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Abstract

The Exp-function method is applied to the generalized Burger’s-Fisher
equation and abundant exact solutions are obtained. It is shown that the
method with the help of symbolic computation provides a powerful
mathematical tool for solving nonlinear evolution equations.

1. Introduction

It is significant to seek the exact solutions for the nonlinear evolution
equations (NLEEs). In order to obtain the exact solutions of the NLEES,
various powerful methods have been presented such as the inverse

scattering method [1], the Bicklund transformation and homogeneous
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balance approach [17, 18], the Hirota’s bilinear method [10], the mapping
method [15], the tanh function method [16, 21], the Jacobian elliptic
function method [14], the homotopy perturbation method [5, 6], the
variational iteration method [4, 8] and so on.

Recently, He and Wu [9] proposed a straightforward and concise
method called the Exp-function method to obtain the generalized solitary
wave solutions and periodic solutions of the NLEEs. The basic idea of the
algorithm is: For a given (1+1)-dimensional nonlinear model, the
equation reads

P(u, wy wy, Uy, Uy, Uy, ...) = 0, 1)

where P is in general a polynomial function of its arguments and their
subscripts denote the partial derivatives. By using the travelling wave

transformation, equation (1) possesses the following ansatz:
u(x, t) = U(n), n = kx + o, @)
where & and ® are unknown constants. Substituting equation (2) into

equation (1) yields an ordinary differential equation (ODE)
O(UM), UM)y, UM)yys ) = 0. Then we assume that the solution of

equation (1) can be expressed in the following form:

U(n) = —2¢ , 3

where ¢, d, p and q are positive integers to be further determined, a,
and b, are unknown constants. Equation (3) can be rewritten in an

alternative form as follows:

g explen) + -+ a_g expl-dn)
Un) = by, exp(pn) + -+ + b_gexp(—gn) @

In order to determine the values of ¢, p, we balance the linear term

in equation (1) with the highest order nonlinear term [7, 9]. Similarly to
determine the values of d and ¢, we balance the linear term of lowest

order in equation (1).
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Recently, Zhu extended the Exp-function method to the discrete
nonlinear systems and some new solutions were obtained [20]. The
procedure of this method with the help of Mathematica is of utter
simplicity and can be easily extended to many other kinds of NLEEs.

In this letter, the Exp-function method is extended and applied to

construct the exact solutions of the generalized Burger’s-Fisher equation.
2. Application to the Generalized Burger’s-Fisher Equation

We use the Exp-function method to find the exact solutions of the

generalized Burger’s-Fisher equation as the following form:
up + ausux — Uy = Pul - ué), xeQ=1[0,1],t >0, ®)

where o, p and & are parameters. In recent years, many researchers

used various methods to solve the Burger’s-Fisher equation (5). Kaya and
Sayed [13] introduced a numerical simulation and obtained explicit
solutions of the generalized Burger’s-Fisher equation. Ismail and Rabboh
[11] presented a restrictive Pade approximation for the solution of the
this equation. Ismail et al. [12] studied the adomian decomposition
method for the Burger’s-Huxley and Burger’s-Fisher equation. Wazwaz
[19] used the generalized tanh method for the Burger’s-Fisher equation.
Golbabai and Javido [3] used a spectral adomian decomposition approach

for it.

Here, we first give a transformation
1
u(x, t) = v(x, t)s. (6)
Substituting equation (6) into equation (5), we have
1 2 _ as.2
v(v; + awv, —vxx)—(g—l)vx = Bév(1 —v). (7)

Based on the Exp-function, we assume equation (7) possesses the

following ansatz:

v=UMm),n=kx + ot. (8)
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Substituting equation (8) into equation (7), we have
U(oU, + kaUU, — KU, )~ (= -~ 1)k2U2 = psU% (1 - U) 9)
n n m S n '

Balancing the linear term U3 and the nonlinear term U 2Un of the

highest order and the linear term of the lowest order in equation (9), we

consider the circumstance p =c=1,q9q =d = 1.
Substituting p = ¢ =1, ¢ = d =1 into equation (5), we can obtain

a; exp(n) + ap + a_y exp(-n)
by exp(n) + by + b_; exp(-m) ’

Un) = (10)

where a1, ag, a_1, by, by and b_; are undetermined coefficients.

Substituting equation (10) into equation (9) and using Mathematica,
we have

% [C4 exp(4n) + C3 exp(3n) + C3 exp(2n) + C; exp(n) + Cy
+ C_y exp(-n) + C_g exp(-2n) + C_3 exp(-3n) + C_y exp(-4n)] =0, ~ (11)
where A = [b; exp(n) + by + b_; exp(-n)]*,
Cy = 3°Baiby - 8°Baftf,
Cy = 5%Baiby + kdaaiby + k28albyb — Saymaghi + swatbyb,
— k28aqa0b?b;, — 25%Bayagh? — 26%Balbyb, + 38%Balagb; — kdaalay,

Co = 48k%a?b_1b) — 48k%aja_1b? — 52Badb? + swalby + 52Baib_; — dwalb?

— 48%Bajbyagh, + 35%Baa_iby + 2k%arbyagb;, — 25%Bab_1b

- 26ka1aa§b1 + 26kaa12b0a0 - 282[3a1a_1b12 - 260)a1a_1b12

+ 28kaaib_; + 280alb_qb, — 28kaata_jby — 52Batbd — k2a?bd

+ 38%Batbyagy — k2adb? + 35%Bajadby,
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Cy = 5k%adbyb, + Skaa_jalby + dwagbga; + Skaadayby — Skaga_1b?
- 28%Bagarbg — 28%Badbyb, — 4kZatbyb_ — 65k%aya_1bob,
+ 38a2wbyb_; — 28%Baga_1b? + 5okagalb_q + 35%Bagalb_,
— 68kagaia_1b; — 8ma(2)bob1 + 362Ba§albo - Skgaoalbg
+ 4k2a0a1b_1b1 + 28waga1b_1b; + 662Ba0a1a_1b1 - 262[3b_1a12b0
+ 82Ba(?)’b1 - 4k2a_1a0b12 - 462[5a_1a1b0b1 - 36a0(oa_1b12
- 482[3b_1a1a0b1 - 28ma_ja1bpby + 8k2b_1a12b0 + 382[3a_1a12b0
— Skaadby + 65k2b_qayagb; + 4k%aja_1byby,
Co = 48aj0agb_1by — 48kaada b, + 8k%b_jaya_1b, — 4k%a? b}
+ 382[3a12a_1b_1 — 48%Bajagbob_q — 48%Baja_1b_1b; — 26%Baja_1bg
+ 28atwb? + 35%Bajadb_; — 46%Baga_1byb, + 352Baja’iby
- ZSQBagb_lbl + Zalkza_lbg — 4dagwa_1byb; + GSQBalaOa_lbO
- 82[3(1%1612 - 2a0k2a_1b0b1 + 362Baga_lb1 + Szﬁagbo
- 28(1%10)()12 - 82[3a12b21 - 48a1k2a_1b§ - 2a1k2a0b0b_1
— 48ajkaa’ by + 48atkaa_1b_; + 48akaadb_; + 2k%adb_1b,
- 48kaada_1b, — 4k%a?b? - 52Badbd,
C_; = 8°Bagb_y + 5k2adb by — 4k%bja by + 35%Baja’iby
+ 35%Ba_yadby — 26%Bagb_1by — 6k25a1a_1b_1by + dwadbyb_;

+ Skocagb_l + 8k2Baglb0b1 - 282Ba1b21a0 - Skgalaobgl
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+ 38a;0b% ag — 8k%a_jaghs — 25%Baga_1bg —28agwb_ja_1b,
- dajkaa’ by + 66%Bagarb_ja_q — 28%Bbya’ by — bdagkaa’ by
— dagk®ab? + dagk’arb_1by — Skaada_iby — 38a? wbyb,
—48%Baya_qbgb_1 + 65a1kaaga_1b_q +28aywbya_1b_q
+ 68k2a0a71b71b1 - 8a0ma,1bg - 462Ba0a71b,1b1
+ 4k2aya_1bgb_1 + 38%Bagaiby,

C_y = 5%Ba’ b, — 48a_1k%a1b? — 48%Ba_qagb_1by — 26%Ba_qarb?
- 28a2 agokby + 35%Ba’arb g + dwadb? — 28wa’b_b;
- 8a?,0b3 + 28kaa_jadb_ | — k2a?bg + 2k%a_qagb_1by
+ 26a_lo)a1bg1 + 382[3(1%1(101)0 - k2a(2)b21 + 362Ba_1a8b_1
- 280ab_1by + 45a2 kb by + 28a? kaarb
— 28a® agkab, — 82palb? — 2pa®be,

C.s = 6a_1c0a0b21 + 5a§1k2b0b_1 + Saglkaaob_l + 82Ba§1b0
— da_1k2agh?) — 8a% wbyb_ — 26%Ba_qagb?y + 352Baagh 4
— 252Ba? byb_y — 5a>; kaby,

C_, = 8%Ba’b | — 8%Ba?b?,

Equating the coefficients of exp(nn) to be zero, we have

C4 = 0, C3 = 0, C2 = 0, Cl = O,
Cy =0, (12)
C_4 = O, C_3 = 0, C—Z = O, C—l = O
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Then substituting the results into equations (6), (8) and (10), we
obtain the abundant exact solutions of equation (5):

da. N S[a? + B8 +1)%]

Case 1. When n = - x t, we have
N 26 +1) 208 + 1)2
L
a; exp(n) 5
= , 13
Ll exp(n) + b4 exp(—n)} (13
where a; and b_; are free real numbers.
Especially, when a; = b_; # 0, the result in [12] is obtained:
1
u(x, t) = (% + %tanhnjé;
when a7 = b_; # 0, ad = -1, the result in [2] is obtained:
1
(1.1 5
u(x, t) = (2 5 tanhn) .
2 2
Case 2. When n = — S X+ 8a” + p(8 +1) ]t, we have
(8+1) (5 +1)
_ ) 1
a; exp(n 3
Ug = | —————————1, 14
>~ Lay exp(n) + bo} 4
_ L
bo 3
Us = s 15
* 7 B+ by el —n)} 4
_ 1
S
a; ex + ag)a
uy = ( 1 2P(ﬂ) 0) 0 , (16)
| a1aq exp(n) + ay + a;b_; + agb_; exp(-n)
where ag, a1, by and b_; are free real numbers.
2
Case 3. When n = —%x + SB(Q—;B)L we have
a
1
a; ex 3
5 :‘: 1 bp(n):l , (17)
0
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1
Ug :{ aO[bO eXp(n)"‘ b—l] }g, (18)

b_1[by + b_y exp( —)]

where ag, a1, by and b_; are free real numbers.

2
Case 4. When n = —%x + SB(G—;ﬁ)t, we have
20

1
o <[]t

where a; and b_; are free real numbers.

o S[a? +B(8 +1)%]

Case 5. When n = 56+ 1) 26+ 1)2 t, we have
bien) s
_1 exp(-n 5
ug = s 20
8 |:bl exp(n) + b_; exp(—n)} (20)

where b; and b_; are free real numbers.

Case 6. When n = (8631) x - 6[a2(; ﬁ(f); 1)2] t, we have
b 1

- [bl eXp((T)l) + bo}a’ @

by expl-n) To

_1 exp(—
0 = [bo +1bfl pr?—n)} ’ #2)

[ ()] s
aplag + a_; exp(-n

HZ&&W@W+am+%+%ameJ’ .

where ag, a_q, by, b_; and b; are free real numbers.
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2
Case 7. When n = %x - SB(Q—;B)L we have
o

1
Uy = [%f(—n)}ﬁ ©4)

~ {a—l[bl + bo exp(—n)]}%
3 =

25
bo[by exp(n) + bo | =
where ag, a_1, by and b; are free real numbers.
2
Case 8. When n = ﬁx - Mt, we have
20 20,2

(205

a_y exp(—2n) |5
uy = [T} , (26)

where a_; and b; are free real numbers.

3. Summary and Discussion

In this paper, the solitonary solutions of the generalized Burger’s-
Fisher equation are derived through the generalized Exp-function
method. From the obtained results, we can see that some solutions are
generalized than the results derived before. This method can also be
extended to other NLEEs with the higher order. The Exp-function
method is a promising and powerful method for solving the NLEEs
arising in mathematical physics. Its application is worth further
studying.
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