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Abstract 

In this paper, we consider within the framework of classical elasticity 
under assumptions pertinent to plane strain, the problem of analytically 
finding the distribution of stress in a wedge-shaped homogeneous 
isotropic elastic solid, when the plane faces are indented by rigid 
punches of unequal size away from the apex of the wedge. 

The solution of the three resulting parts mixed boundary value problem 
is reduced to the solution of triple integral equations involving Mellin 
transforms. Closed form solutions of the triple integral equations are 
obtained and the displacement component and resultant pressure on the 
faces are expressed in closed form. Numerical values for the resultant 
pressure are given in the form of a table. The results may be applicable 
to certain foundation problems. 

1. Introduction 

Problems concerning contact between deformable solids are of 
considerable theoretical and practical importance since contact is the 
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commonest way to transmit loads from one structural member to 
another. This is why contact mechanics continues to be one of the most 
important branches of theoretical elasticity. Extensive accounts of this 
progress of contact problems are given by Gladwell [3], Hills et al. [4] and 
Jonson [5]. The problem of distribution of stress due to rigid punches in 
the wedge-shaped region has been discussed by Matczynski  [7], 
Srivastav and Narain [8], Srivastav and Parihar [9]. Matczynski [7] 
reduced the problem to a Wiener-Hopf integral equation which is solved 
by an approximate method suggested by Koiter [6]. 

Srivastav and Narain [8] solved the contact problem when the plane 
faces of the wedges are indented normally and symmetrically by a rigid 
punch. They reduced the solution of the problem into dual integral 
equations by the use of Mellin transforms and finally reduced the 
problem into solving a Fredholm integral equation of the second kind. 
The Fredholm integral equation was solved numerically to find the 
physical quantities. Srivastav and Parihar [9] discussed the problem of a 
wedge with its plane faces indented by rigid punches of unequal size. 
They reduced the solution of the problem into two simultaneous 
Fredholm integral equations of the second kind, which are solved 
numerically to find the physical quantities. The three-part mixed 
boundary value problem for contact and crack problems at the middle of 
the wedge-shaped region has been solved by Erdogan and Gupta [2] and 
approximate results have been obtained. 

This work is further extension of the work of Matczynski [7] and 
Srivastav and Narain [8], who considered the two-parts mixed boundary 
value problem. 

As we know, an analytic solution in closed form has some advantages 
over numerical and approximate solutions, so that in many cases 
analytical solutions in closed form are desired for accurate analysis and 
design. Moreover, analytical solutions serve as a benchmark for the 
purpose of judging the accuracy and efficiency of various numerical and 
approximate methods. However, owing to the mathematical complexity, 
certain practical problems of complicated configurations are only solved 
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with recourse to numerical schemes and it is difficult to obtain their 
analytic solution in closed form. 

In this paper, we consider a wedge with plane faces indented by rigid 
punches of unequal size. The boundary value problem is reduced into the 
three-part mixed boundary value problem. The solution of the problem is 
reduced to the triple integral equations by using Mellin transforms. The 
closed form solution of the triple integral equations and the closed form 
expressions for shear stress and displacement component and the 
resultant pressures under the punches are obtained. The numerical 
results for the resultant pressure under the punch are given. With the 
application in foundation engineering in mind, the main interest in these 
problems is in the evaluation of the contact pressure. 

The analysis throughout the paper is formal. As is customary for 
dealing with problems of this nature, we make no attempt to justify the 
change of order of integrations. 

2. Solutions of Equations of Elastic Equilibrium 

Let the wedge occupy the region defined in plane polar coordinates by 
.,0 α≤θ≤α−∞<≤ r  The equations of equilibrium: 
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where χ is the airy stress function, while the strain components in terms 
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of displacement and stresses are expressed as follows: 
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The condition of compatibility imposed on χ yields a biharmonic 
equation 
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Considering (3) and (4), we find that 
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For plane strain, we replace 

E  by  ν
ν−

,
1 2

E   by  
ν−

ν
1   and  E  by  ( ).12 ν+µ  (9) 

In the above equations, E and ν represent the shear modulus and the 
Poisson’s ratio for the material, respectively and µ represents the shear 
modulus. 

With the help of equations (4), (6), (7) and (9), we get the 
displacement components: 

( ) ( ) ( )∫ ∂
χ∂−χ∇ν−=θµ ,1,2 2
rdrrur  (10) 

( ) ( ) ( ) ( ) ,1,2 22
θ∂
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where we have assumed that the constants of integration are zero as 
.∞→r   
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3. Statement of the Problem 

Let us consider, the problem of distribution of stresses and 
displacements on the boundary of an infinite homogeneous isotropic plate 
having the form of a wedge with the vertex angle .2δ  We consider that 
the wedge with plane faces δ±=θ  is indented by punches of unequal 
size. Furthermore, the boundaries of the plate δ±=θ  are free from shear 
stress as shown in Figure 1. The line OX bisects the interior angle of δ2  
of the wedge. The sign of θ is positive, when measured in the counter 
clockwise direction from OX to r. 

The displacement and stress components for the upper part of the 
wedge α<θ<0  are defined by ( )[ ] ( )[ ] ( )[ ] ,,,,,, 111 θσθθθ rruru rrr  

( )[ ]1, θσθθ r  and [ ( )] ., 1θσ θ rr  For the lower part ,0<θ<α−  the 

displacement and stress components are defined by ( )[ ] ( )[ ] ,,,, 22 θθθ ruru r  

( )[ ] ,, 2θσ rrr  ( )[ ]2, θσθθ r  and [ ( )] ., 2θσ θ rr  

The boundary value problem is reduced to the mixed boundary value 
problem at the planes δ=θ  and .δ−=θ  The boundary conditions are 

( )[ ] ( ) ,,, 11 brarfru <<=δθ  (12) 

( )[ ] ,,0,0, 1 brarr ><<=δσθθ  (13) 

[ ( )] ∞<<=δσ θ rrr 0,0, 1  (14) 

and 
( )[ ] ( ) ,,, 1122 brarfru <<−=δ−θ  (15) 

( )[ ] ,,0,0, 112 brarr ><<=δ−σθθ  (16) 

[ ( )] .0,0, 2 ∞<<=δ−σ θ rrr  (17) 

We assume that along the line OX two pieces of same materials are 
joined to make one wedge. At the upper surface due to the frictionless 
joints along OX, we assume the following boundary conditions: 

( )[ ] ( )[ ] ,0,0, 21 rr θθθθ σ=σ  (18) 

( )[ ] ( )[ ] .0,0, 21 rr rrrr σ=σ  (19) 
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We take the stress function χ satisfying equation (5) in the form (see 
[10, 12]): 
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Equations (3), (10), (11) and (20) lead to 
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From equations (3), (10), (11) and (21), we obtain 
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From equations (22)-(26) and (27)-(31), the boundary conditions (14), 
(17)-(19) are satisfied identically and the boundary conditions (12), (13), 
(15) and (16) reduce to the following two sets of triple integral equations: 
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where 
( ) ( ).1 ssAsA =  (38) 

To find the solution of the problem, we shall consider the triple 
integral equations (32), (33) and (34). 
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The inversion theorem for Mellin transforms and equations (32), (34) 
and (39) lead to 

( ) ( )∫ >=





 π b

a
s cdtttgsssA .0,2tan1  (40) 

Substituting the value of ( )sA1  from equation (40) into equation (33) 
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where C is an arbitrary constant. 

If 
( ) 01 frf =   (a constant), (46) 
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then 
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The total pressure 1P  under the stamp is given by 
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The expression for the displacement component can be written in the 
following form: 
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and making use of equations (47) and (50), we get 
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
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



+
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,0,log
log

2

2222
0

2222
0

1
brbar

arbbra
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ab

f

arbar
rabrba

ba
ab

f

u  (60) 

Solution of the triple integral equations (35)-(37) may be obtained by 
replacing a, b, c, ( )rf1  by 111 ,, cba  and ( ),2 rf  respectively in the above 

solution. 
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Numerical values of the total pressure 1P  are given in Table 1. 

It is interesting to note that the physical quantities 1P  and [ ]1θu  at 

δ=θ  are independent of the angle δ. 

In the same way, the total pressure under the punch ,11 bra <<  

δ−=θ  can be obtained. 

Table 1. Values of ( )
0

11
f

P
µ
−ν  for 1=b  

a ( )
0

11
f

P
µ
−ν  

0.3 −5.0750 
0.4 −3.7078 
0.5 −2.8596 
0.6 −2.2662 
0.7 −1.8111 
0.8 −1.4298 

 

Figure 1. Wedge-shaped elastic solid indentation by rigid punches. 



STRESS DISTRIBUTION IN A WEDGE-SHAPED ELASTIC … 31 

References 

 [1] A. A. Erde‘lyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral 
Transforms, Vol. 1, McGraw Hill, New York, 1954. 

 [2] F. Erdogan and G. D. Gupta, Contact and crack problems for an elastic wedge, Int. 
J. Eng. Sci. 14 (1976), 155-164. 

 [3] G. M. L. Gladwell, Contact problems in the classical theory of elasticity, Alphen aan 
den Rijn Sijthoff and Noordhoff, 1980. 

 [4] D. A. Hills, D. Nowell and A. Sackfield, Mechanics of Elastic Contacts, Butterworth-
Heineman, Philadelphia, 1993. 

 [5] K. L. Jonson, Contact Mechanics, Cambridge University Press, 1985. 

 [6] W. T. Koiter, Approximate solution of Wiener-Hopf type integral equations with 
applications, Koninkl. Ned. Akad. Wetenschap. Proc., Series B 57 (1954), 558-579. 

 [7] M. Matczynski, Elastic wedge with discontinuous boundary conditions, Arch. Mech. 
Stos. 15 (1963), 833-855. 

 [8] R. P. Srivastav and P. Narain, Certain two-dimensional problems of stress 
distribution in wedge-shaped elastic solids under discontinuous load, Cambridge 
Phil. Soc. 61 (1965), 945-954. 

 [9] R. P. Srivastav and K. S. Parihar, Stress distribution in wedge-shaped elastic solids 
under asymmetric loads, Indian J. Mathematics 9 (1967), 530-542. 

 [10] C. J. Tranter, The use of Mellin transforms in finding the stress distributions in an 
infinite wedge, Quart. J. Mech. Appl. Math. 1 (1948), 125-130. 

 [11] F. A. Tricomi, On the finite Hilbert transform, Quart. J. Mech. Appl. Math. 2 
(1951), 199-211. 

 [12] J. Tweed, S. C. Das and D. P. Rooke, The stress intensity factor of a radial crack in 
a finite elastic disk, Int. J. Engng. Sci. 10 (1972), 323-335. 

g 


