev property in the function spaces $C_p(X)$ in terms of shrinkable ω -covers. For a similar investigation see also [17].

Definition 3.2. Let Y be a subspace of a space X. An open ω -cover (k-cover) \mathcal{U} of X is said to be *relatively* ω -shrinkable (*relatively* k-shrinkable) with respect to Y if for each $U \in \mathcal{U}$ there is a closed set C(U) of X such that $C(U) \subset U$ and $\{C(U) : U \in \mathcal{U}\}$ is an ω -cover (k-cover) of Y.

We prove

Theorem 3.1. Let Y be a subspace of a space X. Then the following are equivalent:

- (1) $\pi: C_p(X) \to C_p(Y)$ has the Pytkeev property;
- (2) if \mathcal{U} is an ω -cover of X relatively ω -shrinkable with respect to Y,

then there is a sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of subfamilies of \mathcal{U} such that, for each $n \in \mathbb{N}$, $|\mathcal{U}_n| = \omega$ and $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is an ω -cover of Y.

Proof. (1) \Rightarrow (2) Let \mathcal{U} be an ω -cover relatively ω -shrinkable with respect to Y. For each $U \in \mathcal{U}$ we choose a closed set C(U) of X such that $C(U) \subset U$ and $\{C(U) : U \in \mathcal{U}\}$ is a k-cover of Y. So we can take in X, for each $U \in \mathcal{U}$ a zero-set Z(U) and a cozero-set V(U) such that $C(U) \subset Z(U)$ $\subset V(U) \subset U$. Without loss in generality, we may assume that for distinct, U' and U'' in \mathcal{U} , Z(U') and Z(U'') are distinct.

For a compact subset K of X let $\mathcal{U}_K = \{U \in \mathcal{U} : K \subset U\}$. For each $U \in \mathcal{U}$, let $f_{K,U}$ be a continuous map from X to [0,1] such that $f_{K,U}^{-1}(0) = Z(U)$ and $f_{K,U}^{-1}(1) = X \setminus V(U)$. Let $A = \{f_{K,U} : K \text{ compact subset of } X, U \in \mathcal{U}_k\}$. Note that for distinct U' and $U' \in \mathcal{U}$, $f_{K,U'}$ and $f_{K,U''}$ are distinct, and obviously $\underline{0} \in \overline{A} \setminus A$. By the condition 1 there exists a sequence $(B_n : n \in \mathbb{N})$ such that B_n is infinite subset of A and $(\pi(B_n) : n \in \mathbb{N})$ is a π -network at $\pi(\underline{0})$. For each n let \mathcal{U}_n be a subfamily of \mathcal{U} such that $|\mathcal{U}_n| = \omega$ and $B_n = \{f_U : U \in \mathcal{U}_n\}$. We claim that $(\mathcal{U}_n : n \in \mathbb{N})$ witnesses that \mathcal{U} satisfies the condition 2. Let K be a compact subset of Y and consider the neighborhood $W(\pi(\underline{0}), K, 1)$ of $\pi(\underline{0})$. Then there is an $n_0 \in \mathbb{N}$ such that $\pi(B_{n_0}) \subset W(\pi(\underline{0}), K, 1)$. This means that $K \subset \cap \{V(W) : W \in \mathcal{W}_n\} \subset \{U : U \in \mathcal{U}_n\}$. Thus $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is a k-cover of Y.

 $(2)\Rightarrow (1) \text{ Let } \pi:C_k(X)\to C_k(Y) \text{ and let } A \text{ be a subset of } C_k(X) \text{ such that } \underline{0}\in \overline{A}\smallsetminus A. \text{ For each compact set } K \text{ of } X \text{ the neighborhood } W\Big(\underline{0},\,K,\,\frac{1}{n}\Big)$ in $C_k(X)$ of $\underline{0}$ intersects A. So that there exists a continuous map $f_K\in A$ such that $|f_K(x)|<\frac{1}{n},$ for each $x\in K$. Let $U(f_k)=\left\{x\in X:|f_K(x)|<\frac{1}{n}\right\}$ and $\mathcal{U}=\{U(f_K):f_K\in A\}.$ We see that \mathcal{U} is a k-cover of X relative k-shrinkable with respect to Y. Indeed for each

 $f_K \in A$ let $Z(f_k) = \left\{x \in X : |f_K(x)| \leq \frac{1}{2n}\right\}$. Obviously $Z(f_k)$ is closed in $X, U(f_k) \subset Z(f_k)$ and $K \subset Z(f_k)$. Apply the condition 2 to \mathcal{U} there exists a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ such that, for each n, \mathcal{U}_n is subfamily of \mathcal{U} and $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is a k-cover of Y. Then there is a sequence $(B_n : n \in \mathbb{N})$ such that, for each n, B_n is an infinite subset of A and $\mathcal{U}_n = \{U(f_K) : f_K \in B_n\}$. It easy to show that the family $(\pi(B_n) : n \in \mathbb{N})$ is a π -network at $\pi(\underline{0})$. In fact let $W(\pi(\underline{0}), K, \varepsilon)$ be a neighborhood of $\pi(\underline{0})$ in $C_k(Y)$ and m be a natural number such that $\frac{1}{m} < \varepsilon$. Since K is a compact subset of Y there is a $j \in \mathbb{N}$, $j \geq m$, such that $K \subset \cap U_j$. Then

$$\pi(f_K(K)) = f_K(K) \subset f_K(\cap \mathcal{U}_j) \subset \left(\frac{-1}{j}, \frac{1}{j}\right) \subset \left(\frac{-1}{m}, \frac{1}{m}\right),$$

i.e.,
$$\pi(f_K) \in W(\pi(\underline{0}), K, \varepsilon)$$
 and $B_j \subset W(\underline{0}, K, \varepsilon)$.

In a similar way one can show that

Theorem 3.2. Let Y be a subspace of a space X. The following are equivalent:

- (1) $\pi: C_k(X) \to C_k(Y)$ has the Pytkeev property;
- (2) if \mathcal{U} is a k-cover of X relatively k-shrinkable with respect to Y, then there is a sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of subfamilies of \mathcal{U} such that, for each $n \in \mathbb{N}$, $|\mathcal{U}_n| = \omega$ and $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is a k-cover of Y.

The selectively Pytkeev property was studied in [12] (in hyperspaces) and in [17] (in function spaces).

Definition 3.3 [12]. Let X be a topological space. We say that X is a selectively Pytheev space if for each sequence $(A_n:n\in\mathbb{N})$ of elements of Ω_x there is a sequence $(B_n:n\in\mathbb{N})$ such that B_n is an infinite subsets of A_n , for each n, and $(B_n:n\in\mathbb{N})$ is π -network at x.

If X has this property at all points $x \in X$ we shall say that X is a selectively Pytkeev space.

We introduce the following definition to transfer this property to continuous mappings.

Definition 3.4. Let $f: X \to Y$ be a continuous mapping and let $x \in X$. We say that f has the *selectively Pytkeev property at* x if for each sequence $(A_n: n \in \mathbb{N})$ of elements of Ω_x there is a sequence $(B_n: n \in \mathbb{N})$ such that B_n is an infinite subsets of A_n for each n and $(f(B_n): n \in \mathbb{N})$ is π -network at f(x).

If f has this property at all points $x \in X$, then we shall say that f has the selectively Pytkeev property.

With small modifications in the proof of Theorem 3.1 one can prove the following two theorems.

Theorem 3.3. Let Y be a subspace of a space X. The following are equivalent:

- (1) $\pi: C_p(X) \to C_p(Y)$ has the Pytkeev property;
- (2) if $(\mathcal{U}_n : n \in \mathbb{N})$ is a sequence of ω -covers of X relatively ω -shrinkable with respect to Y, then there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that, for each n, \mathcal{V}_n is an infinitely countable subset of \mathcal{U}_n and $\{\cap \mathcal{V}_n : n \in \mathbb{N}\}$ is an ω -cover of Y.

Theorem 3.4. Let Y be a subspace of a space X. The following are equivalent:

- (1) $\pi: C_k(X) \to C_k(Y)$ has the selectively Pytkeev property;
- (2) if $(\mathcal{U}_n : n \in \mathbb{N})$ is a sequence of k-covers of X relatively k-shrinkable with respect to Y, then there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that, for each n, \mathcal{V}_n is an infinitely countable subset of \mathcal{U}_n and $\{\cap \mathcal{V}_n : n \in \mathbb{N}\}$ is a k-cover of Y.

4. The Reznichenko Property of Continuous Mappings

According to [14] we have the following notions.

Definition 4.1. For a space *X* and an element $x \in X$ we have:

- (1) An ω -cover (a k-cover) $\mathcal U$ of X called groupable [14] if there is a partition $(\mathcal U_n:n\in\mathbb N)$ of $\mathcal U$ into pairwise disjoint finite sets such that for each finite (compact) subset F of X, for all but finitely many n, there is a $U\in\mathcal U_n$ such that $F\subset U$.
- (2) An element A of Ω_x is groupable [14] if there is a partition $(A_n: n \in \mathbb{N})$ of A into pairwise disjoint finite sets such that each neighborhood of x has nonempty intersection with all but finitely many elements A_n .

We use the following notation:

 Ω^{gp} -the collection of all groupable ω -covers of X;

 K^{gp} -the collection of all groupable k-covers of a space;

 $(\Omega_x)^{gp}$ -the collection of all groupable elements of Ω_x .

A space X is said to have the ω -grouping property [15] if each countable ω -cover \mathcal{U} of X is groupable.

We give now the following.

Definition 4.2. Let Y be a subset of a space X. Y is said to have the relative ω -grouping property in X if for each ω -cover \mathcal{U} of X there is a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of pairwise disjoint finite subfamilies of \mathcal{U} such that each finite subset F of Y is contained in some $U \in \mathcal{U}_n$ for all but finitely many n.

In 1996 Reznichenko introduced the following property: Each countable element of Ω_x is a member of $(\Omega_x)^{gp}$. In [14], the authors defined the *selectively Reznichenko property*: X has selectively Reznichenko property if $S_{fin}(\Omega_x, (\Omega_x)^{gp})$ holds for each $x \in X$.

In [9] the authors transfer this property to mappings and introduce the following definitions.

Definition 4.3. Let $f: X \to Y$ be a continuous mapping and let $x \in X$. We say that f has the *selectively Reznichenko property at* x if for each sequence $(A_n: n \in \mathbb{N})$ of elements of Ω_x there is a collection $\{B_n: A_n: A_n \in \mathbb{N}\}$

 $n \in \mathbb{N}$ such that, for each n, B_n is a finite subset of A_n and for each neighborhood V of f(x), for all but finitely many n, $V \cap f(B_n) \neq \emptyset$.

If f has this property at all points $x \in X$, then we shall say that f has the selectively Reznichenko property.

Definition 4.4. Let $f: X \to Y$ be a continuous mapping and let $x \in X$. We say that f has the *Reznichenko property at* x if for each A of elements of Ω_x there is a collection $\{B_n : n \in \mathbb{N}\}$ of finite subset of A and for each neighborhood V of f(x), for all but finitely many $n, V \cap f(B_n) \neq \emptyset$.

If f has this property at all points $x \in X$, then we shall say that f has the *Reznichenko property*.

Remark 4.1. Observe that if either X or Y has the (selectively) Reznichenko property, then f has that property.

Improving a result from [9] and following [19], we prove that

Theorem 4.1. Let Y be a subspace of a space X. The following are equivalent:

- (1) $\pi: C_p(X) \to C_p(Y)$ has the Reznichenko property;
- (2) if \mathcal{U} is an ω -cover of X relatively ω -shrinkable with respect to Y, then there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of pairwise disjoint finite subsets of \mathcal{U} such that, for each finite set F of Y, the set $\{n \in \mathbb{N} : F \subset U \text{ for some } U \in \mathcal{V}_n\}$ is cofinite in \mathbb{N} .
- **Proof.** (1) \Rightarrow (2) Let \mathcal{U} be an ω -cover of X relatively ω -shrinkable with respect to Y. For each $U \in \mathcal{U}$ we can take a continuous function $f_U : X \to [0,1]$ such that $f_U^{-1}(0) = U$, $X \setminus U \subset f_U^{-1}(1)$ and $\{f_U^{-1}(0) : U \in \mathcal{U}\}$ is an ω -cover of X. Since $\{f_U^{-1}(0) : U \in \mathcal{U}\}$ is an ω -cover of X, we can assume that for distinct $U, U' \in \mathcal{U}_n$, f_U and f'_U are distinct. Let $A = \{f_U : U \in \mathcal{U}\}$. Obviously $\underline{0} \in \overline{A} \setminus A$. Since π has the Reznichenko property there is a family \mathcal{F} of pairwise disjoint finite subsets of A such that, for each neighborhood W of $\pi(\underline{0})$, the family $\{\pi(A_n) : \pi(A_n) \cap W = \emptyset\}$ is finite,

where $A_n = \{f_U : U \in \mathcal{U}_n\}$. It is easy to show that the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ is a desired one.

(2) \Rightarrow (1) Let A be a subset of $C_p(X)$ and $\underline{0} \in \overline{A} \setminus A$. For each $f \in A$ let $U_n(f) = \left\{ x \in X : |f(x)| < \frac{1}{n} \right\}$ and $\mathcal{U} = \{U_n(f) : f \in A\}$. It is easy to prove that \mathcal{U} is an ω -cover of X relatively ω -shrinkable with respect to Y. Then there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of pairwise disjoint finite subsets of \mathcal{U} and for each F finite subset of Y the family $\{n \in \mathbb{N} : F \subset U \text{ for some } U \in \mathcal{V}_n\}$ is cofinite in \mathbb{N} . For each n, we set $\mathcal{V}_n = \{U_n(f) : f \in S_n\}$, where S_n is a finite subset of A. Then the family $(S_n : n \in \mathbb{N})$ is disjoint and for each finite subset F of Y the set $\{n \in \mathbb{N} : W(\pi(\underline{0}), F, 1) \cap \pi(S_n) = \emptyset\}$ is cofinite in \mathbb{N} .

We set $S=\bigcup\{\pi(S_n):n\in\mathbb{N}\}$, $L_0=\bigcup\{\pi(S_{2n}):n\in\mathbb{N}\}$ and $L_1=\bigcup\{\pi(S_{2n+1}):n\in\mathbb{N}\}$. Obviously $\pi(\underline{0})\in\overline{L_0\cup(\pi(A)\setminus\pi(S))}$ or $\pi(\underline{0})\in\overline{L_1\cup(\pi(A)\setminus\pi(S))}$. Let $\pi(\underline{0})\in\overline{L_1\cup(\pi(A)\setminus\pi(S))}$, and enumerate as $\{S_{2n}:n\in\mathbb{N}\}=\{\pi(A_{1n}):n\in\mathbb{N}\}$. Since $\mathcal{U}_n'=\{U_n(f):f\in L_1\cup(\pi(A)\setminus\pi(S))\}$ is an ω -cover of X relatively ω -shrinkable with respect to Y by the same procedure as above, there exists a disjoint family $\{\pi(A_{2n}):n\in\mathbb{N}\}$ of finite subset of $L_1\cup(\pi(A)\setminus\pi(S))$ and for each finite subset F of Y the set $\{n\in\mathbb{N}:W\Big(\pi(\underline{0}),F,\frac{1}{2}\Big)\cap\pi(A_{2n})=\varnothing\}$ is cofinite in \mathbb{N} . Then $\pi(\underline{0})\in\overline{\pi(A)\setminus\bigcup\{\pi(A_{mn}):n\in\mathbb{N}\}}$, $\overline{m=1,2}$. By repeating this operation, we have a disjoint family $\{A_{mn}:m\in\mathbb{N}\}$ of finite subsets of A such that for each $m\in\mathbb{N}$ and each F finite in Y the set $\{n\in\mathbb{N}:W\Big(\pi(\underline{0}),F,\frac{1}{m}\Big)\cap\pi(A_{mn})=\varnothing\}$ is cofinite in \mathbb{N} . Now let $A_n=\{A_{ij}:i+j=n\}$. It is not difficult to see that $\{A_n:n\in\mathbb{N}\}$ is desired one.

In a similar way one can prove the following assertions.

Theorem 4.2. For a subset Y of a space X the following are equivalent:

- (1) $\pi: C_k(X) \to C_k(Y)$ has the Reznichenko property;
- (2) if \mathcal{U} is a k-cover of X relatively k-shrinkable with respect to Y, then there is a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of pairwise disjoint finite subsets of \mathcal{U} such that, for each compact K of Y, the set $\{n \in \mathbb{N} : K \subset U \text{ for some } U \in \mathcal{U}_n\}$ is cofinite in \mathbb{N} .

Theorem 4.3. Let Y be a subspace of a space X. The following are equivalent:

- (1) $\pi: C_p(X) \to C_p(Y)$ has the selectively Reznichenko property;
- (2) if $(\mathcal{U}_n : n \in \mathbb{N})$ is a sequence of ω -covers of X relatively ω -shrinkable with respect to Y, then there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of pairwise disjoint sets such that, for each n, \mathcal{V}_n is a finite subsets of \mathcal{U}_n and for each finite set F of Y, the set $\{n \in \mathbb{N} : F \subset U \text{ for some } U \in \mathcal{V}_n\}$ is cofinite in \mathbb{N} .

Theorem 4.4. Let Y be a subspace of a space X. The following are equivalent:

- (1) $\pi: C_k(X) \to C_k(Y)$ has the selectively Reznichenko property;
- (2) if $(\mathcal{U}_n : n \in \mathbb{N})$ is a sequence of k-covers of X relative k-shrinkable with respect to Y, then there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of pairwise disjoint such that, for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n such that, for each compact set K of Y, the set $\{n \in \mathbb{N} : K \subset U \text{ for some } U \in \mathcal{V}_n\}$ is cofinite in \mathbb{N} .

References

- [1] A. V. Arhangel'skiĭ, Topological Function Spaces, Kluwer Academic Publishers, 1992.
- [2] L. Babinkostova, C. Guido and Lj. D. R. Kočinac, Relative γ-sets, East-West J. Math. 2(2) (2000), 195-199.
- [3] F. Cammaroto, On P-functions, Meeting Top. Spaces Theory Appl., Yatsushiro, 1999, pp. 1-10.
- [4] F. Cammaroto, V. V. Fedorcuk and J. R. Porter, H-closed functions, Comment. Math. Univ. Carolinae 39(3) (1999), 563-572.

- [5] G. Di Maio, Lj. D. R. Kočinac and E. Meccariello, Applications of k-covers, Acta Math. Sinica (English Ser.) 22 (2006), 1151-1160.
- [6] R. Engelking, General Topology, PWN, Varzawa, 1977.
- [7] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151-
- [8] I. Yu. Gordienko, Two theorems on relative cardinal invariants, Zbornik rad. Fil. fak. (Niš), Ser. Mat. 4 (1990), 51-53.
- [9] C. Guido and Lj. D. R. Kočinac, Relative covering properties, Q and A in General Topology 19(1) (2001), 107-114.
- [10] W. Just, A. W. Miller, M. Scheepers and P. J. Szeptycki, Combinatorics of open covers II, Topology Appl. 69 (1996), 31-62.
- [11] Lj. D. R. Kočinac, Closure properties in function spaces, Applied General Topology 4(2) (2003), 255-261.
- [12] Lj. D. R. Kočinac, The Reznichenko property and the Pytkeev property in hyperspaces, Acta Math. Hungar. 107(3) (2005), 225-233.
- [13] Lj. D. R. Kočinac and L. Babinkostova, Function spaces and some relative covering properties, Far East J. Math. Sci. (FJMS), Special Volume, Part II (2000), 247-255.
- [14] Lj. D. R. Kočinac and M. Scheepers, Combinatoric of open covers (VII): Groupability, Fund. Math. 179(2) (2003), 131-155.
- [15] Lj. D. R. Kočinac and M. Scheepers, Function spaces and a property of Reznichenko, Topology Appl. 123 (2002), 135-143.
- [16] V. I. Malykhin and G. Tironi, Weakly Frèchet-Urysohn and Pytkeev spaces, Topology Appl. 104 (2000), 181-190.
- [17] B. A. Pansera and V. Pavlović, Some results on function spaces, preprint.
- [18] V. Pavlović, Selectively A-function spaces, East-West J. Math., to accepted.
- [19] M. Sakai, The Pytkeev property and the Reznichenko property in function spaces, Note di Matematica 22(2) (2003), 43-52.
- [20] M. Sakai, Weakly Fréchet-Urysohn property in function spaces, preprint.
- [21] M. Sakai, Property C and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917-919.
- [22] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 73 (1996), 241-266.