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Abstract 

We investigate duality between (covering) properties in topological 

spaces and the closure-type properties of mappings. We give a version of 

the Pytkeev property for continuous mappings. 

1. Introduction 

In this paper all the spaces are Tychonoff. The notation and 

terminology we follow are standard [6]. Let X be a topological space. Then 

(1) the symbol O  denotes the collection of open covers of X; 

(2) the symbol Ω denotes the collection of ω-covers of X. An open cover 

U  of a space X is called an ω-cover if X is not a member of U  and every 

finite subset of X is contained in a member of U  [7]; 

(3) the symbol K  denotes the collection of k-covers of X. An open 

cover U  of a space X is called a k-cover if X is not a member of U  and 
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every compact subset of X is contained in a member of U  [5]. 

Let A  and B  be collections of subsets of a topological space X. Then 

(a) the symbol ( )BA,1S  denotes the selection principle: For each 

sequence ( )N∈nAn :  of elements of A  there exists a sequence ( :nb  

)N∈n  such that for each n nn Ab ∈  and { }N∈nbn :  is an element of ;B  

(b) the symbol ( )BA,finS  denotes the selection principle: For each 

sequence ( )N∈nAn :  of elements of A  there exists a sequence ( :nB  

)N∈n  such that for each n nB  is a finite subset of nA  and nn BN∈∪  is 

an element of .B  

For a space X by ( )XCp  we denote the space of all continuous real- 

valued functions on X in the pointwise convergence topology. For a 

function ( ),XCf p∈  a finite set F in X and a positive real number ε we 

let 

( ) { ( ) ( ) ( ) }.,:;; FxxgxfXCgFfW p ∈∀ε<−∈=ε  

The standard local base of a point ( )XCf p∈  consists of the sets 

( ),;; εFfW  where F is a finite subset of X and ε is a positive real number. 

By ( )XCk  we denote the space of all continuous real-valued functions 

on a space X endowed with the compact-open topology. For a function 

( ),XCf k∈  a compact set XK ⊂  and a positive real number ε we let 

( ) { ( ) ( ) ( ) }.,:;; KxxgxfXCgKfW p ∈∀ε<−∈=ε  

The standard local base of a point ( )XCf k∈  consists of the sets 

( ),;; εKfW  where K is a compact subset in X and ε is a positive real 

number. 

The symbol 0  denotes the constantly zero function in ( )XCp  and in 

( ).XCk  Since ( )XCp  and ( )XCk  are homogenous spaces we may consider 

the point 0  when studying local properties of them. 

In [1] Arhangel’skiǐ considered the mapping π from ( ) ( .respXCp  
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( ))XCk  into ( )YCp ( )( )YCk.resp  defined by ( ) ,Yff |=π  for each ( )XCf p∈  

( )( )..resp XCf k∈  

Some results in the literature show that there is a duality between 

relative covering properties of a subspace Y of a Tychonoff space X and 

the closure-type properties of the mapping π. This sort of duality was 

documented by Gordienko for the Lindelöf property [8], by Kočinac and 

Babinkostova for the Menger property and for the Rothberegr property 
[13], by Guido and Kočinac for the Hurewicz property [9] and by 

Babinkostova et al. for the γ-sets [2]. 

This investigation is a part of general idea to transfer properties of 
topological spaces to continuous mappings [3] and [4]. 

2. The Countable (Strong) Fan Tightness 

For a space X and a point ,Xx ∈  the symbol xΩ  denotes the set 

{ { } }.:\ AxxXA ∈⊂  

Let Y be a subspace of a space X. We denote by ( )XX KΩ  the 

collection of ω-cover (k-cover) of X and by ( )YY KΩ  the collection of 

ω-cover (k-cover) of Y, by sets open in X. 

A space X has countable fan tightness [1] if for each Xx ∈  and each 

sequence ( )N∈nAn :  of elements of xΩ  there is a sequence ( )N∈nBn :  

of finite sets such that, for each nn ABn ⊂∈ ,N  and ,∪ N∈∈
n nBx  i.e., 

if ( )xxfinS ΩΩ ,  holds for each .Xx ∈  

A space X has countable strong fan tightness [21] if for each Xx ∈  

the selection principle ( )xxS ΩΩ ,1  holds. 

Definition 2.1. Let f be a continuous mapping from X to Y. Then 

(1) f has countable fan tightness [13] if for each Xx ∈  and each 

sequence ( )N∈nAn :  of elements of xΩ  there is a sequence ( )N∈nBn :  

of finite sets such that, for each nn ABn ⊂,  and ( ) ∈xf  ( ).∪ N∈n nBf  
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(2) f has countable strong fan tightness [13] if for each sequence 

( )N∈nAn :  of elements of xΩ  there exists a sequence ( )N∈nxn :  

such that ,nn Ax ∈  for each ,N∈n  and ( ) ( ){ }.: N∈∈ nxfxf n  

In the paper [13] it was shown the following theorem. 

Theorem 2.1. For a subspace Y of a space X, the following are 

equivalent: 

(1) ( )YXS ΩΩ ,1  holds; 

(2) ( ) ( )YCXC pp →π :  has countable strong fan tightness. 

We show 

Theorem 2.2. For a subspace Y of a space X, the following are 

equivalent: 

(1) ( )YXS KK ,1  holds; 

(2) ( ) ( )YCXC kk →π :  has countable strong fan tightness. 

Proof. (2) ⇒ (1) Let { }N∈nn :U  be a sequence of k-covers of X. For 

each n and a compact subset K of X we denote by Kn,U  the set { :nU U∈  

}.UK ⊂  If ,, KnU U∈  let [ ]1,0:, →Xf KU  be a continuous function 

satisfying ( ) ,0, =Kf KU  ( ) .1\, =UXf KU  Let, for each ,N∈n  =nA  

{ }.compact,: ,, KUf KnKU U∈  Then 0  is in the closure of ,nA  for each 

.N∈n  If ( )ε,,0 KW  is a neighborhood of 0  and ,, KnU U∈  then the 

function KUf ,  belongs to ( ),,,0 εKWAn ∩  for each n. Since ( ) →π XCk:  

( )YCk  has the countable strong fan tightness, there exists a sequence 

( )N∈nf
nn UK :,  such that, for each n, nUK Af

nn
∈,  and ( )0π  belongs to 

the closure of { ( ) }.:, N∈π nf
nn UK  Consider the sets ., N∈nUn  We claim 

that the sequence ( )N∈nUn :  witnesses that ( )YXS KK ,1  holds. Let T 

be a compact subset of Y. From ( ) { ( ) }N∈π∈π nf
nn UK :0 ,  it follows that 

there is an N∈i  such that ( )( )1,,0 TW π  contains the function ( )., ii UKfπ  

Then .iUT ⊂  Otherwise, for some Tx ∈  one has that ,iUx ∉  so that 
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( ) ( ) ( ) 1,, ==π xfxf
iiii UKUK  which contradicts the fact ( ) ∈π

ii UKf ,  

( )( ).1,,0 TW π  

(1) ⇒ (2) Let ( )N∈nAn :  be a sequence of subsets of ( )XCk  the 

closures of which contain .0  Fix n. For every compact set XK ⊂  the 

neighborhood 






n
KW 1,,0  of 0  intersects ,nA  so there exists a continuous 

function nnK Af ∈,  such that ( ) ,1
, n

xf nK <  for each .Kx ∈  Since nKf ,  

is a continuous function there are neighborhoods xU  of ,, Kxx ∈  such 

that, for ,, KUU xKxnK ⊃= ∈∪  we have ( ) .1,1
,, 





−⊂

nn
Uf nKnK  Let 

{ KU nKn :,=U  compact subset of }.X  For each n, nU  is a k-cover of X. 

By the condition 2 one can find a sequence ( )mnU nK ≥:,  such that, for 

each n, nnKU U∈,  and { }N∈nU nK :,  is a k-cover for Y. Consider the 

corresponding functions nKf ,  in .nA  We verify that the sequence { :, nKf  

}N∈n  witnesses for ( )N∈nAn :  that π has the countable strong fan 

tightness. Let ( )( )επ ,,0 TW  be a neighborhood of ( )0π  in ( )YCk  and let 

m be a natural number such that .1 ε<
m

 Since T is a compact subset of Y 

and ( )YXS KK ,1  holds, there is an ,, 00 mnn ≥∈ N  such that one can 

find a nnKU U∈
0,  with .

0, nKUT ⊂  We have 

( ) ( ) ( ) ( ) ( ),,1,11,1
00

,,,, 0
εε−⊂





−⊂






−⊂⊂=π

mmnn
UfTfTf nKnKnKnK  

i.e., ( ) ( )( ).,,0, επ∈π TWf nK  

In a similar way one can prove: 

Theorem 2.3. For a subspace Y of a space X, the following are 

equivalent: 

(1) ( )YXfinS KK ,  holds; 

(2) ( ) ( )YCXC kk →π :  has countable fan tightness. 
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3. The Pytkeev Property of Continuous Mappings 

For a space X and Xx ∈  a family F  of subsets of X is called 

π-network at x if every neighborhood of x contains an element of .F  

A space X is called a Pytkeev space [16] if AAx \∈  and XA ⊂  

implies the existence of a countable π-network at x consisting of infinite 
subsets of A. 

Now we transfer this property to the mapping as follows. 

Definition 3.1. Let X and Y be topological spaces and let YXf →:  

be a continuous mapping. f has the Pytkeev property at Xx ∈  if for each 

XA ⊂  and every Xx ∈  such that AAx \∈  there is a sequence ( :nB  

)N∈n  of infinite subsets of A such that ( )( )N∈nBf n :  is π-network at 

( ).xf  

If f has this property at all points Xx ∈  we shall say that f has the 

Pytkeev property. 

Remark 3.1. Observe that if either X or Y has the Pytkeev property, 
then f has that property. 

In [19] Sakai gave a characterization of the Pytkeev property in the 
function spaces ( )XCp  in terms of shrinkable ω-covers. For a similar 

investigation see also [17]. 

Definition 3.2. Let Y be a subspace of a space X. An open ω-cover 
(k-cover) U  of X is said to be relatively ω-shrinkable (relatively 

k-shrinkable) with respect to Y if for each U∈U  there is a closed set 

( )UC  of X such that ( ) UUC ⊂  and ( ){ }U∈UUC :  is an ω-cover (k-

cover) of Y. 

We prove 

Theorem 3.1. Let Y be a subspace of a space X. Then the following are 
equivalent: 

(1) ( ) ( )YCXC pp →π :  has the Pytkeev property; 

(2) if U  is an ω-cover of X relatively ω-shrinkable with respect to Y, 
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then there is a sequence { }N∈nn :U  of subfamilies of U  such that, for 

each ω=∈ nn U,N  and { }N∈nn :U∩  is an ω-cover of Y. 

Proof. (1) ⇒ (2) Let U  be an ω-cover relatively ω-shrinkable with 

respect to Y. For each U∈U  we choose a closed set ( )UC  of X such that 

( )UC U⊂  and ( ){ }U∈UUC :  is a k-cover of Y. So we can take in X, for 

each U∈U  a zero-set ( )UZ  and a cozero-set ( )UV  such that ( ) ( )UZUC ⊂  

( ) .UUV ⊂⊂  Without loss in generality, we may assume that for 

distinct, U ′  and U ′′  in ( )UZ ′,U  and ( )UZ ′′  are distinct. 

For a compact subset K of X let { }.: UKUK ⊂∈= UU  For each 

,U∈U  let UKf ,  be a continuous map from X to [ ]1,0  such that ( )01
,

−
UKf  

( )UZ=  and ( ) ( ).\11
, UVXf UK =−  Let { KfA UK :,=  compact subset of X, 

}.kU U∈  Note that for distinct U ′  and ,U∈′U  UKf ′,  and UKf ′′,  are 

distinct, and obviously .\0 AA∈  By the condition 1 there exists a 

sequence ( )N∈nBn :  such that nB  is infinite subset of A and ( ( ) :nBπ  

)N∈n  is a π-network at ( ).0π  For each n let nU  be a subfamily of U  

such that ω=nU  and { }.: nUn UfB U∈=  We claim that ( )N∈nn :U  

witnesses that U  satisfies the condition 2. Let K be a compact subset of Y 

and consider the neighborhood ( )( )1,,0 KW π  of ( ).0π  Then there is an 

N∈0n  such that ( ) ( )( ).1,,0
0

KWBn π⊂π  This means that { ( ) :WVK ∩⊂  

} { }.: nn UUW UW ∈⊂∈  Thus { }N∈nn :U∩  is a k-cover of Y. 

(2) ⇒ (1) Let ( ) ( )YCXC kk →π :  and let A be a subset of ( )XCk  such 

that .\0 AA∈  For each compact set K of X the neighborhood 






n
KW 1,,0  

in ( )XCk  of 0  intersects A. So that there exists a continuous map 

AfK ∈  such that ( ) ,1
n

xfK <  for each .Kx ∈  Let 

( ) ( )




 <∈=

n
xfXxfU Kk

1:  and ( ){ }.: AffU KK ∈=U  We see that U  is 

a k-cover of X relative k-shrinkable with respect to Y. Indeed for each 
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AfK ∈  let ( )

 ∈= :XxfZ k  ( ) .

2
1

≤

n
xfK  Obviously ( )kfZ  is closed in 

( ) ( )kk fZfUX ⊂,  and ⊂K  ( ).kfZ  Apply the condition 2 to U  there 

exists a sequence ( )N∈nn :U  such that, for each n, nU  is subfamily of 

U  and { }N∈nn :U∩  is a k-cover of Y. Then there is a sequence 

( )N∈nBn :  such that, for each nBn,  is an infinite subset of A and 

{ ( ) :Kn fU=U  }.nK Bf ∈  It easy to show that the family ( )( )N∈π nBn :  

is a π-network at ( ).0π  In fact let ( )( )επ ,,0 KW  be a neighborhood of ( )0π  

in ( )YCk  and m be a natural number such that .1 ε<
m

 Since K is a 

compact subset of Y there is a ,, mjj ≥∈ N  such that .jUK ∩⊂  Then 

( )( ) ( ) ( ) ,1,11,1





 −⊂





 −⊂⊂=π

mmjj
fKfKf jKKK U∩  

i.e., ( ) ( )( )επ∈π ,,0 KWfK  and ( ).,,0 ε⊂ KWBj  9 

In a similar way one can show that 

Theorem 3.2. Let Y be a subspace of a space X. The following are 

equivalent: 

(1) ( ) ( )YCXC kk →π :  has the Pytkeev property; 

(2) if U  is a k-cover of X relatively k-shrinkable with respect to Y, then 

there is a sequence { }N∈nn :U  of subfamilies of U  such that, for each 

ω=∈ nn U,N  and { }N∈nn :U∩  is a k-cover of Y. 

The selectively Pytkeev property was studied in [12] (in hyperspaces) 
and in [17] (in function spaces). 

Definition 3.3 [12]. Let X be a topological space. We say that X is a 

selectively Pytkeev space if for each sequence ( )N∈nAn :  of elements of 

xΩ  there is a sequence ( )N∈nBn :  such that nB  is an infinite subsets 

of ,nA  for each n, and ( )N∈nBn :  is π-network at x. 

If X has this property at all points Xx ∈  we shall say that X is a 

selectively Pytkeev space. 
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We introduce the following definition to transfer this property to 

continuous mappings. 

Definition 3.4. Let YXf →:  be a continuous mapping and let 

.Xx ∈  We say that f has the selectively Pytkeev property at x if for each 

sequence ( )N∈nAn :  of elements of xΩ  there is a sequence ( )N∈nBn :  

such that nB  is an infinite subsets of nA  for each n and ( )( )N∈nBf n :  

is π-network at ( ).xf  

If f has this property at all points ,Xx ∈  then we shall say that f has 

the selectively Pytkeev property. 

With small modifications in the proof of Theorem 3.1 one can prove 

the following two theorems. 

Theorem 3.3. Let Y be a subspace of a space X. The following are 

equivalent: 

(1) ( ) ( )YCXC pp →π :  has the Pytkeev property; 

(2) if ( )N∈nn :U  is a sequence of ω-covers of X relatively ω-shrinkable 

with respect to Y, then there is a sequence ( )N∈nn :V  such that, for each 

nn V,  is an infinitely countable subset of nU  and { }N∈nn :V∩  is an 

ω-cover of Y. 

Theorem 3.4. Let Y be a subspace of a space X. The following are 

equivalent: 

(1) ( ) ( )YCXC kk →π :  has the selectively Pytkeev property; 

(2) if ( )N∈nn :U  is a sequence of k-covers of X relatively k-shrinkable 

with respect to Y, then there is a sequence ( )N∈nn :V  such that, for each 

n, nV  is an infinitely countable subset of nU  and { }N∈nn :V∩  is a 

k-cover of Y. 

4. The Reznichenko Property of Continuous Mappings 

According to [14] we have the following notions. 

Definition 4.1. For a space X and an element Xx ∈  we have: 
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(1) An ω-cover (a k-cover) U  of X called groupable [14] if there is a 

partition ( )N∈nn :U  of U  into pairwise disjoint finite sets such that 

for each finite (compact) subset F of X, for all but finitely many n, there is 

a nU U∈  such that .UF ⊂  

(2) An element A of xΩ  is groupable [14] if there is a partition ( :nA  

)N∈n  of A into pairwise disjoint finite sets such that each neighborhood 

of x has nonempty intersection with all but finitely many elements .nA  

We use the following notation: 

gpΩ -the collection of all groupable ω-covers of X; 

gpK -the collection of all groupable k-covers of a space; 

( )gp
xΩ -the collection of all groupable elements of .xΩ  

A space X is said to have the ω-grouping property [15] if each 

countable ω-cover U  of X is groupable. 

We give now the following. 

Definition 4.2. Let Y be a subset of a space X. Y is said to have the 

relative ω-grouping property in X if for each ω-cover U  of X there is a 

sequence ( )N∈nn :U  of pairwise disjoint finite subfamilies of U  such 

that each finite subset F of Y is contained in some nU U∈  for all but 

finitely many n. 

In 1996 Reznichenko introduced the following property: Each 

countable element of xΩ  is a member of ( ) .gp
xΩ  In [14], the authors 

defined the selectively Reznichenko property: X has selectively 

Reznichenko property if ( ( ) )gp
xxfinS ΩΩ ,  holds for each .Xx ∈  

In [9] the authors transfer this property to mappings and introduce 
the following definitions. 

Definition 4.3. Let YXf →:  be a continuous mapping and let 

.Xx ∈  We say that f has the selectively Reznichenko property at x if for 

each sequence ( )N∈nAn :  of elements of xΩ  there is a collection { :nB  
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}N∈n  such that, for each nBn,  is a finite subset of nA  and for each 

neighborhood V of ( ),xf  for all but finitely many n, ( ) .∅≠nBfV ∩  

If f has this property at all points ,Xx ∈  then we shall say that f has 

the selectively Reznichenko property. 

Definition 4.4. Let YXf →:  be a continuous mapping and let 

.Xx ∈  We say that f has the Reznichenko property at x if for each A of 

elements of xΩ  there is a collection { }N∈nBn :  of finite subset of A and 

for each neighborhood V of ( ),xf  for all but finitely many ( ) ., ∅≠nBfVn ∩  

If f has this property at all points ,Xx ∈  then we shall say that f has 

the Reznichenko property. 

Remark 4.1. Observe that if either X or Y has the (selectively) 

Reznichenko property, then f has that property. 

Improving a result from [9] and following [19], we prove that 

Theorem 4.1. Let Y be a subspace of a space X. The following are 

equivalent: 

(1) ( ) ( )YCXC pp →π :  has the Reznichenko property; 

(2) if U  is an ω-cover of X relatively ω-shrinkable with respect to Y, 

then there is a sequence ( )N∈nn :V  of pairwise disjoint finite subsets of 

U  such that, for each finite set F of Y, the set { UFn ⊂∈ :N  for some 

}nU V∈  is cofinite in .N  

Proof. (1) ⇒ (2) Let U  be an ω-cover of X relatively ω-shrinkable with 

respect to Y. For each U∈U  we can take a continuous function XfU :  

[ ]1,0→  such that ( ) ( )1\,0 11 −− ⊂= UU fUXUf  and { ( ) }U∈− UfU :01  is an 

ω-cover of X. Since{ ( ) }U∈− UfU :01  is an ω-cover of X, we can assume that 

for distinct ,, nUU U∈′ Uf  and Uf ′  are distinct. Let { }.: U∈= UfA U  

Obviously .\0 AA∈  Since π has the Reznichenko property there is a 

family F  of pairwise disjoint finite subsets of A such that, for each 

neighborhood W of ( ),0π  the family ( ) ( ){ }∅=ππ WAA nn ∩:  is finite, 
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where { }.: nUn UfA U∈=  It is easy to show that the sequence ( :nU  

)N∈n  is a desired one. 

(2) ⇒ (1) Let A be a subset of ( )XCp  and .\0 AA∈  For each Af ∈  

let ( ) ( )






 <∈=

n
xfXxfUn

1:  and ( ){ }.: AffUn ∈=U  It is easy to 

prove that U  is an ω-cover of X relatively ω-shrinkable with respect to Y. 

Then there is a sequence ( )N∈nn :V  of pairwise disjoint finite subsets 

of U  and for each F finite subset of Y the family { UFn ⊂∈ :N  for 

some }nU V∈  is cofinite in .N  For each n, we set ( ){ },: nnn SffU ∈=V  

where nS  is a finite subset of A. Then the family ( )N∈nSn :  is disjoint 

and for each finite subset F of Y the set { ( )( ) ( ) }∅=ππ∈ nSFWn ∩1,,0:N  

is cofinite in .N  

We set ( ){ } ( ){ }NN ∈π=∈π= nSLnSS nn :,: 20 ∪∪  and { ( )121 +π= nSL ∪  

}.: N∈n  Obviously ( ) ( ) ( )( )SAL ππ∈π \0 0 ∪  or ( ) ( ) ( )( ).\0 1 SAL ππ∈π ∪  

Let ( ) ( ) ( )( ),\0 1 SAL ππ∈π ∪  and enumerate as { } { ( )nn AnS 12 : π=∈ N  

}.: N∈n  Since { ( ) ( ) ( )( )}SALffUnn ππ∈=′ \: 1 ∪U  is an ω-cover of X 

relatively ω-shrinkable with respect to Y by the same procedure as above, 

there exists a disjoint family ( ){ }N∈π nA n :2  of finite subset of ∪1L  

( ) ( )( )SA ππ \  and for each finite subset F of Y the set ( )

 


π∈ ,0: Wn N  

( )


∅=π




nAF 22
1, ∩  is cofinite in .N  Then ( ) ( ) { ( ) ,:\0 N∈ππ∈π nAA mn∪  

}.2,1=m  By repeating this operation, we have a disjoint family { :mnA  

}N∈m  of finite subsets of A such that for each N∈m  and each F finite 

in Y the set ( ) ( )






 ∅=π





π∈ mnA

m
FWn ∩1,,0:N  is cofinite in .N  Now 

let { }.: njiAA ijn =+=  It is not difficult to see that { }N∈nAn :  is 

desired one. 

In a similar way one can prove the following assertions. 

Theorem 4.2. For a subset Y of a space X the following are equivalent: 
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(1) ( ) ( )YCXC kk →π :  has the Reznichenko property; 

(2) if U  is a k-cover of X relatively k-shrinkable with respect to Y, then 

there is a sequence ( )N∈nn :U  of pairwise disjoint finite subsets of U  

such that, for each compact K of Y, the set { UKn ⊂∈ :N  for some 

}nU U∈  is cofinite in .N  

Theorem 4.3. Let Y be a subspace of a space X. The following are 

equivalent: 

(1) ( ) ( )YCXC pp →π :  has the selectively Reznichenko property; 

(2) if ( )N∈nn :U is a sequence of ω-covers of X relatively ω-shrinkable 

with respect to Y, then there is a sequence ( )N∈nn :V  of pairwise 

disjoint sets such that, for each n, nV  is a finite subsets of nU  and for 

each finite set F of Y, the set { UFn ⊂∈ :N  for some }nU V∈  is cofinite 

in .N  

Theorem 4.4. Let Y be a subspace of a space X. The following are 

equivalent: 

(1) ( ) ( )YCXC kk →π :  has the selectively Reznichenko property; 

(2) if ( )N∈nn :U  is a sequence of k-covers of X relative k-shrinkable 

with respect to Y, then there is a sequence ( )N∈nn :V  of pairwise disjoint 

such that, for each n, nV  is a finite subset of nU  such that, for each 

compact set K of Y, the set { UKn ⊂∈ :N  for some }nU V∈  is cofinite 

in .N  
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