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Abstract

We investigate duality between (covering) properties in topological
spaces and the closure-type properties of mappings. We give a version of

the Pytkeev property for continuous mappings.
1. Introduction
In this paper all the spaces are Tychonoff. The notation and
terminology we follow are standard [6]. Let X be a topological space. Then
(1) the symbol O denotes the collection of open covers of X;

(2) the symbol Q denotes the collection of w-covers of X. An open cover
U of a space X is called an ®-cover if X is not a member of &/ and every
finite subset of X is contained in a member of U [7];

(3) the symbol K denotes the collection of k-covers of X. An open

cover U of a space X is called a k-cover if X is not a member of & and
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every compact subset of X is contained in a member of U/ [5].
Let A and B be collections of subsets of a topological space X. Then
(a) the symbol S;(A, B) denotes the selection principle: For each

sequence (A4, : n € N) of elements of A there exists a sequence (b, :

n e N) such that for each n b, € A,, and {b,, : n € N} is an element of B;

(b) the symbol Sﬁn(A, B) denotes the selection principle: For each
sequence (4, : n € N) of elements of A there exists a sequence (B, :
n € N) such that for each n B, is a finite subset of A, and U, .nB, is

an element of B.

For a space X by C,(X) we denote the space of all continuous real-

valued functions on X in the pointwise convergence topology. For a
function f € Cp(X), a finite set F in X and a positive real number & we

let
W(f; F;e)={g e Cp(X):|f(x) - g(x)| <& Vx € F}.

The standard local base of a point f e Cp(X) consists of the sets

W(f; F; ¢), where F is a finite subset of X and ¢ is a positive real number.

By C,(X) we denote the space of all continuous real-valued functions

on a space X endowed with the compact-open topology. For a function

f € Cp,(X), a compact set K — X and a positive real number ¢ we let
W(f; K;¢) =1{g € C,(X) : | f(x) - g(x)| < &, Vx € K}.

The standard local base of a point f € Cp,(X) consists of the sets
W(f; K; €), where K is a compact subset in X and ¢ is a positive real
number.

The symbol 0 denotes the constantly zero function in C,(X) and in
Cp(X). Since C,(X) and C(X) are homogenous spaces we may consider

the point 0 when studying local properties of them.

In [1] Arhangel’skii considered the mapping n from C,(X) (resp.
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Cp(X)) into Cp,(Y) (resp. C;(Y)) defined by n(f) = fiy, for each f e Cp,(X)
(resp. f € Ci(X)).

Some results in the literature show that there is a duality between
relative covering properties of a subspace Y of a Tychonoff space X and
the closure-type properties of the mapping n. This sort of duality was
documented by Gordienko for the Lindelof property [8], by Ko¢inac and
Babinkostova for the Menger property and for the Rothberegr property
[13], by Guido and Koc¢inac for the Hurewicz property [9] and by
Babinkostova et al. for the y-sets [2].

This investigation i1s a part of general idea to transfer properties of
topological spaces to continuous mappings [3] and [4].

2. The Countable (Strong) Fan Tightness

For a space X and a point x € X, the symbol Q, denotes the set
{Ac X\{x}:xeA}
Let Y be a subspace of a space X. We denote by Qx(Kx) the

collection of w-cover (k-cover) of X and by Qy(Ky) the collection of

w-cover (k-cover) of Y, by sets open in X,

A space X has countable fan tightness [1] if for each x € X and each

sequence (A, : n € N) of elements of Q, there is a sequence (B, : n € N)
of finite sets such that, for each n € N, B, < A,, and x € UneN B,, ie.,
if Sf, (Qy, Q) holds for each x e X.

A space X has countable strong fan tightness [21] if for each x € X
the selection principle S;(Q,, Q, ) holds.

Definition 2.1. Let f be a continuous mapping from X to Y. Then

(1) f has countable fan tightness [13] if for each x € X and each

sequence (A4, : n € N) of elements of Q, there is a sequence (B, : n € N)

of finite sets such that, for each n, B, < A,, and f(x) € UneN f(B,).
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(2) f has countable strong fan tightness [13] if for each sequence
(4,, : n e N) of elements of Q, there exists a sequence (x, : n € N)

such that x,, € A,,, for each n e N, and f(x) € {f(x,) : n € N}.

In the paper [13] it was shown the following theorem.

Theorem 2.1. For a subspace Y of a space X, the following are
equivalent:

1) S1(Qx, Qy) holds;

(2) n: C,(X) > C,(Y) has countable strong fan tightness.

We show

Theorem 2.2. For a subspace Y of a space X, the following are
equivalent:

(1) Sl(ICX, ’Cy) hOldS;

(2) n: Ch(X) —» C,(Y) has countable strong fan tightness.

Proof. (2) = (1) Let {U,, : n € N} be a sequence of k-covers of X. For
each n and a compact subset K of X we denote by U, g the set {U € U,, :
KcUy. If Uel,g, let fy g : X —[0,1] be a continuous function
satisfying fy g(K) =0, fy g(X\U)=1. Let, for each neN, A, =
{fu,k :U €U, g, K compact}. Then 0 is in the closure of A,, for each
neN. If WO, K, ¢) is a neighborhood of 0 and U € U,, g, then the
function fy; g belongs to A, NW(0, K, ¢), for each n. Since n : Cp(X) —
C,(Y) has the countable strong fan tightness, there exists a sequence
(fk,,u, : n € N) such that, for each n, fg y < A, and n(0) belongs to
the closure of {n(fg, ):n e N}. Consider the sets U,, n € N. We claim

that the sequence (U, : n € N) witnesses that S;(Kx, Ly) holds. Let T

be a compact subset of Y. From n(0) € {n(fg, v ):n e N} it follows that
there is an i € N such that W(r(0), 7', 1) contains the function n(fx, v, )-

Then T < U;. Otherwise, for some x € T one has that x ¢ U;, so that
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n(fx;,u,)(x) = fg;,u,(x) =1 which contradicts the fact nl(fx, ;) e
W(n(0), T, 1).

(1) = (2) Let (A, : n € N) be a sequence of subsets of C,(X) the

closures of which contain 0. Fix n. For every compact set K < X the

neighborhood W((_), K, %j of 0 intersects A,, so there exists a continuous

function fg , € A, such that |fx ,(x)| < %, for each x € K. Since fx ,
is a continuous function there are neighborhoods U, of x, x € K, such
that, for Ug , = UyegUs > K, we have fK,n(UKm)c(—%,%). Let
U, = Uk, , : K compact subset of X}. For each n, U, is a k-cover of X.
By the condition 2 one can find a sequence (Ug , : n > m) such that, for
each n, Ug , € U, and {Ug , : n € N} is a k-cover for Y. Consider the
corresponding functions fg , in A,. We verify that the sequence {nyn :
n € N} witnesses for (4,, : n € N) that n has the countable strong fan
tightness. Let W(n(0), T, €) be a neighborhood of n(0) in C,(Y) and let
m be a natural number such that % < ¢. Since T'is a compact subset of Y
and S;(Kx, Ky) holds, there is an ny € N, ng > m, such that one can

finda Uk ,, € U, with T' = Ug ,,. We have

w{f.n) (@)= Fen D)< fenUsm) < (- | (- o | < o),

ng’ ng m
ie., n(fg ,) e W(n0),T,e).

In a similar way one can prove:

Theorem 2.3. For a subspace Y of a space X, the following are
equivalent:

(1) Sﬁn(ICX’ Ky) hOldS;

2) n: Cp(X) - CL(Y) has countable fan tightness.
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3. The Pytkeev Property of Continuous Mappings

For a space X and x € X a family F of subsets of X is called

n-network at x if every neighborhood of x contains an element of F.

A space X is called a Pytkeev space [16] if x € ANA and A c X

implies the existence of a countable n-network at x consisting of infinite
subsets of A.

Now we transfer this property to the mapping as follows.
Definition 3.1. Let X and Y be topological spaces and let f : X - Y
be a continuous mapping. f has the Pytkeev property at x € X if for each

A c X and every x € X such that x € A\A there is a sequence (B, :
n € N) of infinite subsets of A such that (f(B,): n € N) is n-network at
f(x).

If f has this property at all points x € X we shall say that f has the
Pytkeev property.

Remark 3.1. Observe that if either X or Y has the Pytkeev property,
then f has that property.

In [19] Sakai gave a characterization of the Pytkeev property in the
function spaces C,(X) in terms of shrinkable w-covers. For a similar

investigation see also [17].

Definition 3.2. Let Y be a subspace of a space X. An open w-cover
(k-cover) U of X is said to be relatively w-shrinkable (relatively
k-shrinkable) with respect to Y if for each U € U there is a closed set
C(U) of X such that C(U) c U and {C(U): U € U} is an w-cover (k-

cover) of Y.
We prove

Theorem 3.1. Let Y be a subspace of a space X. Then the following are
equivalent:

(1) ©: Cp(X) > C,(Y) has the Pytkeev property;

@) if U is an o-cover of X relatively w-shrinkable with respect to Y,
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then there is a sequence {U,, : n € N} of subfamilies of U such that, for
each n e N, |U, | = o and {(U, : n e N} is an o-cover of Y.

Proof. (1) = (2) Let U be an w-cover relatively w-shrinkable with
respect to Y. For each U € U we choose a closed set C(U) of X such that
C(U) c U and {C(U): U € U} is a k-cover of Y. So we can take in X, for
each U € U a zero-set Z(U) and a cozero-set V(U) such that C(U) < Z(U)
c V(U) c U. Without loss in generality, we may assume that for
distinct, U’ and U" in U, Z(U’') and Z(U") are distinct.

For a compact subset K of X let Ux ={U e U : K c U}. For each
U € U, let fg 7 be a continuous map from X to [0, 1] such that fIéU(O)
= Z(U) and fl},lU(l) = X\V({U). Let A = {fg y : K compact subset of X,
U € Up}. Note that for distinct U' and U’ e U, fx y and fg yr are
distinct, and obviously O e A\A. By the condition 1 there exists a
sequence (B, : n € N) such that B, is infinite subset of A and (n(B,,) :
n € N) is a n-network at w(0). For each n let U, be a subfamily of U

such that |U, |=® and B, ={fy : U € U,}. We claim that (i, : n € N)

witnesses that U satisfies the condition 2. Let K be a compact subset of Y
and consider the neighborhood W(n(0), K, 1) of m(0). Then there is an

ny € N such that n(B, ) ¢ W(n(0), K, 1). This means that K < N{V(W):
WeWw,}c{U:Uel,}. Thus {NU,, : n € N} is a k-cover of Y.

(2) = (1) Let n: Cr(X) - C.,(Y) and let A be a subset of C,(X) such
that 0 ANA. For each compact set K of X the neighborhood W(Q, K, %)
in C,(X) of 0 intersects A. So that there exists a continuous map

fx € A such that |fg(x)|< %, for each xe K. Let

U(f,) = {x e X 1| f(x)| < %} and U = {U(fg): fxc < A). We see that U/ is

a k-cover of X relative k-shrinkable with respect to Y. Indeed for each
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fx € A let Z(fy) = {x eX: |fg(x)] < 21_n} Obviously Z(f;,) is closed in

X, U(f,)c Z(f,) and K < Z(f;). Apply the condition 2 to U there
exists a sequence (U, : n € N) such that, for each n, U,, is subfamily of
U and {NU, :neN} is a k-cover of Y. Then there is a sequence
(B,, : n € N) such that, for each n, B, is an infinite subset of A and
U, ={U(fk): [k € B} It easy to show that the family (n(B,,) : n € N)
is a n-network at n(0). In fact let W(n(0), K, ) be a neighborhood of m(0)

in C,(Y) and m be a natural number such that % < ¢ Since K is a

compact subset of Ythereisa j € N, j > m, such that K < NU;. Then

w(f(K) = () < feOup < (S5 ) < (5 )

J m’ m
ie., n(fg) € W(n(0), K, €) and B; c W(0, K, «). m

In a similar way one can show that

Theorem 3.2. Let Y be a subspace of a space X. The following are

equivalent:

(1) n: Cph(X) » C(Y) has the Pytkeev property;

) if U is a k-cover of X relatively k-shrinkable with respect to Y, then
there is a sequence {U,, : n € N} of subfamilies of U such that, for each
neN,|U,|=0and {NU, : n e N} is a k-cover of Y.

The selectively Pytkeev property was studied in [12] (in hyperspaces)

and in [17] (in function spaces).

Definition 3.3 [12]. Let X be a topological space. We say that X is a
selectively Pytkeev space if for each sequence (4,, : n € N) of elements of
Q, there is a sequence (B,, : n € N) such that B, is an infinite subsets

of A,, for each n, and (B,, : n € N) is n-network at x.

If X has this property at all points x € X we shall say that X is a

selectively Pytkeev space.
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We introduce the following definition to transfer this property to
continuous mappings.
Definition 3.4. Let f: X — Y be a continuous mapping and let

x € X. We say that f has the selectively Pytkeev property at x if for each

sequence (A4, : n e N) of elements of Q, there is a sequence (B, : n € N)
such that B,, is an infinite subsets of A, for each n and (f(B,): n € N)

is n-network at f(x).
If f has this property at all points x € X, then we shall say that f has
the selectively Pytkeev property.

With small modifications in the proof of Theorem 3.1 one can prove

the following two theorems.

Theorem 3.3. Let Y be a subspace of a space X. The following are

equivalent:

(1) n: C,(X) - C,(Y) has the Pytkeev property;

(2) if (U,, : n e N) is a sequence of o-covers of X relatively w-shrinkable
with respect to Y, then there is a sequence (V,, : n € N) such that, for each
n, V, is an infinitely countable subset of U, and {V, : n e N} is an

w-cover of Y.

Theorem 3.4. Let Y be a subspace of a space X. The following are
equivalent:

(1) n: Cp(X) - Cr(Y) has the selectively Pytkeev property;

2) if U,, : n e N) is a sequence of k-covers of X relatively k-shrinkable
with respect to Y, then there is a sequence (V,, : n € N) such that, for each
n, V, is an infinitely countable subset of U, and {1V, :neN} is a

k-cover of Y.

4. The Reznichenko Property of Continuous Mappings

According to [14] we have the following notions.

Definition 4.1. For a space X and an element x € X we have:
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(1) An w-cover (a k-cover) U of X called groupable [14] if there is a
partition (U,, : n € N) of U into pairwise disjoint finite sets such that
for each finite (compact) subset F of X, for all but finitely many n, there is
aUeU, suchthat F c U.

(2) An element A of Q, is groupable [14] if there is a partition (4,, :
n € N) of A into pairwise disjoint finite sets such that each neighborhood

of x has nonempty intersection with all but finitely many elements A,,.
We use the following notation:
Q8P _the collection of all groupable o-covers of X;
K #P -the collection of all groupable k-covers of a space;
(Q,.)®P -the collection of all groupable elements of Q..

A space X is said to have the w-grouping property [15] if each

countable w-cover U of X is groupable.
We give now the following.

Definition 4.2. Let Y be a subset of a space X. Y is said to have the
relative o-grouping property in X if for each w-cover U of X there is a
sequence (U, : n € N) of pairwise disjoint finite subfamilies of & such

that each finite subset F' of Y is contained in some U € U, for all but
finitely many n.

In 1996 Reznichenko introduced the following property: Each
countable element of Q, is a member of (Q,)%’. In [14], the authors
defined the selectively Reznichenko property: X has selectively
Reznichenko property if S, (Qy, (€, )¥”) holds for each x e X.

In [9] the authors transfer this property to mappings and introduce

the following definitions.

Definition 4.3. Let f: X — Y be a continuous mapping and let
x € X. We say that f has the selectively Reznichenko property at x if for

each sequence (A4,, : n € N) of elements of Q, there is a collection {B,, :
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n € N} such that, for each n, B, is a finite subset of A, and for each

neighborhood Vof f(x), for all but finitely many n, V N f(B,,) = @.

If f has this property at all points x € X, then we shall say that f has
the selectively Reznichenko property.

Definition 4.4. Let f: X — Y be a continuous mapping and let
x € X. We say that f has the Reznichenko property at x if for each A of

elements of Q, there is a collection {B,, : n € N} of finite subset of A and

for each neighborhood V of f(x), for all but finitely many n, VN f(B,) = <.

If f has this property at all points x € X, then we shall say that f has
the Reznichenko property.

Remark 4.1. Observe that if either X or Y has the (selectively)
Reznichenko property, then f has that property.

Improving a result from [9] and following [19], we prove that

Theorem 4.1. Let Y be a subspace of a space X. The following are
equivalent:

(1) n: C,(X) - C,(Y) has the Reznichenko property;

@) if U is an o-cover of X relatively w-shrinkable with respect to Y,
then there is a sequence (V,, : n € N) of pairwise disjoint finite subsets of

U such that, for each finite set F of Y, the set {n e N: F — U for some
U e V,} is cofinite in N.

Proof. (1) = (2) Let i/ be an w-cover of X relatively w-shrinkable with
respect to Y. For each U € U we can take a continuous function fi; : X

— [0, 1] such that f7*(0) = U, X\U < f7'(1) and {f7'(0): U € U} is an
o-cover of X. Since {f;7}(0) : U e U} is an o-cover of X, we can assume that
for distinct U, U' € U,,, fy and f{; are distinct. Let A = {fy; : U € U}.

Obviously 0 e A\A. Since n has the Reznichenko property there is a

family F of pairwise disjoint finite subsets of A such that, for each
neighborhood W of =n(0), the family {n(A4,): n(4,) W = &} is finite,
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where A, ={fyy : U € U,}. It is easy to show that the sequence (U, :

n € N) is a desired one.

(2) = (1) Let A be a subset of C,,(X) and 0 € AN\A. Foreach f e A

let U, (f) = {x e X :|f(x)] < %} and U = {U,(f): f € A}. Tt is easy to

prove that U is an w-cover of X relatively w-shrinkable with respect to Y.

Then there is a sequence (V,, : n € N) of pairwise disjoint finite subsets
of U and for each F finite subset of Y the family {n e N: F < U for
some U e V,,} is cofinite in N. For each n, we set V,, = {U,(f): f € S,},
where S,, is a finite subset of A. Then the family (S,, : n € N) is disjoint
and for each finite subset F of Y the set {n € N: W(r(0), F,1)N n(S,,) = T}

is cofinite in N.

We set S =U{n(S,):neN}, Ly =U{n(Sg,):neN} and L; =U{n(Sy,,,1)
: n e N}. Obviously n(0) € Ly U (r(AN\n(S)) or n(0) € L; U (n(A)N\=(S)).
Let n(0) e L; U (n(A)\n(S)), and enumerate as {Sy, : n € N} = {n(4;,)
:n e N}. Since U, ={U,(f): f e L; U((AN\R(S))} is an o-cover of X

relatively o-shrinkable with respect to Y by the same procedure as above,
there exists a disjoint family {n(Ag,): n € N} of finite subset of L; U

(r(A)\n(S)) and for each finite subset F of Y the set {n e N: W(n (0),

F, %j Nm(Ag,) = @} is cofinite in N. Then n(0) € n(AN\U {r(4,,,): n € N,

m =1, 2}. By repeating this operation, we have a disjoint family {4,,, :
m e N} of finite subsets of A such that for each m € N and each F finite
in Y the set {n e N: W(n(g), F, %) Nn(A,,,) = @} is cofinite in N. Now
let A, ={A;; :i+j=n}. Itis not difficult to see that {4, : n € N} is
desired one.

In a similar way one can prove the following assertions.

Theorem 4.2. For a subset Y of a space X the following are equivalent:
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(1) n: Cp(X) » C(Y) has the Reznichenko property;

2) if U s a k-cover of X relatively k-shrinkable with respect to Y, then
there is a sequence (U, : n € N) of pairwise disjoint finite subsets of U

such that, for each compact K of Y, the set {ne N: K c U for some
U e U,} is cofinite in N.

Theorem 4.3. Let Y be a subspace of a space X. The following are

equivalent:
(1) 7 : C,(X) > C,(Y) has the selectively Reznichenko property;

2) if (U,, : n e N)is a sequence of w-covers of X relatively w-shrinkable
with respect to Y, then there is a sequence (V, :n e N) of pairwise
disjoint sets such that, for each n, V, is a finite subsets of U, and for
each finite set F of Y, the set {n e N: F c U for some U € V,} is cofinite
in N.

Theorem 4.4. Let Y be a subspace of a space X. The following are
equivalent:

(1) n: Ch(X) > CR(Y) has the selectively Reznichenko property;

2 if (U,, : n e N) is a sequence of k-covers of X relative k-shrinkable
with respect to Y, then there is a sequence (V,, : n € N) of pairwise disjoint
such that, for each n, V, is a finite subset of U, such that, for each
compact set K of Y, the set {n e N: K c U for some U € V,} is cofinite
in N.
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