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Abstract 

The Exp-function method is applied to the generalized Burger’s-Fisher 
equation and abundant exact solutions are obtained. It is shown that the 
method with the help of symbolic computation provides a powerful 
mathematical tool for solving nonlinear evolution equations. 

1. Introduction 

It is significant to seek the exact solutions for the nonlinear evolution 
equations (NLEEs). In order to obtain the exact solutions of the NLEEs, 
various powerful methods have been presented such as the inverse 
scattering method [1], the Bäcklund transformation and homogeneous 
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balance approach [17, 18], the Hirota’s bilinear method [10], the mapping 
method [15], the tanh function method [16, 21], the Jacobian elliptic 
function method [14], the homotopy perturbation method [5, 6], the 
variational iteration method [4, 8] and so on. 

Recently, He and Wu [9] proposed a straightforward and concise 
method called the Exp-function method to obtain the generalized solitary 
wave solutions and periodic solutions of the NLEEs. The basic idea of the 
algorithm is: For a given (1+1)-dimensional nonlinear model, the 
equation reads 

( ) ,0...,,,,, , =ttxxxttx uuuuuuP  (1) 

where P is in general a polynomial function of its arguments and their 
subscripts denote the partial derivatives. By using the travelling wave 
transformation, equation (1) possesses the following ansatz: 

( ) ( ) ,,, tkxUtxu ω+=ηη=  (2) 

where k and ω  are unknown constants. Substituting equation (2) into 
equation (1) yields an ordinary differential equation (ODE) 
( ( ) ( ) ( ) ) .0...,,, =ηηη ηηη UUUO  Then we assume that the solution of 

equation (1) can be expressed in the following form: 
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where pdc ,,  and q are positive integers to be further determined, na  

and mb  are unknown constants. Equation (3) can be rewritten in an 

alternative form as follows: 

( ) ( ) ( )
( ) ( ) .expexp

expexp
η−++η
η−++η

=η
−

−
qbpb
dacaU

qp
dc

L

L  (4) 

In order to determine the values of ,, pc  we balance the linear term 

in equation (1) with the highest order nonlinear term [7, 9]. Similarly to 
determine the values of d and q, we balance the linear term of lowest 
order in equation (1). 
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Recently, Zhu extended the Exp-function method to the discrete 
nonlinear systems and some new solutions were obtained [20]. The 
procedure of this method with the help of Mathematica is of utter 
simplicity and can be easily extended to many other kinds of NLEEs. 

In this letter, the Exp-function method is extended and applied to 
construct the exact solutions of the generalized Burger’s-Fisher equation. 

2. Application to the Generalized Burger’s-Fisher Equation 

We use the Exp-function method to find the exact solutions of the 
generalized Burger’s-Fisher equation as the following form: 

,0,]1,0[,)1( ≥=Ω∈−β=−α+ δδ txuuuuuu xxxt  (5) 

where δβα and,  are parameters. In recent years, many researchers 

used various methods to solve the Burger’s-Fisher equation (5). Kaya and 
Sayed [13] introduced a numerical simulation and obtained explicit 
solutions of the generalized Burger’s-Fisher equation. Ismail and Rabboh 
[11] presented a restrictive Pade approximation for the solution of the 
this equation. Ismail et al. [12] studied the adomian decomposition 
method for the Burger’s-Huxley and Burger’s-Fisher equation. Wazwaz 
[19] used the generalized tanh method for the Burger’s-Fisher equation. 
Golbabai and Javido [3] used a spectral adomian decomposition approach 
for it. 

Here, we first give a transformation 

( ) ( ) .,,
1
δ= txvtxu  (6) 

Substituting equation (6) into equation (5), we have 

( ) ( ) ( ).111 22 vvvvvvvv xxxxt −βδ=−
δ

−−α+  (7) 

Based on the Exp-function, we assume equation (7) possesses the 
following ansatz: 

( ) ., tkxUv ω+=ηη=  (8) 
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Substituting equation (8) into equation (7), we have 

( ) ( ) ( )2 2 2 21 1 1 .U U k UU k U k U U Uη η ηη ηω + α − − − = βδ −
δ

 (9) 

Balancing the linear term 3U  and the nonlinear term ηUU 2  of the 

highest order and the linear term of the lowest order in equation (9), we 
consider the circumstance .1,1 ==== dqcp  

Substituting 1,1 ==== dqcp  into equation (5), we can obtain 

( )
( ) ( )
( ) ( ) ,expexp

expexp
101

101
η−++η
η−++η

=η
−

−

bbb
aaa

U  (10) 

where 101101 and,,,, −− bbbaaa  are undetermined coefficients. 

Substituting equation (10) into equation (9) and using Mathematica, 
we have 

[ ( ) ( ) ( ) ( ) 01234 exp2exp3exp4exp1 CCCCCA +η+η+η+η  

( ) ( ) ( ) ( )] ,04exp3exp2expexp 4321 =η−+η−+η−+η−+ −−−− CCCC  (11) 

where [ ( ) ( )] ,expexp 4
101 η−++η= −bbbA  
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Then substituting the results into equations (6), (8) and (10), we 
obtain the abundant exact solutions of equation (5): 

Case 1.  When [ ( ) ] ,
)1(2

1
)1(2 2

22
tx
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where 1a  and 1−b  are free real numbers.  

Especially, when ,011 ≠= −ba  the result in [12] is obtained: 
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where 010 ,, baa  and 1−b  are free real numbers. 

Case 3. When ( ) ,2
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[ ( ) ]
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where 010 ,, baa  and 1−b  are free real numbers. 

Case 4. When ( ) ,
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where 1a  and 1−b  are free real numbers. 

Case 5. When ( )
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where 1b  and 1−b  are free real numbers. 

Case 6. When ( )
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where 1010 ,,, −− bbaa  and 1b  are free real numbers. 
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Case 7. When ( ) ,2

2
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α
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α
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where 010 ,, baa −  and 1b  are free real numbers. 

Case 8. When ( ) ,
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2
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α
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1
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where 1−a  and 1b  are free real numbers. 

3. Summary and Discussion 

In this paper, the solitonary solutions of the generalized Burger’s-
Fisher equation are derived through the generalized Exp-function 
method. From the obtained results, we can see that some solutions are 
generalized than the results derived before. This method can also be 
extended to other NLEEs with the higher order. The Exp-function 
method is a promising and powerful method for solving the NLEEs 
arising in mathematical physics. Its application is worth further 
studying. 
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